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POSITIVE PERIODIC SOLUTIONS OF SYSTEMS OF FIRST ORDER ORDINARY

DIFFERENTIAL EQUATIONS

Donal O'Regan and Haiyan Wang'

Abstract

Consider the n-dimensional nonautonomous system x(t) = A(t)G(x(t)) - B(t)F(x(t - r(t))) Let
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) F -

U - U"...,Un, a - lmllull-a lIull' 00 - Imllull-oo lIull' Z - ,...,n, - ,..., , a-

maxi=l,...,nUJ} and Foo = maxi=l,...,n{f~}. Under some quite general conditions, we prove that ei-

ther Fa = 0 and F 00 = 00, or Fa = 00 and F 00 = 0, guarantee the existence of positive periodic solutions

for the system for all A > O. Furthermore, we show t,hat Fa = F 00 = 0, or Fa = F 00 = 00 guarantee the

multiplicity of positive periodic solutions for the system for sufficiently large, or small A, respectively.

We also establish the nonexistence of the system when either Fa and F 00 > 0, or Fa and F 00 < 00 for

sufficiently large, or small A, respectively. We shall use fixed point theorems in a cone.

Keywords: positive periodic solutions, existence, fixed point theorem,

1 Introduction

The existence of periodic solutions of the equation of the form

x'(t) = a(t)g(x(t)) - >"b(t)f(x(t- r(t))). (Ll)

and its generalizations have attracted much attention in the literature. See, e.g., Chow [1], Hadeler and

Tomiuk [5], Kuang [8, 9], Kuang and Smith [10], Tang and Kuang [12]. The equation of the form (1.1) has
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been proposed as models for a variety of population dynamics and physiological processes such as production

of blood cells, respiration, and cardiac arrhythmias, See, for example, the above references, and [4, 11, 16].

Motivated by multiple-species ecological models, it is natural to explore nonautonomous n-dimensional

systems. Nonautonomous systems are more realistic since real-world models often require us to incorporate

temporal inhomogeneity in the models. One of the methods of incorporating temporal nonuniformity of the

environments in models is to assume that the parameters are periodic with the same period of the time

variable. In this paper, we shall study the existence of positive ω-periodic solutions for the nonautonomous

n-dimensional system

ẋ(t) = A(t)G(x(t))− λB(t)F(x(t− τ(t))), (1.2)

where A(t) = diag[a1(t), a2(t), . . . , an(t)], B(t) = diag[b1(t), b2(t), . . . , bn(t)], F(x) = [f1(x), f2(x), . . . , fn(x)]T ,

G(x) = [g1(x), g2(x), . . . , gn(x)]T and λ > 0 is a positive parameter.

Let R = (−∞,∞), R+ = [0,∞), Rn
+ = Πn

i=1R+, and for any u = (u1, ..., un) ∈ Rn
+, ‖u‖ =

∑n
i=1|ui|.

In(1.2), we assume that

(H1) ai, bi ∈ C(R, [0,∞)) are ω-periodic functions such that
∫ ω

0
ai(t)dt > 0,

∫ ω

0
bi(t)dt > 0, i = 1, . . . , n.

τ ∈ C(R,R) is an ω-periodic function.

(H2) f i : Rn
+ → [0,∞) is continuous, gi : Rn

+ → [l, L], 0 < l < L < ∞ is continuous, i = 1, . . . , n.

(H3) f i(u) > 0 for ‖u‖ > 0, i = 1, . . . , n.

In order to state our theorems, we introduce some notation. Let

f i
0 = lim

‖u‖→0

f i(u)
‖u‖ , f i

∞ = lim
‖u‖→∞

f i(u)
‖u‖ ,u ∈ Rn

+, i = 1, ..., n

F0 = max
i=1,...,n

{f i
0}, F∞ = max

i=1,...,n
{f i
∞}.

(1.3)

A solution u(t) = (u1(t), ..., un(t)) is positive if, for each i = 1, ..., n, ui(t) ≥ 0 for all t ∈ R and there is

at least one component which is positive on R.

Our main results are:
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Theorem 1.1 Assume (H1)-(H2) hold.

(a). If F0 = 0 and F∞ = ∞, then for all λ > 0 (1.2) has a positive ω-periodicsolution.

(b). If F0 = ∞ and F∞ = 0, then for all λ > 0 (1.2) has a positive ω-periodic solution.

