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1. Introduction

In this paper we consider the existence, multiplicity and nonexistence of
positive solutions for the periodic boundary value problem

x′′ + m2x = λG(t)F(x) 0 � t � 2π,

x(0) = x(2π), x′(0) = x′(2π), (1.1)

where m ∈ (0, 1/2) is a constant, x = [x1, . . . , xn]T , G(t) = diag[g1(t),

g2(t), . . . , gn(t)], F(x) = [f 1(x), f 2(x), . . . , f n(x)]T , and λ > 0 is a positive
parameter.

The existence of positive solutions for the periodic scalar boundary value
problem have been studied in many papers, see Jiang-Chu-O’Regan-Agar-
wal [3] and Torres [5] and the references therein. It was shown that the
scalar periodic boundary value problem has one positive solution provided
f is superlinear or sublinear at zero and infinity. Periodic boundary value
problems are closely related to the Dirichlet/Neumann boundary value
problems, which have been extensively investigated in the literature (see,
e.g., Agarwal-O’Regan-Wong [1] and Wang [7]). Our arguments as in Jiang-
Chu-O’Regan-Agarwal [3] and Torres [5] are based on the fixed point index
in a cone. We are able to establish several criteria for the existence, multi-
plicity and nonexistence of positive solutions of (1.1). The same approach
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also was used in Wang [6, 7] to prove analogous results for the existence,
multiplicity and nonexistence of positive solutions of boundary value prob-
lems solutions for other boundary data.

Let R = (−∞, ∞), R+ = [0, ∞), R
n
+ = �n

i=1R+, and for any u =
(u1, . . . , un) ∈ R

n
+, ‖u‖ = ∑n

i=1 |ui |. Our assumptions for this paper are:
(H1) f i : R

n
+ → [0, ∞) is continuous, i = 1, . . . , n.

(H2) gi(t) : [0, 2π ] → [0, ∞) is continuous and
∫ 2π

0 gi(t)dt > 0, i =
1, . . . , n.

(H3) f i(u) > 0 for ‖u‖ > 0, i = 1, . . . , n.
In order to state our results we introduce the notation

f i
0 = lim

‖u‖→0

f i(u)

‖u‖ , f i
∞ = lim

‖u‖→∞
f i(u)

‖u‖ , u ∈ R
n
+, i = 1, . . . , n

F0 = max
i=1,...,n

{f i
0 }, F∞ = max

i=1,...,n
{f i

∞}. (1.2)

Our main results are:

THEOREM 1.1. Assume (H1)–(H2) hold.
(a). If F0 = 0 and F∞ = ∞, then for all λ > 0 (1.1) has a positive solu-

tion.
(b). If F0 = ∞ and F∞ = 0, then for all λ > 0 (1.1) has a positive solu-

tion.

THEOREM 1.2. Assume (H1)–(H3) hold.
(a). If F0 = 0 or F∞ = 0, then there exists a λ0 > 0 such that (1.1) has

a positive solution for λ > λ0.
(b). If F0 = ∞ or F∞ = ∞, then there exists a λ0 > 0 such that (1.1)

has a positive solution for 0 < λ < λ0.
(c). If F0 = F∞ = 0, then there exists a λ0 > 0 such that (1.1) has two

positive solutions for λ > λ0.
(d). If F0 = F∞ = ∞, then there exists a λ0 > 0 such that (1.1) has two

positive solutions for 0 < λ < λ0.
(e). If F0 < ∞ and F∞ < ∞, then there exists a λ0 > 0 such that for all

0 < λ < λ0 (1.1) has no positive solution.
(f). If F0 > 0 and F∞ > 0, then there exists a λ0 > 0 such that for all

λ > λ0 (1.1) has no positive solution.

