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We study the number of positive radial solutions of elliptic equations when nonlinearity
has zeros. We show that the problem has k positive solutions if the nonlinearity has k
zeros. Similar results are also true for elliptic systems.
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1. Introduction

In this paper we consider the multiplicity of positive radial solutions for the quasilinear
equations

div
(
A
(|∇u|)∇u)+ λb

(|x|) f (u)= 0 in D,

u= 0 for x ∈ ∂D,
(1.1)

div
(
A
(|∇u|)∇u)+ λb1

(|x|)g1(u,v)= 0 in D,

div
(
A
(|∇v|)∇v)+ λb2

(|x|)g2(u,v)= 0 in D,

u= v = 0 for x ∈ ∂D,

(1.2)

where D = {x : x ∈Rn, n≥ 2, 0 < R1 < |x| < R2 <∞}.
The function A originates from a variety of practical applications, for instance, the

degenerate m-Laplace operator, namely, A(|p|) = |p|m−2, m > 1. When A ≡ 1, we recall
that (1.1) reduces to the classical semilinear elliptic equation

Δu+ λb
(|x|) f (u)= 0 in D,

u= 0 for x ∈ ∂D. (1.3)

In the recent paper [5], the author discussed the problem under assumption (H1) on
the function A, which covers the two important cases A≡ 1 and A(|p|)= |p|m−2, m> 1,
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1122 Positive solutions of elliptic equations

that is, the degenerate m-Laplace operator. It was proved that appropriate combinations
of superlinearity and sublinearity of the quotient f (u)/A(u) at zero and infinity guarantee
the existence, multiplicity, and nonexistence of positive radial solutions of (1.1) and (1.2).

The purpose of this paper is to study the number of positive radial solutions of (1.1)
if f has zeros. We will show that (1.1) has at least k positive radial solutions if f has
k zeros. A similar result is also true for (1.2). For the scalar equation (1.1) and the case
A≡ 1, previous work on this problem has been done by Hess [2]. We also obtain a similar
multiplicity result for elliptic systems. Our arguments are based on a fixed point theorem
in a cone due to Krasnoselskii.

2. Multiplicity results

Let R= (−∞,∞), ϕ(t)=A(|t|)t. We make the following assumptions.
(H1) ϕ is an odd increasing homeomorphism ofR ontoR and there exist two increas-

ing homeomorphisms ψ1 and ψ2 of (0,∞) onto (0,∞) such that

ψ1(σ)ϕ(t)≤ ϕ(σt)≤ ψ2(σ)ϕ(t), ∀σ , t > 0. (2.1)

(H2) b : [R1,R2]→ [0,∞) is continuous and b 
≡ 0 on any subinterval of [R1,R2].
(H3) f : [0,∞)→ [0,∞) is continuous.
(H4) There exist k numbers ak > ak−1 > ··· > a1 > 0 such that ai > 4ai−1, f (ai)= 0 for

i= 1, . . . ,k and f (u) > 0 for ai−1 < u < ai, i= 1, . . . ,k, where a0 = 0.
Our multiplicity result for (1.1) is as follows.

Theorem 2.1. Assume (H1)–(H4) hold. Then there exists λ0 such that for λ > λ0 (1.1) has
k positive solutions, u1,u2, . . . ,uk, such that

ai−1 < sup
t∈[0,1]

ui(t)≤ ai, i= 1, . . . ,k. (2.2)

We assume the following additional conditions for (1.2).
(H5) bi : [R1,R2] → [0,∞) is continuous and bi 
≡ 0 on any subinterval of [R1,R2],

i= 1,2.
(H6) gi : [0,∞)→ [0,∞) is continuous, i= 1,2.
(H7) There exist k numbers ak > ak−1 > ··· > a1 > 0 such that ai > 4ai−1, g1(u,v)= 0,

and g2(u,v) = 0 for u + v = ai, i = 1, . . . ,k, and g1(u,v) > 0 and g2(u,v) > 0 for
ai−1 < u+ v < ai, i= 1, . . . ,k, where a0 = 0.

Our multiplicity result for (1.2) is as follows.