Theorem 1.2 Assume (H1)-(H3) hold.

(a). If F0 = 0 or F∞ = 0, then there exists a λ0 > 0 such that (1.2) has a positive ω-periodic solution for

λ > λ0.

(b). If F0 = ∞ or F∞ = ∞, then there exists a λ0 > 0 such that (1.2) has a positive ω-periodic solution for

0 < λ < λ0.

(c). If F0 = F∞ = 0, then there exists a λ0 > 0 such that (1.2) has two positive ω-periodic solutions for

λ > λ0.

(d). If F0 = F∞ = ∞, then there exists a λ0 > 0 such that (1.2) has two positive ω-periodic solutions for

0 < λ < λ0.

(e). If F0 < ∞ and F∞ < ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0 (1.2) has no positive

ω-periodic solution.

(f). If F0 > 0 and F∞ > 0, then there exists a λ0 > 0 such that for all λ > λ0 (1.2) has no positive ω-periodic

solution.

For n = 1, the existence, multiplicity and nonexistence of positive ω-periodic solution of (1.2) with a

parameter λ was discussed in Wang [14]. Jiang, Wei and Zhang [6] obtained some existence results for the

case when when gi ≡ 1, i = 1, ..., n. In a recent paper, Wang, Kuang and Fen [15] proved multiplicity and

nonexistence results for a similar equation when gi ≡ 1, i = 1, ..., n.

This paper is organized in the following ways. In Section 2, we transform (1.2) into a system of integral

equations, and then to a fixed point problem of an equivalent operator in a cone. Further, we establish two

inequalities which allow us to estimate the operator. In Section 3, we apply the fixed point index to show the

existence, multiplicity and nonexistence of positive ω-periodic solutions of (1.2) based on the inequalities.
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2 Preliminaries

In this section, we recall some concepts and conclusions on the fixed point index in a cone in [2, 3, 7]. Let E

be a Banach space and K be a closed, nonempty subset of E. K is said to be a cone if (i) αu + βv ∈ K for

all u, v ∈ K and all α, β ≥ 0 and (ii) u,−u ∈ K imply u = 0. Assume Ω is a bounded open subset in E with

the boundary ∂Ω, and let T : K ∩ Ω → K is completely continuous such that Tx 6= x for x ∈ ∂Ω ∩K, then

the fixed point index i(T, K ∩ Ω,K) is defined. If i(T, K ∩ Ω,K) 6= 0, then T has a fixed point in K ∩ Ω.

The following well-known result on the fixed point index is crucial in our arguments.

Lemma 2.1 ([2, 3, 7]). Let E be a Banach space and K a cone in E. For r > 0, define Kr = {u ∈ K : ‖x‖ <

r}. Assume that T : Kr → K is completely continuous such that Tx 6= x for x ∈ ∂Kr = {u ∈ K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, then i(T, Kr,K) = 0.

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, then i(T,Kr, K) = 1.

In order to apply Lemma 2.1 to (1.2), let X be the Banach space defined by

X = {u(t) ∈ C(R,Rn) : u(t + ω) = u(t), t ∈ R}

with a norm ‖u‖ =
n∑

i=1

sup
t∈[0,ω]

|ui(t)|, for u = (u1, ..., un) ∈ X. For u ∈ X or Rn
+, ‖u‖ denotes the norm of u

in X or Rn
+, respectively.

Define

K = {u = (u1, ..., un) ∈ X : ui(t) ≥ σL
i (1− σl

i)
1− σL

i

sup
t∈[0,ω]

|ui(t)|, i = 1, . . . , n, t ∈ [0, ω], }

where σi = e−
R ω
0 ai(t)dt, i = 1, ..., n. It is clear K is cone in X.

For r > 0, define Ωr = {u ∈ K : ‖u‖ < r}. It is clear that ∂Ωr = {u ∈ K : ‖u‖ = r}. Let Tλ : K → X

be a map with components (T 1
λ , ..., Tn

λ ):

T i
λu(t) = λ

∫ t+ω

t

Gi(t, s)bi(s)f i(u(s− τ(s)))ds, i = 1, . . . , n, (2.1)

where

Gi(t, s) =
e−
R s

t
ai(θ)gi(u(θ))dθ

1− e−
R ω
0 ai(θ)gi(u(θ))dθ
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Note that

σL
i

1− σL
i

≤ Gi(t, s) ≤ 1
1− σl

i

, t ≤ s ≤ t + ω, i = 1, . . . , n.