This paper is organized in the following ways. In Section 2, we trans-
form (1.1) into a fixed point problem. Furthermore, we establish several
inequalities. In Section 3, we apply the fixed point index to show the exis-
tence, multiplicity and nonexistence of positive solutions of (1.1) based on
the inequalities.
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2. Preliminaries

We recall some concepts and conclusions on the fixed point index in a cone
in Guo-Lakshmikantham [2] and Krasnoselskii [4]. Let E be a Banach
space and K be a closed, nonempty subset of E. K is said to be a cone
if (i) αu + βv ∈ K for all u, v ∈ K and all α, β � 0 and (ii) u, −u ∈ K

imply u = 0. Assume � is a bounded open subset in E with the boundary
∂�, and let T : K ∩ � → K be completely continuous such that T x �= x

for x ∈ ∂� ∩ K, then the fixed point index i(T , K ∩ �, K) is defined. If
i(T , K ∩�, K) �= 0, then T has a fixed point in K ∩�. The following well-
known result of the fixed point index is crucial in our arguments.

LEMMA 2.1. (Guo-Lakshmikantham [2] and Krasnoselskii [4]). Let E

be a Banach space and K a cone in E. For r > 0, define Kr = {v ∈ K :
‖x‖ < r}. Assume that T : K̄r → K is completely continuous such that
T x �= x for x ∈ ∂Kr = {v ∈ K : ‖x‖ = r}.

(i) If ‖T x‖ � ‖x‖ for x ∈ ∂Kr , then

i(T , Kr, K) = 0.

(ii) If ‖T x‖ � ‖x‖ for x ∈ ∂Kr , then

i(T , Kr, K) = 1.

Following Jiang-Chu-O’Regan-Agarwal [3], we consider the function

G(t, s) =
{

sin m(t−s)+sin m(2π−t+s)

2m(1−cos 2mπ)
0 � s � t � 2π,

sin m(s−t)+sin m(2π−s+t)

2m(1−cos 2mπ)
0 � t � s � 2π.

(2.3)

Let Ĝ(x) = (sin(mx) + sin m(2π − x))/(2m(1 − cos 2mπ)), x ∈ [0, 2π ]. It
is easy to check that Ĝ is increasing on [0, π ] and decreasing on [π, 2π ],
and G(t, s) = Ĝ(|t − s|). Thus

sin 2mπ

2m(1 − cos 2mπ)
= Ĝ(0) � G(t, s) � Ĝ(π) = sin mπ

m(1 − cos 2mπ)

for s, t ∈ [0, 2π ].
Let X be the Banach space C[0, 2π ] × · · · × C[0, 2π ]

︸ ︷︷ ︸
n

and for u =

(u1, . . . , un) ∈ X,

‖u‖ =
n∑

i=1

sup
t∈[0,2π ]

|ui(t)|.
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For u ∈ X or R
n
+, ‖u‖ denotes the norm of u in X or R

n
+, respectively. Let

K be the cone given by

K = {u = (u1, . . . , un) ∈ X : ui(t) � 0, t ∈ [0, 2π ], i = 1, . . . , n,

and min
0�t�2π

n∑

i=1

ui(t) � σ‖u‖},

where σ = cos mπ > 0. Also, define, for r a positive number, �r by

�r = {u ∈ K : ‖u‖ < r}.

Note that ∂�r = {u ∈ K : ‖u‖ = r}.
Let Tλ : K → X be a map with components (T 1

λ , . . . , T n
λ ). We define T i

λ ,
i = 1, . . . , n, by

T i
λu(t) =

∫ 2π

0
λG(t, s)gi(s)f

i(u(s))ds, 0 � t � 2π. (2.4)

LEMMA 2.2. Assume (H1)–(H2) hold. Then Tλ(K) ⊂ K and Tλ : K →
K is compact and continuous.

Proof. Let u ∈ K, then, for i = 1, . . . , n

min
0�t�2π

T i
λu(t) � Ĝ(0)λ

∫ 2π

0
gi(s)f

i(u(s))ds

= σĜ(π)λ

∫ 2π

0
gi(s)f

i(u(s))ds

� σ sup
0 � t � 2π

T i
λu(t).