Theorem 2.2. Assume (H1) and (H5)–(H7) hold. Then there exists λ0 such that for λ > λ0

(1.2) has k positive solutions, (u1v1),(u2,v2), . . . , (uk,vk), such that

ai−1 < sup
t∈[0,1]

(
ui(t) + vi(t)

)≤ ai, i= 1, . . . ,k. (2.3)
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3. Preliminaries

A radial solution of (1.1) can be considered as a solution of the equation

(
rn−1ϕ

(
u′(r)

))′
+ λrn−1b(r) f

(
u(r)

)= 0 in R1 < r < R2,

u
(
R1
)= u(R2

)= 0.
(3.1)

We will treat classical solutions of (3.1), namely, functions u of class C1 on [R1,R2]
with ϕ(u′) ∈ C1(R1,R2), which satisfies (3.1). A solution u is positive if u(r) > 0 for all
r ∈ (R1,R2).

Applying the change of variables, r = (R2−R1)t+R1, we can transform (3.1) into the
form

(
q(t)ϕ

(
pu′

))′
+ λh(t) f (u)= 0, 0 < t < 1,

u(0)= u(1)= 0,
(3.2)

where

q(t)= ((R2−R1
)
t+R1

)n−1
, p = 1

R2−R1
,

h(t)= (R2−R1
)((

R2−R1
)
t+R1

)n−1
b
((
R2−R1

)
t+R1

)
.

(3.3)

We will prove there are k positive solutions for (3.2), which immediately implies that
Theorem 2.1 is true.

The following well-known result of the fixed point index is crucial in our arguments.

Lemma 3.1 [1, 3]. Let E be a Banach space and K a cone in E. For r > 0, define Kr =
{u ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is completely continuous such that Tx 
= x for
x ∈ ∂Kr = {u∈ K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr , then

i
(
T ,Kr ,K

)= 0. (3.4)

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr , then

i
(
T ,Kr ,K

)= 1. (3.5)

In order to apply Lemma 3.1 to (3.2), let X be the Banach space C[0,1] with ‖u‖ =
supt∈[0,1] |u(t)|, u∈ X .

Define K to be a cone in X by

K =
{

u∈ X : u(t)≥ 0, min
1/4≤t≤3/4

u(t)≥ 1
4
‖u‖

}

. (3.6)
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Also, define, for r a positive number, Ωr by

Ωr =
{
u∈ K : ‖u‖ < r}. (3.7)

Note that ∂Ωr = {u∈ K : ‖u‖ = r}.
For i= 1, . . . ,k, let fi satisfy

fi(u)=
⎧
⎨

⎩

f (u), 0≤ u≤ ai,
0, ai ≤ u,

(3.8)

and let the map Ti
λ : K → X be defined by

Ti
λu(t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ t

0
p−1ϕ−1

(
1
q(s)

∫ σ

s
λh(τ) fi

(
u(τ)

)
dτ
)

ds, 0≤ t ≤ σ ,

∫ 1

t
p−1ϕ−1

(
1
q(s)

∫ s

σ
λh(τ) fi

(
u(τ)

)
dτ
)

ds, σ ≤ t ≤ 1,

(3.9)

where σ ∈ (0,1) is a solution of the equation

Θiu(t)= 0, 0≤ t ≤ 1, (3.10)

where the map Θi : K → C[0,1] is defined by

Θiu(t)=
∫ t

0
ϕ−1

(
1
q(s)

∫ t

s
λh(τ) fi

(
u(τ)

)
dτ
)

ds

−
∫ 1

t
ϕ−1

(
1
q(s)

∫ s

t
λh(τ) fi

(
u(τ)

)
dτ
)

ds, 0≤ t ≤ 1.

(3.11)

By virtue of Lemma 3.2, the operator Ti
λ is well defined.

Lemma 3.2 [4, 5]. Assume (H1)–(H3) hold. Then, for any u∈ K , Θiu(t)= 0, i= 1, . . . ,k,
has at least one solution in (0,1). In addition, if σ1 < σ2 ∈ (0,1) are two solutions of Θiu(t)=
0, then h(t) fi(u(t))≡ 0 for t ∈ [σ1,σ2] and any σ ∈ [σ1,σ2] is also a solution of Θiu(t)= 0.
Furthermore, Ti

λu(t) is independent of the choice of σ ∈ [σ1,σ2].