Lemma 2.2 Assume (H1)-(H2) hold. Then Tλ(K) ⊂ K and Tλ : K → K is continuous and completely

continuous.

Proof In view of the definition of K, for u ∈ K, we have, i = 1, . . . , n,

(T i
λu)(t + ω) = λ

∫ t+2ω

t+ω

Gi(t + ω, s)bi(s)f i(u(s− τ(s)))ds

= λ

∫ t+ω

t

Gi(t + ω, θ + ω)bi(θ + ω)f i(u(θ + ω − τ(θ + ω)))dθ

= λ

∫ t+ω

t

Gi(t, s)bi(s)f i(u(s− τ(s)))ds

= (T i
λu)(t).

It is easy to see that
∫ t+ω

t
bi(s)f i(u(s−τ(s)))ds is a constant because of the periodicity of bi(t)f i(u(t−τ(t))).

Notice that, for u ∈ K and t ∈ [0, ω], i = 1, . . . , n,

T i
λu(t) ≥ σL

i

1− σL
i

λ

∫ t+ω

t

bi(s)f i(u(s− τ(s)))ds

=
σL

i

1− σL
i

λ

∫ ω

0

bi(s)f i(u(s− τ(s)))ds

=
σL

i (1− σl
i)

1− σL
i

1
1− σl

i

λ

∫ ω

0

bi(s)f i(u(s− τ(s)))ds

≥ σL
i (1− σl

i)
1− σL

i

sup
t∈[0,ω]

|T i
λu(t)|.

Thus Tλ(K) ⊂ K and it is easy to show that Tλ : K → K is continuous and completely continuous. ¤

Lemma 2.3 Assume that (H1)-(H2) hold. Then u ∈ K is a positive periodic solution of (1.2) if and only if

it is a fixed point of Tλ in K.
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Proof If u = (u1, . . . , un) ∈ K and Tλu = u, then, for i = 1, . . . , n,

u′i(t) =
d

dt
(λ

∫ t+ω

t

Gi(t, s)bi(s)f i(u(s− τ(s)))ds)

= λGi(t, t + ω)bi(t + ω)f i(u(t + ω − τ(t + ω))− λGi(t, t)bi(t)f i(u(t− τ(t)))

+ ai(t)gi(u(t))T i
λu(t)

= λ[Gi(t, t + ω)−Gi(t, t)]bi(t)f i(u(t− τ(t))) + ai(t)gi(u(t))T i
λu(t)

= ai(t)gi(u(t))ui(t)− λbi(t)f i(u(t− τ(t))).

Thus u is a positive ω-periodic solution of (1.2). On the other hand, if u = (u1, . . . , un) is a positive

ω-periodic function of (1.2), then λbi(t)f i(u(t− τ(t))) = ai(t)gi(u(t))ui(t)− u′i(t) and

T i
λu(t) = λ

∫ t+ω

t

Gi(t, s)bi(s)f i(u(s− τ(s)))ds

=
∫ t+ω

t

Gi(t, s)(ai(s)gi(u(s))ui(s)− u′i(s))ds

=
∫ t+ω

t

Gi(t, s)ai(s)gi(u(s))ui(s)ds−
∫ t+ω

t

Gi(t, s)u′i(s)ds

=
∫ t+ω

t

Gi(t, s)ai(s)gi(u(s))ui(s)ds−Gi(t, s)ui(s)|t+ω
t

−
∫ t+ω

t

Gi(t, s)ai(s)gi(u(s))ui(s)ds

= ui(t).

Thus, Tλu = u, Furthermore, in view of the proof of Lemma 2.2, we also have ui(t) ≥ σL
i (1−σl

i)

1−σL
i

supt∈[0,ω] ui(t)

for t ∈ [0, ω]. That is, u is a fixed point of Tλ in K. ¤

Define Γ = mini=1,...,n{ σL
i

1−σL
i

∫ ω

0
bi(s)ds}mini=1,...,n{σL

i (1−σl
i)

1−σL
i
} > 0 and we have the following lemma.