Thus, Tλ(K) ⊂ K (note min[0,2π ]
∑n

i=1 |T i
λu(t)| �

∑n
i=1 min[0,2π ] |T i

λu(t)|). It
is easy to verify that Tλ is compact and continuous.

Notice that u ∈ K is a positive fixed point of Tλ if only if u is a positive
solution of (1.1).

Let

	 = Ĝ(0)σ min
i=1,...,n

∫ 2π

0
gi(s)ds > 0.
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LEMMA 2.3. Assume (H1)–(H2) hold. Let u = (u1(t), . . . , un(t)) ∈ K and
η > 0. If there exists a component f i of f such that

f i(u(t)) � η

n∑

i=1

ui(t) for t ∈ [0, 2π ]

then

‖Tλu‖ � λ	η‖u‖.

Proof. From the definition of Tλu it follows that

‖Tλu‖ � max
0�t�2π

T i
λu(t)

� λĜ(0)

∫ 2π

0
gi(s)f

i(u(s))ds

� λĜ(0)

∫ 2π

0
gi(s)η

n∑

i=1

ui(s)ds

� λĜ(0)σ

∫ 2π

0
gi(s)dsη‖u‖

= λ	η‖u‖.

For each i = 1, . . . , n, let f̂ i(t) : R+ → R+ be the function given by

f̂ i(t) = max{f i(u) : u ∈ R
n
+ and ‖u‖ � t}.

Let f̂ i
0 = limt→0

f̂ i (t)

t
and f̂ i

∞ = limt→∞ f̂ i (t)

t
.

LEMMA 2.4. (Wang [7]). Assume (H1) holds. Then

f̂ i
0 = f i

0 and f̂ i
∞ = f i

∞, i = 1, . . . , n.

LEMMA 2.5. Assume (H1)–(H2) hold and let r > 0. If there exits an ε >

0 such that

f̂ i(r) � εr, i = 1, . . . , n,

then

‖Tλu‖ � λĈε‖u‖ for u ∈ ∂�r,

where the constant Ĉ = Ĝ(π)
∑n

i=1

∫ 2π

0 gi(s)ds.
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Proof. From the definition of Tλ, we have for u ∈ ∂�r ,

‖Tλu‖ =
n∑

i=1

max
0 � t � 2π

T i
λu(t)

�
n∑

i=1

λĜ(π)

∫ 2π

0
gi(s)f

i(u(s))ds

�
n∑

i=1

λĜ(π)

∫ 2π

0
gi(s)f̂

i(r)ds

�
n∑

i=1

λĜ(π)

∫ 2π

0
gi(s)dsε‖u‖

= λĈε‖u‖.

The following two lemmas are weak forms of Lemmas 2.3 and 2.5.

LEMMA 2.6. Assume (H1)–(H3) hold. If u ∈ ∂�r , r > 0, then

‖Tλu‖ � λm̂r	
1
σ

,

where m̂r = min{f i(u) : u ∈ R
n
+ and σ r � ‖u‖ � r, i = 1,. . . , n } > 0.

Proof. Since f i(u(t)) � m̂r for t ∈ [0, 2π ], i = 1, . . . , n (we just note that
r = ‖u‖ � sup[0,2π ]

∑n
i=1 |ui(t)| � inf [0,2π ]

∑n
i=1 |ui(t)| � σr if u ∈ ∂�r ), a

slight modification of the proof in Lemma 2.3 yields the result.

LEMMA 2.7. Assume (H1)–(H3) hold. If u ∈ ∂�r , r > 0, then

‖Tλu‖ � λM̂rĈ,

where M̂r = max{f i(u) : u ∈ R
n
+ and ‖u‖ � r, i = 1, . . . ,n} > 0 and Ĉ is the

positive constant defined in Lemma 2.5.