Lemma 3.3 follows from the concavity of u.

Lemma 3.3 [4, 5]. Assume (H1)-(H2) hold. Let u and v ∈ X with u(t)≥ 0 and v(t)≤ 0 for
t ∈ [0,1]. If (q(t)ϕ(pu′))′ = v, then

u(t)≥min{t,1− t}‖u‖, t ∈ [0,1]. (3.12)

In particular,

min
1/4≤t≤3/4

u(t)≥ 1
4
‖u‖. (3.13)

We remark that, according to Lemma 3.3, any nonnegative solution of (3.2) is positive
unless it is identical to zero.
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Lemma 3.4. Assume (H1)–(H3) hold. If u∈ K such that Ti
λu= u in K , then u is a solution

of (3.2) such that

sup
t∈[0,1]

u(t)≤ ai. (3.14)

Proof. It is easy to see that u satisfies the following problem:

(
q(t)ϕ

(
pu′

))′
+ λh(t) fi(u)= 0, 0 < t < 1,

u(0)= u(1)= 0.
(3.15)

Let t0 ∈ (0,1) such that u(t0)= supt∈[0,1]u(t). It follows that u′(t0)= 0. If u(t0) > ai, then
there exist two numbers 0≤ t1 < t0 < t2 ≤ 1 such that u(t) > ai for t ∈ (t1, t2) and u(t1)=
u(t2)= ai. Since fi(u)= 0 for u≥ ai, we have

(
q(t)ϕ

(
pu′(t)

))′ = 0 for t ∈ [t1, t2
]
. (3.16)

Thus, ϕ(pu′(t)) is constant on [t1, t2]. Since u′(t0) = 0, it follows that u′(t) = 0 for t ∈
[t1, t2]. Consequently, u(t) is constant on [t1, t2]. This is a contradiction. Therefore,
supt∈[0,1]u(t) ≤ ai. On the other hand, since f (u) ≡ fi(u) for 0 ≤ u ≤ ai, u is a solution
of (3.2). �

Lemma 3.5 [4, 5]. Assume (H1)–(H3) hold. Then Θi : K → C[0,1], i= 1, . . . ,k, is compact
and continuous.

Lemma 3.6 [4, 5]. Assume (H1)–(H3) hold. Then Tλ(K)⊂ K and Ti
λ : K → K , i= 1, . . . ,k,

are compact and continuous.

Lemma 3.7 [4, 5]. Assume (H1) holds. Then for all σ , t ∈ (0,∞),

ψ−1
2 (σ)t ≤ ϕ−1(σϕ(t)

)≤ ψ−1
1 (σ)t. (3.17)

Set

γ(t)= 1
2

[∫ t

1/4
p−1ψ−1

2

(
1
q(s)

∫ t

s
h(τ)dτ

)

ds+
∫ 3/4

t
p−1ψ−1

2

(
1
q(s)

∫ s

t
h(τ)dτ

)

ds
]

, (3.18)

where t ∈ [1/4,3/4]. It follows from (H1)-(H2) that

Γ= inf
{

γ(t) :
1
4
≤ t ≤ 3

4

}

> 0. (3.19)

Lemma 3.8. Assume (H1)–(H4) hold. For i= 1, . . . ,k, let r > 0 such that [r/4,r]⊂ (aj−1,aj)
for some 1≤ j ≤ i. Then

∥
∥Ti

λu
∥
∥≥ Γψ−1

2 (λ)ϕ−1(ωir
)

for u∈ ∂Ωr , (3.20)

where ωir =min1/4r≤t≤r{ fi(t)} > 0.
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Proof. Note, from the definition of Ti
λu, that Ti

λu(σ) is the maximum value of Ti
λu on

[0,1]. If σ ∈ [1/4,3/4], we have

∥
∥Ti

λu
∥
∥≥ 1

2

[∫ σ

1/4
p−1ϕ−1

(
1
q(s)

∫ σ

s
λh(τ) fi

(
u(τ)

)
dτ
)

ds

+
∫ 3/4

σ
p−1ϕ−1

(
1
q(s)

∫ s

σ
λh(τ) fi

(
u(τ)

)
dτ
)

ds
]

.