Lemma 2.4 Assume that (H1)-(H2) hold. For any η > 0 and u = (u1, . . . , un) ∈ K, if there exists a

component f i of F such that f i(u(t)) ≥ ∑n
j=1 uj(t)η for t ∈ [0, ω], then

‖Tλu‖ ≥ λΓη‖u‖.
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Proof Since u ∈ K and f i(u(t)) ≥ ∑n
j=1 uj(t)η for t ∈ [0, ω], we have

(T i
λu)(t) ≥ σL

i

1− σL
i

λ

∫ ω

0

bi(s)f i(u(s− τ(s)))ds

≥ σL
i

1− σL
i

λ

∫ ω

0

bi(s)
n∑

j=1

uj(s− τ(s))ηds

≥ σL
i

1− σL
i

λ

∫ ω

0

bi(s)ds

n∑

j=1

σL
j (1− σl

j)
1− σL

j

sup
t∈[0,ω]

uj(t)η

≥ min
i=1,...,n

{ σL
i

1− σL
i

∫ ω

0

bi(s)ds} min
i=1,...,n

{σL
i (1− σl

i)
1− σL

i

}λη‖u‖.

Thus ‖Tλu‖ ≥ λΓη‖u‖. ¤

For each i = 1, .., n, let f̂ i(t) : R+ → R+ be the function given by

f̂ i(t) = max{f i(u) : u ∈ Rn
+ and ‖u‖ ≤ t}.

Let f̂ i
0 = limt→0

f̂i(t)
t and f̂ i

∞ = limt→∞
f̂i(t)

t .

Lemma 2.5 ([13]) Assume (H2) holds. Then f̂ i
0 = f i

0 and f̂ i
∞ = f i

∞, i = 1, ..., n.

Lemma 2.6 Assume (H1)-(H2) hold and let r > 0. If there exits an ε > 0 such that

f̂ i(r) ≤ εr, i = 1, ..., n,

then

‖Tλu‖ ≤ λĈε‖u‖, for u ∈ ∂Ωr

where Ĉ =
∑n

i=1
1

1−σl
i

∫ ω

0
bi(s)ds.

Proof From the definition of Tλ, for u ∈ ∂Ωr, we have

‖Tλu‖ ≤
n∑

i=1

1
1− σl

i

λ

∫ ω

0

bi(s)f i(u(s− τ(s)))ds

≤
n∑

i=1

1
1− σl

i

λ

∫ ω

0

bi(s)f̂ i(r)ds

≤
n∑

i=1

1
1− σl

i

∫ ω

0

bi(s)dsλε‖u‖ = λĈε‖u‖.

¤

The following two lemmas are weak forms of Lemmas 2.4 and 2.6.
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Lemma 2.7 Assume (H1)-(H3) hold. If u ∈ ∂Ωr, r > 0, then

‖Tλu‖ ≥ λm̂r min
i=1,...,n

{ σL
i

1− σL
i

∫ ω

0

bi(s)ds}

where m̂r = min{f i(u) : u ∈ Rn
+ and σr ≤ ‖u‖ ≤ r, i = 1, ..., n.} > 0, and σ = mini=1,...,n{σL

i (1−σl
i)

1−σL
i
}.

Proof Note r = ‖u‖ =
∑n

i=1 sup[0,ω] |ui(t)| ≥
∑n

i=1 inf [0,ω] |ui(t)| ≥ σ
∑n

i=1 sup[0,ω] |ui(t)| = σr. Thus

f i(u(t)) ≥ m̂r for t ∈ [0, ω], i = 1, ..., n. A slight modification of the proof in Lemma 2.4 yields the result.

¤

Lemma 2.8 Assume (H1)-(H3) hold. If u ∈ ∂Ωr, r > 0, then

‖Tλu‖ ≤ λM̂rĈ,

where M̂r = max{f i(u) : u ∈ Rn
+ and ‖u‖ ≤ r, i = 1, ..., n} > 0 and Ĉ is the positive constant defined in

Lemma 2.6

Proof Since f i(u(t)) ≤ M̂r for t ∈ [0, ω], i = 1, ..., n, a slight modification of the proof in Lemma 2.6

guarantees the result. ¤

3 Proof of Theorem 1.1

Proof Part (a). F0 = 0 implies that f i
0 = 0, i = 1, ..., n. It follows from Lemma 2.5 that f̂ i

0 = 0,

i = 1, ..., n. Therefore, we can choose r1 > 0 so that f̂ i(r1) ≤ εr1, i = 1, ..., n, where the constant ε > 0

satisfies

λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.6. We have by Lemma 2.6 that

‖Tλu‖ ≤ λεĈ‖u‖ < ‖u‖ for u ∈ ∂Ωr1 .