Proof. Since f i(u(t)) � M̂r for t ∈ [0, 2π ], i = 1, . . . ,n, a slight modifi-
cation of the proof in Lemma 2.5 guarantees the result.
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3. Proof of Theorem 1.1

Proof. Part (a). F0 = 0 implies that f i
0 = 0, i = 1, . . . , n. It follows from

Lemma 2.4 that f̂ i
0 = 0, i = 1, . . . , n. Therefore, we can choose r1 > 0 so

that f̂ i(r1) � εr1, i = 1, . . . , n, where the constant ε > 0 satisfies

λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.5. We have by Lemma
2.5 that

‖Tλu‖ � λεĈ‖u‖ < ‖u‖ for u ∈ ∂�r1 .

Now, since F∞ = ∞, there exists a component f i of F such that f i
∞ = ∞.

Therefore, there is an Ĥ > 0 such that

f i(u) � η‖u‖

for u = (u1, . . . , un) ∈ R
n
+ and ‖u‖ � Ĥ , where η > 0 is chosen so that

λ	η > 1.

Let r2 = max{2r1,
1
σ
Ĥ }. If u = (u1, . . . , un) ∈ ∂�r2 , then

min
0 � t � 2π

n∑

i=1

ui(t) � σ‖u‖ = σr2 � Ĥ ,

which implies that

f i(u(t)) � η

n∑

i=1

ui(t) for t ∈ [0, 2π ].

It follows from Lemma 2.3 that

‖Tλu‖ � λ	η‖u‖ > ‖u‖ for u ∈ ∂�r2 .

By Lemma 2.1,

i(Tλ, �r1, K) = 1 and i(Tλ, �r2, K) = 0.
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It follows from the additivity of the fixed point index that

i(Tλ, �r2 \ �̄r1, K) = −1.

Thus, i(Tλ, �r2 \�̄r1, K) �= 0, which implies Tλ has a fixed point u ∈ �r2 \�̄r1

by the existence property of the fixed point index. The fixed point u ∈ �r2 \
�̄r1 is the desired positive solution of (1.1).

Part (b). If F0 = ∞, there exists a component f i such that f i
0 = ∞.

Therefore, there is an r1 > 0 such that

f i(u) � η‖u‖

for u = (u1, . . . , un) ∈ R
n
+ and ‖u‖ � r1, where η > 0 is chosen so that

λ	η > 1.

If u = (u1, . . . , un) ∈ ∂�r1 , then

f i(u(t)) � η

n∑

i=1

ui(t) for t ∈ [0, 1].

Lemma 2.3 implies that

‖Tλu‖ � λ	η‖u‖ > ‖u‖ for u ∈ ∂�r1 .

We now determine �r2 . F∞ = 0 implies that f i
∞ = 0, i = 1, . . . , n. It follows

from Lemma 2.4 that f̂ i
∞ = 0, i = 1, . . . , n. Therefore there is an r2 > 2r1

such that

f̂ i(r2) � εr2, i = 1, . . . , n,

where the constant ε > 0 satisfies

λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.5. Thus, we have by
Lemma 2.5 that

‖Tλu‖ � λεĈ‖u‖ < ‖u‖ for u ∈ ∂�r2 .

By Lemma 2.1,

i(Tλ, �r1, K) = 0 and i(Tλ, �r2, K) = 1.
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It follows from the additivity of the fixed point index that i(Tλ, �r2\
�̄r1, K) = 1. Thus, Tλ has a fixed point in �r2 \ �̄r1 , which is the desired
positive solution of (1.1).

4. Proof of Theorem 1.2

Proof. Part (a). Fix a number r1 > 0. Lemma 2.6 implies that there
exists a λ0 > 0 such that

‖Tλu‖ > ‖u‖ for u ∈ ∂�r1, λ > λ0.

If F0 = 0, then f i
0 = 0, i = 1, . . . , n. It follows from Lemma 2.4 that

f̂ i
0 = 0, i = 1, . . . , n.

Therefore, we can choose 0 < r2 < r1 so that

f̂ i(r2) � εr2, i = 1, . . . , n,

where the constant ε > 0 satisfies

λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.5. We have by Lemma
2.5 that

‖Tλu‖ � λεĈ‖u‖ < ‖u‖ for u ∈ ∂�r2 .