(3.21)

Since fi(u(t))≥ ωir = ϕ(ϕ−1(ωir)) for t ∈ [1/4,3/4], we find, by condition (H1),

∥
∥Ti

λu
∥
∥≥ 1

2

[∫ σ

1/4
p−1ϕ−1

(
1
q(s)

∫ σ

s
h(τ)dτψ2

(
ψ−1

2 (λ)
)
ϕ
(
ϕ−1(ωir

))
)

ds

+
∫ 3/4

σ
p−1ϕ−1

(
1
q(s)

∫ s

σ
h(τ)dτψ2

(
ψ−1

2 (λ)
)
ϕ
(
ϕ−1(ωir

))
)

ds
]

≥ 1
2

[∫ σ

1/4
p−1ϕ−1

(
1
q(s)

∫ σ

s
h(τ)dτϕ

(
ψ−1

2 (λ)ϕ−1(ωir
))
)

ds

+
∫ 3/4

σ
p−1ϕ−1

(
1
q(s)

∫ s

σ
h(τ)dτϕ

(
ψ−1

2 (λ)ϕ−1(ωir
))
)

ds
]

.

(3.22)

Now, because of Lemma 3.7, we have

∥
∥Ti

λu
∥
∥≥ ψ−1

2 (λ)ϕ−1
(
ωir
)

2

[∫ σ

1/4
p−1ψ−1

2

(
1
q(s)

∫ σ

s
h(τ)dτ

)

ds

+
∫ 3/4

σ
p−1ψ−1

2

(
1
q(s)

∫ s

σ
h(τ)dτ

)

ds
]

≥ Γψ−1
2 (λ)ϕ−1(ωir

)
.

(3.23)

For σ > 3/4, it is easy to see

∥
∥Ti

λu
∥
∥≥

∫ 3/4

1/4
p−1ϕ−1

(
1
q(s)

λ
∫ 3/4

s
h(τ) fi

(
u(τ)

)
dτ
)

ds. (3.24)

On the other hand, we have

∥
∥Ti

λu
∥
∥≥

∫ 3/4

1/4
p−1ϕ−1

(
1
q(s)

λ
∫ s

1/4
h(τ) fi

(
u(τ)

)
dτ
)

ds for σ <
1
4
. (3.25)

Therefore, the same arguments show that

∥
∥Ti

λu
∥
∥≥ Γψ−1

2 (λ)ϕ−1(ωir
)

if σ >
3
4

or σ <
1
4
. (3.26)

�
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4. Proof of Theorem 2.1

For each i = 1, . . . ,k, in view of condition (H4), there is an ri < ai such that ri > 4ai−1. It
follows that [ri/4,ri] ⊂ (ai−1,ai). By Lemma 3.8, we infer that there exists a λi > 0 such
that

∥
∥Ti

λu
∥
∥ > ‖u‖ for u∈ ∂Ωri , λ > λi. (4.1)

On the other hand, since fi(u) is bounded, there is an Ri > ri such that

∥
∥Ti

λu
∥
∥ < ‖u‖ for u∈ ∂ΩRi , λ > λi. (4.2)

It follows from Lemma 3.1 that

i
(
Ti
λ,Ωri ,K

)= 0, i
(
Ti
λ,ΩRi ,K

)= 1, (4.3)

and hence i(Ti
λ,ΩRi \ Ω̄ri ,K) = 1. Thus, Ti

λ has a fixed point ui in ΩRi \ Ω̄ri . Lemma 3.4
implies that the fixed point ui is a solution of (3.2) such that ai < ‖ui‖ ≤ ai. Consequently,
(3.2) has k positive solutions, u1,u2, . . . ,uk, such that

0= a0 <
∥
∥u1

∥
∥≤ a1 <

∥
∥u2

∥
∥≤ a2 < ··· ≤ ak−1 <

∥
∥uk

∥
∥≤ ak for λ > λ0, (4.4)

where λ0 =maxi=1,...,n{λi}.