Now, since F∞ = ∞, there exists a component f i of F such that f i
∞ = ∞. Therefore, there is an Ĥ > 0

such that

f i(u) ≥ η‖u‖
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for u = (u1, ..., un) ∈ Rn
+ and ‖u‖ ≥ Ĥ , where η > 0 is chosen so that

λΓη > 1.

Let r2 = max{2r1,
1
σ Ĥ}, where σ = mini=1,...,n{σL

i (1−σl
i)

1−σL
i
}. If u = (u1, ..., un) ∈ ∂Ωr2 , then

min
0≤t≤ω

n∑

i=1

ui(t) ≥ σ‖u‖ = σr2 ≥ Ĥ,

which implies that

f i(u(t)) ≥ η

n∑

i=1

ui(t) for t ∈ [0, ω].

It follows from Lemma 2.4 that

‖Tλu‖ ≥ λΓη‖u‖ > ‖u‖ for u ∈ ∂Ωr2 .

By Lemma 2.1,

i(Tλ, Ωr1 ,K) = 1 and i(Tλ, Ωr2 ,K) = 0.

It follows from the additivity of the fixed point index that

i(Tλ,Ωr2 \ Ω̄r1 , K) = −1.

Thus, i(Tλ, Ωr2 \ Ω̄r1 ,K) 6= 0, which implies Tλ has a fixed point u ∈ Ωr2 \ Ω̄r1 by the existence property

of the fixed point index. The fixed point u ∈ Ωr2 \ Ω̄r1 is the desired positive solution of (1.2).

Part (b). If F0 = ∞, there exists a component f i such that f i
0 = ∞. Therefore, there is an r1 > 0 such

that

f i(u) ≥ η‖u‖

for u = (u1, ..., un) ∈ Rn
+ and ‖u‖ ≤ r1, where η > 0 is chosen so that

λΓη > 1.

If u = (u1, ..., un) ∈ ∂Ωr1 , then

f i(u(t)) ≥ η

n∑

i=1

ui(t), for t ∈ [0, ω].
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Lemma 2.4 implies that

‖Tλu‖ ≥ λΓη‖u‖ > ‖u‖ for u ∈ ∂Ωr1 .

We now determine Ωr2 . F∞ = 0 implies that f i
∞ = 0, i = 1, ..., n. It follows from Lemma 2.5 that f̂ i

∞ = 0,

i = 1, ..., n. Therefore there is an r2 > 2r1 such that

f̂ i(r2) ≤ εr2, i = 1, ..., n,

where the constant ε > 0 satisfies

λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.6. Thus, we have by Lemma 2.6 that

‖Tλu‖ ≤ λεĈ‖u‖ < ‖u‖ for u ∈ ∂Ωr2 .

By Lemma 2.1,

i(Tλ,Ωr1 ,K) = 0 and i(Tλ, Ωr2 , K) = 1.

It follows from the additivity of the fixed point index that i(Tλ, Ωr2 \ Ω̄r1 ,K) = 1. Thus, Tλ has a fixed

point in Ωr2 \ Ω̄r1 , which is the desired positive solution of (1.2). ¤

4 Proof of Theorem 1.2

Proof Part (a). Fix a number r1 > 0. Lemma 2.7 implies that there exists a λ0 > 0 such that

‖Tλu‖ > ‖u‖, for u ∈ ∂Ωr1 , λ > λ0.

If F0 = 0, then f i
0 = 0, i = 1, ..., n. It follows from Lemma 2.5 that

f̂ i
0 = 0, i = 1, ..., n.

Therefore, we can choose 0 < r2 < r1 so that

f̂ i(r2) ≤ εr2, i = 1, ..., n,
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where the constant ε > 0 satisfies

λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.6. We have by Lemma 2.6 that

‖Tλu‖ ≤ λεĈ‖u‖ < ‖u‖ for u ∈ ∂Ωr2 .