If F∞ = 0, then f i
∞ = 0, i = 1, . . . , n. It follows from Lemma 2.4 that

f̂ i
∞ = 0, i = 1, . . . , n. Therefore there is an r3 > 2r1 such that

f̂ i(r3) � εr3, i = 1, . . . , n,

where the constant ε > 0 satisfies

λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.5. Thus, we have by
Lemma 2.5 that

‖Tλu‖ � λεĈ‖u‖ < ‖u‖ for u ∈ ∂�r3 .



294 D. O’REGAN AND H. WANG Positivity

It follows from Lemma 2.1 that

i(Tλ, �r1, K) = 0, i(Tλ, �r2, K) = 1 and i(Tλ, �r3, K) = 1.

Thus i(Tλ, �r1\�̄r2, K) = −1 and i(Tλ, �r3\�̄r1, K) = 1. Hence, Tλ has a
fixed point in �r1\�̄r2 or �r3\�̄r1 according to F0 = 0 or F∞ = 0, respec-
tively. Consequently, (1.1) has a positive solution for λ > λ0.

Part (b). Fix a number r1 > 0. Lemma 2.7 implies that there exists a
λ0 > 0 such that

‖Tλu‖ < ‖u‖ for u ∈ ∂�r1, 0 < λ < λ0.

If F0 = ∞, there exists a component f i of F such that f i
0 = ∞. Therefore,

there is a positive number r2 < r1 such that

f i(u) � η‖u‖

for u = (u1, . . . , un) ∈ R
n
+ and ‖u‖ � r2, where η > 0 is chosen so that

λ	η > 1.

Then

f i(u(t)) � η

n∑

i=1

ui(t),

for u = (u1, . . . , un) ∈ ∂�r2, t ∈ [0, 1]. Lemma 2.3 implies that

‖Tλu‖ � λ	η‖u‖ > ‖u‖ for u ∈ ∂�r2 .

If F∞ = ∞, there exists a component f i of F such that f i
∞ = ∞. There-

fore, there is an Ĥ > 0 such that

f i(u) � η‖u‖

for u = (u1, . . . , un) ∈ R
n
+ and ‖u‖ � Ĥ , where η > 0 is chosen so that

λ	η > 1.

Let r3 = max{2r1,
Ĥ
σ
}. If u = (u1, . . . , un) ∈ ∂�r3 , then

min
0 � t � 2π

n∑

i=1

ui(t) � σ‖u‖ = σr3 � Ĥ ,
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which implies that

f i(u(t)) � η

n∑

i=1

ui(t) for t ∈ [0, 2π ].

It follows from Lemma 2.3 that

‖Tλu‖ � λ	η‖u‖ > ‖u‖ for u ∈ ∂�r3 .

It follows from Lemma 2.1 that

i(Tλ, �r1, K) = 1, i(Tλ, �r2, K) = 0 and i(Tλ, �r3, K) = 0,

and hence, i(Tλ, �r1\�̄r2, K) = 1 and i(Tλ, �r3\�̄r1, K) = −1. Thus, Tλ has
a fixed point in �r1\�̄r2 or �r3\�̄r1 according to f0 = ∞ or f∞ = ∞,
respectively. Consequently, (1.1) has a positive solution for 0 < λ < λ0.

Part (c). Fix two numbers 0 < r3 < r4. Lemma 2.6 implies that there
exists a λ0 > 0 such that we have for λ > λ0,

‖Tλu‖ > ‖u‖ for u ∈ ∂�ri
(i = 3, 4).

Since F0 = 0 and F∞ = 0, it follows from the proof of Theorem 1.2 (a)
that we can choose 0 < r1 < r3/2 and r2 > 2r4 such that

‖Tλu‖ < ‖u‖ for u ∈ ∂�ri
(i = 1, 2).