5. Elliptic systems

With the same transformation for (1.1), we can transform (1.2) to the following system:

(
q(t)ϕ

(
pu′

))′
+ λh1(t)g1(u,v)= 0, 0 < t < 1,

(
q(t)ϕ

(
pv′
))′

+ λh2(t)g2(u,v)= 0, 0 < t < 1,

u(0)= u(1)= v(0)= v(1)= 0,

(5.1)

where

hi(t)=
(
R2−R1

)((
R2−R1

)
t+R1

)n−1
bi
((
R2−R1

)
t+R1

)
, i= 1,2, (5.2)

q(t) and p are the same as in (3.2).
In this section, let X be the Banach space C[0,1]×C[0,1] with

∥
∥(u,v)

∥
∥= sup

t∈[0,1]

∣
∣u(t)

∣
∣+ sup

t∈[0,1]

∣
∣u(t)

∣
∣, (u,v)∈ X. (5.3)

Define K to be a cone in X by

K=
{

(u,v)∈ X : u(t),v(t)≥ 0, min
1/4≤t≤3/4

(
u(t) + v(t)

)≥ 1
4

(‖u‖+‖v‖)
}

, (5.4)

where ‖u‖ = supt∈[0,1]u(t), u∈ C[0,1].
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Also, define, for r a positive number, Ur by

Ur =
{

(u,v)∈K :
∥
∥(u,v)

∥
∥ < r

}
. (5.5)

Note that ∂Ur = {(u,v)∈K : ‖(u,v)‖ = r}.
For i= 1, . . . ,k, j = 1,2, let gij satisfy

gij(u,v)=
⎧
⎨

⎩

gj(u,v), 0≤ u+ v ≤ ai,
0, ai ≤ u+ v,

(5.6)

and let the map Ti = (Ti
1,Ti

2) :K→ X be defined by

Ti
j(u,v)(t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ t

0
p−1ϕ−1

(
1
q(s)

∫ σj

s
λhj(τ)gij

(
u(τ),v(τ)

)
dτ
)

ds, 0≤ t ≤ σj ,
∫ 1

t
p−1ϕ−1

(
1
q(s)

∫ s

σj
λhj(τ)gij

(
u(τ),v(τ)

)
dτ
)

ds, σj ≤ t ≤ 1,

(5.7)

where σj ∈ (0,1) is a solution of the equation

Θi
j(u,v)(t)= 0, 0≤ t ≤ 1, (5.8)

and the map Θi
j :K→ C[0,1] is defined by

Θi
j(u,v)(t)=

∫ t

0
ϕ−1

(
1
q(s)

∫ t

s
λhj(τ)gij

(
u(τ),v(τ)

)
dτ
)

ds

−
∫ 1

t
ϕ−1

(
1
q(s)

∫ s

t
λhj(τ)gij

(
u(τ),v(τ)

)
dτ
)

ds, 0≤ t ≤ 1.

(5.9)

Lemma 5.1 can be proved in a similar manner as in [4, 5].

Lemma 5.1. Assume (H1), (H5), and (H6) hold. Then for i = 1, . . . ,k, Ti is well defined,
Ti(K)⊂K and Ti :K→K are compact and continuous.

Lemma 5.2. Assume (H1) and (H5)–(H7) hold. If (u,v)∈K such that Ti(u,v)= (u,v) in
K, then (u,v) is a solution of (5.1) such that

sup
t∈[0,1]

(
u(t) + v(t)

)≤ ai. (5.10)

Proof. It is easy to see that (u,v) satisfies the following problem:

(
q(t)ϕ

(
pu′

))′
+ λh1(t)gi1(u,v)= 0, 0 < t < 1,

(
q(t)ϕ

(
pv′
))′

+ λh2(t)gi2(u,v)= 0, 0 < t < 1,

u(0)= u(1)= v(0)= v(1)= 0.