If F∞ = 0, then f i
∞ = 0, i = 1, ..., n. It follows from Lemma 2.5 that f̂ i

∞ = 0, i = 1, ..., n. Therefore there is

an r3 > 2r1 such that

f̂ i(r3) ≤ εr3, i = 1, ..., n,

where the constant ε > 0 satisfies

λεĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.6. Thus, we have by Lemma 2.6 that

‖Tλu‖ ≤ λεĈ‖u‖ < ‖u‖ for u ∈ ∂Ωr3 .

It follows from Lemma 2.1 that

i(Tλ,Ωr1 ,K) = 0, i(Tλ, Ωr2 ,K) = 1 and i(Tλ,Ωr3 ,K) = 1.

Thus i(Tλ, Ωr1 \ Ω̄r2 ,K) = −1 and i(Tλ, Ωr3 \ Ω̄r1 ,K) = 1. Hence, Tλ has a fixed point in Ωr1 \ Ω̄r2 or

Ωr3 \Ω̄r1 according to F0 = 0 or F∞ = 0, respectively. Consequently, (1.2) has a positive solution for λ > λ0.

Part (b). Fix a number r1 > 0. Lemma 2.8 implies that there exists a λ0 > 0 such that

‖Tλu‖ < ‖u‖, for u ∈ ∂Ωr1 , 0 < λ < λ0.

If F0 = ∞, there exists a component f i of F such that f i
0 = ∞. Therefore, there is a positive number r2 < r1

such that

f i(u) ≥ η‖u‖

for u = (u1, ..., un) ∈ Rn
+ and ‖u‖ ≤ r2, where η > 0 is chosen so that

λΓη > 1.
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Then

f i(u(t)) ≥ η

n∑

i=1

ui(t),

for u = (u1, ..., un) ∈ ∂Ωr2 , t ∈ [0, ω]. Lemma 2.4 implies that

‖Tλu‖ ≥ λΓη‖u‖ > ‖u‖ for u ∈ ∂Ωr2 .

If F∞ = ∞, there exists a component f i of F such that f i
∞ = ∞. Therefore, there is an Ĥ > 0 such that

f i(u) ≥ η‖u‖

for u = (u1, ..., un) ∈ Rn
+ and ‖u‖ ≥ Ĥ , where η > 0 is chosen so that

λΓη > 1.

Let r3 = max{2r1,
Ĥ
σ }, where σ = mini=1,...,n{σL

i (1−σl
i)

1−σL
i
}. If u = (u1, ..., un) ∈ ∂Ωr3 , then

min
0≤t≤ω

n∑

i=1

ui(t) ≥ σ‖u‖ = σr3 ≥ Ĥ,

which implies that

f i(u(t)) ≥ η

n∑

i=1

ui(t) for t ∈ [0, ω].

It follows from Lemma 2.4 that

‖Tλu‖ ≥ λΓη‖u‖ > ‖u‖ for u ∈ ∂Ωr3 .

It follows from Lemma 2.1 that

i(Tλ,Ωr1 ,K) = 1, i(Tλ, Ωr2 , K) = 0 and i(Tλ, Ωr3 ,K) = 0,

and hence, i(Tλ, Ωr1 \ Ω̄r2 ,K) = 1 and i(Tλ, Ωr3 \ Ω̄r1 ,K) = −1. Thus, Tλ has a fixed point in Ωr1 \ Ω̄r2

or Ωr3 \ Ω̄r1 according to F0 = ∞ or F∞ = ∞, respectively. Consequently, (1.2) has a positive solution for

0 < λ < λ0.

Part (c). Fix two numbers 0 < r3 < r4. Lemma 2.7 implies that there exists a λ0 > 0 such that we have,

for λ > λ0,

‖Tλu‖ > ‖u‖, for u ∈ ∂Ωri , (i = 3, 4).
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Since F0 = 0 and F∞ = 0, it follows from the proof of Theorem 1.2 (a) that we can choose 0 < r1 < r3/2

and r2 > 2r4 such that

‖Tλu‖ < ‖u‖, for u ∈ ∂Ωri
, (i = 1, 2).