It follows from Lemma 2.1 that

i(Tλ, �r1, K) = 1, i(Tλ, �r2, K) = 1,

and

i(Tλ, �r3, K) = 0, i(Tλ, �r4, K) = 0

and hence, i(Tλ, �r3\�̄r1, K) = −1 and i(Tλ, �r2 \�̄r4, K) = 1. Thus, Tλ has
two fixed points u1(t) and u2(t) such that u1(t) ∈ �r3\�̄r1 and u2(t) ∈ �r2 \
�̄r4 , which are the desired distinct positive solutions of (1.1) for λ > λ0

satisfying

r1 < ‖u1‖ < r3 < r4 < ‖u2‖ < r2.
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Part (d). Fix two numbers 0 < r3 < r4. Lemma 2.7 implies that there
exists a λ0 > 0 such that we have, for 0 < λ < λ0,

‖Tλu‖ < ‖u‖ for u ∈ ∂�ri
(i = 3, 4).

Since F0 = ∞ and F∞ = ∞, it follows from the proof of Theorem 1.2 (b)
that we can choose 0 < r1 < r3/2 and r2 > 2r4 such that

‖Tλu‖ > ‖u‖ for u ∈ ∂�ri
(i = 1, 2).

It follows from Lemma 2.1 that

i(Tλ, �r1, K) = 0, i(Tλ, �r2, K) = 0,

and

i(Tλ, �r3, K) = 1, i(Tλ, �r4, K) = 1

and hence, i(Tλ, �r3\�̄r1, K) = 1 and i(Tλ, �r2\�̄r4, K) = −1. Thus, Tλ has
two fixed points u1(t) and u2(t) such that u1(t) ∈ �r3\�̄r1 and u2(t) ∈
�r2\�̄r4 , which are the desired distinct positive solutions of (1.1) for λ < λ0

satisfying

r1 < ‖u1‖ < r3 < r4 < ‖u2‖ < r2.

Part (e). Since F0 < ∞ and F∞ < ∞, then f i
0 < ∞ and f i

∞ < ∞,
i = 1, . . . , n. It is easy to show (see Wang [7]) that there exists an ε > 0
such that

f i(u) � ε‖u‖ for u ∈ R
n
+ (i = 1, . . . , n).

Assume v(t) is a positive solution of (1.1). We will show that this leads to
a contradiction for 0 < λ < λ0, where

λ0 = 1
∑n

i=1 Ĝ(π)
∫ 2π

0 gi(s)dsε
.
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In fact, for 0 < λ < λ0, since Tλv(t) = v(t) for t ∈ [0, 1], we find

‖v‖ = ‖Tλv‖
=

n∑

i=1

max
0 � t � 2π

T i
λv(t)

�
n∑

i=1

λĜ(π)

∫ 2π

0
gi(s)f

i(v(s))ds

�
n∑

i=1

λĜ(π)

∫ 2π

0
gi(s)dsε‖u‖

< ‖v‖,

which is a contradiction.
Part (f). Since F0 > 0 and F∞ > 0, there exist two components f i and

f j of F such that f i
0 > 0 and f

j
∞ > 0. It is easy to show (see Wang [7])

that there exist positive numbers η, r1 such that

f i(u) � η‖u‖ for u ∈ R
n
+, ‖u‖ � r1 (4.5)

and

f j (u) � η‖u‖ for u ∈ R
n
+, ‖u‖ � σr1. (4.6)

Assume v(t) = (v1, . . . , vn) is a positive solution of (1.1). We will show
that this leads to a contradiction for λ > λ0 = 1

	η
. In fact, if ‖v‖ � r1,

(4.5) implies that

f i(v(t)) � η

n∑

i=1

vi(t) for t ∈ [0, 1].

On the other hand, if ‖v‖ > r1, then

min
0 � t � 2π

n∑

i=1

vi(t) � σ‖v‖ > σr1,

which, together with (4.6), implies that

f j (v(t)) � η

n∑

i=1

vi(t) for t ∈ [0, 2π ].
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Since Tλv(t) = v(t) for t ∈ [0, 1], it follows from Lemma 2.3 that, for
λ > λ0,

‖v‖ = ‖Tλv‖
� λ	η‖v‖
> ‖v‖,

which is a contradiction.
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