(5.11)
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Let t0∈(0,1) such that u(t0)+v(t0)=supt∈[0,1](u(t)+v(t)). It follows that u′(t0)+v′(t0)=0.
If u(t0) + v(t0) > ai, then there exist two numbers 0 ≤ t1 < t0 < t2 ≤ 1 such that u(t) +
v(t) > ai for t ∈ (t1, t2) and

u
(
t1
)

+ v
(
t1
)= u(t2

)
+ v
(
t2
)= ai. (5.12)

Since gij(u,v)= 0, j = 1,2, for u+ v ≥ ai, we have

(
q(t)ϕ

(
pu′(t)

))′ = 0 for t ∈ [t1, t2
]
,

(
q(t)ϕ

(
pv′(t)

))′ = 0 for t ∈ [t1, t2
]
.

(5.13)

Thus, ϕ(pu′(t)) and ϕ(pu′(t)) are constant on [t1, t2], and so are u′(t) and v′(t). Since
u′(t0) + v′(t0) = 0, it follows that (u(t) + v(t))′ = 0 for t ∈ [t1, t2]. Consequently, u(t) +
v(t) is constant on [t1, t2]. This is a contradiction. Therefore, supt∈[0,1](u(t) + v(t))≤ ai.
On the other hand, since gij(u,v)≡ gj(u,v) for 0≤ u+ v ≤ ai, j = 1,2, (u,v) is a solution
of (1.2). �

Set

γj(t)= 1
2

[∫ t

1/4
p−1ψ−1

2

(
1
q(s)

∫ t

s
h j(τ)dτ

)

ds+
∫ 3/4

t
p−1ψ−1

2

(
1
q(s)

∫ s

t
h j(τ)dτ

)

ds
]

,

(5.14)

where t ∈ [1/4,3/4], j = 1,2. It follows from (H1) and (H5) that

Γ̂= inf
{

γj(t) :
1
4
≤ t ≤ 3

4
, j = 1,2

}

> 0. (5.15)

The following lemma can be proved in the same manner as in Lemma 3.8.

Lemma 5.3. Assume (H1) and (H5)–(H7) hold. For i= 1, . . . ,k, let r > 0 such that [r/4,r]⊂
(am−1,am) for some 1≤m≤ i. Then

∥
∥Ti(u,v)

∥
∥≥ Γ̂ψ−1

2 (λ)ϕ−1(ωir
)

for (u,v)∈ ∂Ur , (5.16)

where ωir =min1/4r≤t+s≤r{gj(t,s), j = 1,2} > 0.

6. Proof of Theorem 2.2

For each i = 1, . . . ,k, in view of condition (H7), there is an ri < ai such that ri > 4ai−1. It
follows that [ri/4,ri] ⊂ (ai−1,ai). By Lemma 5.3, we infer that there exists a λi > 0 such
that

∥
∥Ti(u,v)

∥
∥ >

∥
∥(u,v)

∥
∥ for (u,v)∈ ∂Uri , λ > λi. (6.1)

On the other hand, since f ij (u,v), j = 1,2, are bounded, there is an Ri > ri such that

∥
∥Ti(u,v)

∥
∥ <

∥
∥(u,v)

∥
∥ for (u,v)∈ ∂URi , λ > λi. (6.2)
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It follows from Lemma 3.1 that

i
(
Ti,Uri ,K

)= 0, i
(
Ti,URi ,K

)= 1, (6.3)

and hence, i(Ti,URi \ Ūri ,K)= 1. Thus, Ti has a fixed point (ui,vi) in URi \ Ūri . Lemma 5.2
implies that the fixed point (ui,vi) is a solution of (1.2) such that ai−1 < supt∈[0,1](ui(t) +
vi(t))≤ ai. Consequently, (1.2) has k positive solutions, (u1,v1),(u2,v2), . . . , (uk,vk), such
that

ai−1 < sup
t∈[0,1]

(
ui(t) + vi(t)

)≤ ai, i= 1, . . . ,k, for λ > λ0, (6.4)

where λ0 =maxi=1,...,n{λi}.
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