It follows from Lemma 2.1 that

i(Tλ, Ωr1 ,K) = 1, i(Tλ,Ωr2 ,K) = 1,

and

i(Tλ, Ωr3 ,K) = 0, i(Tλ, Ωr4 , K) = 0

and hence, i(Tλ, Ωr3 \ Ω̄r1 ,K) = −1 and i(Tλ, Ωr2 \ Ω̄r4 ,K) = 1. Thus, Tλ has two fixed points u1(t) and

u2(t) such that u1(t) ∈ Ωr3 \ Ω̄r1 and u2(t) ∈ Ωr2 \ Ω̄r4 , which are the desired distinct positive periodic

solutions of (1.2) for λ > λ0 satisfying

r1 < ‖u1‖ < r3 < r4 < ‖u2‖ < r2.

Part (d). Fix two numbers 0 < r3 < r4. Lemma 2.8 implies that there exists a λ0 > 0 such that we have,

for 0 < λ < λ0,

‖Tλu‖ < ‖u‖, for u ∈ ∂Ωri , (i = 3, 4).

Since F0 = ∞ and F∞ = ∞, it follows from the proof of Theorem 1.2 (b) that we can choose 0 < r1 < r3/2

and r2 > 2r4 such that

‖Tλu‖ > ‖u‖, for u ∈ ∂Ωri , (i = 1, 2).

It follows from Lemma 2.1 that

i(Tλ, Ωr1 ,K) = 0, i(Tλ,Ωr2 ,K) = 0,

and

i(Tλ, Ωr3 ,K) = 1, i(Tλ, Ωr4 , K) = 1

and hence, i(Tλ, Ωr3 \ Ω̄r1 ,K) = 1 and i(Tλ, Ωr2 \ Ω̄r4 , K) = −1. Thus, Tλ has two fixed points u1(t) and

u2(t) such that u1(t) ∈ Ωr3 \ Ω̄r1 and u2(t) ∈ Ωr2 \ Ω̄r4 , which are the desired distinct positive periodic
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solutions of (1.2) for 0 < λ < λ0 satisfying

r1 < ‖u1‖ < r3 < r4 < ‖u2‖ < r2.

Part (e). Since F0 < ∞ and F∞ < ∞, then f i
0 < ∞ and f i

∞ < ∞, i = 1, ..., n. It is easy to show (see

[13]) that there exists an ε > 0 such that

f i(u) ≤ ε‖u‖ for u ∈ Rn
+, i = 1, ..., n.

Assume v(t) is a positive solution of (1.2). We will show that this leads to a contradiction for 0 < λ < λ0,

where

λ0 =
1∑n

i=1
1

1−σl
i

∫ ω

0
bi(s)dsε

.

In fact, for 0 < λ < λ0, since Tλv(t) = v(t) for t ∈ [0, ω], we find

‖v‖ = ‖Tλv‖

=
n∑

i=1

max
0≤t≤ω

T i
λv(t)

≤
n∑

i=1

1
1− σl

i

λ

∫ ω

0

bi(s)f i(v(s− τ(s)))ds

≤
n∑

i=1

1
1− σl

i

∫ ω

0

bi(s)dsλε‖v‖

< ‖v‖,

which is a contradiction.

Part (f). Since F0 > 0 and F∞ > 0, there exist two components f i and f j of F such that f i
0 > 0 and

f j
∞ > 0. It is easy to show (see [13]) that there exist positive numbers η, r1 such that

f i(u) ≥ η‖u‖ for u ∈ Rn
+, ‖u‖ ≤ r1 (4.2)

and

f j(u) ≥ η‖u‖ for u ∈ Rn
+, ‖u‖ ≥ σr1, (4.3)

here σ = mini=1,...,n{σL
i (1−σl

i)

1−σL
i
}. Assume v(t) = (v1, ..., vn) is a positive solution of (1.2). We will show that

this leads to a contradiction for λ > λ0 = 1
Γη . In fact, if ‖v‖ ≤ r1, (4.2) implies that

f i(v(t)) ≥ η

n∑

i=1

vi(t), for t ∈ [0, ω].
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On the other hand, if ‖v‖ > r1, then

min
0≤t≤ω

n∑

i=1

vi(t) ≥ σ‖v‖ > σr1,

which, together with (4.3), implies that

f j(v(t)) ≥ η

n∑

i=1

vi(t), for t ∈ [0, ω].

Since Tλv(t) = v(t) for t ∈ [0, ω], it follows from Lemma 2.4 that, for λ > λ0,

‖v‖ = ‖Tλv‖

≥ λΓη‖v‖

> ‖v‖,

which is a contradiction. ¤
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