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Abstract. The study of spatially explicit integro-difference systems when the

local population dynamics are given in terms of discrete-time generations mod-
els has gained considerable attention over the past two decades. These nonlin-

ear systems arise naturally in the study of the spatial dispersal of organisms.

The brunt of the mathematical research on these systems, particularly, when
dealing with cooperative systems, has focused on the study of the existence

of traveling wave solutions and the characterization of their spreading speed.
Here, we characterize the minimum propagation (spreading) speed, via the con-

vergence of initial data to wave solutions, for a large class of non cooperative

nonlinear systems of integro-difference equations. The spreading speed turns
out to be the slowest speed from a family of non-constant traveling wave so-

lutions. The applicability of these theoretical results is illustrated through the

explicit study of an integro-difference system with local population dynamics
governed by Hassell and Comins’ non-cooperative competition model (1976).

The corresponding integro-difference nonlinear systems that results from the
redistribution of individuals via a dispersal kernel is shown to satisfy conditions
that guarantee the existence of minimum speeds and traveling waves. This pa-
per is dedicated to Avner Friedman as we celebrate his immense contributions

to the fields of partial differential equations, integral equations, mathemati-
cal biology, industrial mathematics and applied mathematics in general. His

leadership in the mathematical sciences and his mentorship of students and
friends over several decades has made a huge difference in the personal and

professional lives of many, including both of us.
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1. Introduction. Finding and developing macroscopic descriptions for the dynam-
ics and behavior of heterogeneous large ensembles of individuals subject to ecological
forces like dispersal continues to provide challenges and opportunities for mathe-
matical and biological scientists. Over the past century, particular attention has
been placed on the study of the role played by dispersal in shaping plant commu-
nities, in helping understand biological invasions, in assisting in the quantification
and control of the spread of infectious disease, or in disentangling the dynamics of
marine open-ocean and intertidal systems, to name but a few examples. The work
of pioneers like Aronson [1, 2], Fisher [7], Hadeler [8, 9, 10], Kolmogorov [16], Levin
[19], Okubo [20], Skellam [29], Slobodkin [15], Weinberger [35] and the subsequent
cadre of distinguished mathematicians and theoreticians across the world who have
worked at this interface, set not only the foundation of an important and fertile area
of interdisciplinary research (ecology, mathematics, and evolutionary biology) but
in the process it has inspired novel mathematical research while being re-energized
by unsolved questions in emerging fields like urban ecology and sustainability and
the challenges and opportunities posed by the growing body of research on the
co-evolving dynamics of socio-biological systems [5] [18].

Early models for the dispersal of invasive species used nonlinear reaction-diffusion
equations, with the prototype provided by Fisher’s Equation [7]. In 1937, Fisher
[7] studied the nonlinear parabolic equation

ut = duxx + ru(1− u

K
). (1)

Here, u(x, t) represents the population density at location x and time t, r is the
intrinsic rate of population increase, K is the environmental carrying capacity, and
D is the diffusion coefficient. for the spatial spread of an advantageous gene in a
population and conjectured that c∗ = 2

√
rd is the asymptotic speed of propagation

of an advantageous gene. Special solutions, traveling wave fronts, are of interest
since they enable us to better understand how a population propagates. Traveling
wave fronts are solutions to partial differential equations, which have a fixed shape
and translate at a constant speed c as time evolves. Fisher’s results show that
(1) has a traveling wave solution of the form w(x + ct) if and only if |c| ≥ c∗.
Kolmogorov, Petrowski, and Piscounov [16] proved the similar results with more
general model that the minimum speed of propagation for (2)

ut = duxx + f(u) (2)

is

c∗ = 2
√
f ′(0)d

if f(0) = f(1) = 0 and f(u) ≤ f ′(0)x. This pioneering research together with
the paper by Aronson and Weinberger [1, 2] confirmed the conjecture of Fisher,
and established the speeding spreads for nonlinear parabolic equations. This basic
formula c∗ = 2

√
f ′(0)d indicates that the rate of spread is a linear function of time

and that it can be predicted quantitatively as a function of measurable life history
parameters.

However, it has been observed that empirically measured rates of dispersal when
combined with Model (2) do not accurately predict the rates of range expansion in
invasions (Hastings et al. 2005[12]). The inability of the model to explain the data
is usually justified or explained away as the kind of discrepancies generated by the
inability of the model to capture the effect of rare long-distance dispersal events.
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Model (2) allows for diffusive movement, and in fact, it assumes that the distri-
bution of dispersal distances is normal. Model (2) ignores the role of population
structure, including age structure while assuming that reproduction and movement
occur randomly over the lifetime of an individual, conditions, that of course, are
rarely met by populations. In fact, there are a wide variety of measured distribu-
tions, peaking around their mode, with fatter tails than a normal distribution and
the same variance.

Evidence that integro-difference equations can effectively model biological dis-
persal processes has been published ( see Kot 1992 [17], Hastings et al. 2005 [12]
and references therein). In the case, a single population composed of identical in-
dividuals, all distributed along an infinite one-dimensional habitat, the process of
dispersal, using re-distribution kernels can be modeled by

wn+1(x) =

∫ ∞
−∞

k(x− y)g(wn(y))dy (3)

where wn representing the population density at time n. The change of population
density from wn from n to n + 1 is reflected in two sub-processes: population
growth g and dispersal [via a kernel k(x− y)]. It is assumed that the probability of
moving from point x to point y depends only on the relative locations of the two
points. The change of population density wn from n to n + 1 is reflected in two
processes: population growth and dispersal. Under a monotonicity (local dynamics)
and additional assumptions, it is shown (e.g. Weinberger [1, 2] ) that the minimum
speed of propagation for Model (3) is

c∗ = min
λ>0

1

λ
ln(

∫ ∞
−∞

g′(0)k(s)eµsds)

The theme of finding mathematical macroscopic descriptions for the spatial dy-
namics of heterogeneous large-ensembles of populations was set in “motion” by the
fundamental ecological contributions of Skellam [29], Kierstad and Slobodkin [15],
Levin and Paine [19], Okubo [20], and others. The study of integro-difference equa-
tions dispersal models in the mathematical literature has its origins in the study of
the coupled spatial dynamics of organisms with discrete primarily non-overlapping
(but see [30]) local dynamics with dispersal processes modeled via re-distribution
kernels [1, 2]. Weinberger [35] and Lui [25] research expanded the mathematical
foundation for the theory of spreading speeds and traveling waves, through their
analysis of traveling waves via the convergence of initial data to wave solutions,
in the context of cooperative operators. Recently, Weinberger, Lewis and Li made
additional contributions [33, 21, 22, 34]. The mathematical analyses of integro-
difference spatially explicit systems enhances the understanding of the dynamics of
introduced species like weeds or pests in terrestrial systems, or the study of the im-
pact of dominant alien species in freshwaters while generating additional challenges
and opportunities to mathematicians, whose interests, are driven by the study of
challenging dynamical systems.

The pervasiveness of overcompensation in biological systems implies that integro-
difference equations models are in general non-cooperative, and therefore, existing
theoretical work has yet to address effectively the mathematical consequences of
non-cooperative local dynamics on dispersal. In other words, the incorporation
of biological forces/mechanisms that drive population overcompensation leads to
mathematical models whose dynamics have yet to be satisfactorily teased out in
the context of relevant biological settings. Deep mathematical challenges remain
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[17]. The research in this manuscript does not start in the vacuum since relevant
mathematical work for non-cooperative systems has been carried out by several re-
searchers. Thieme [28] showed, in the context of a general model with non-monotone
growth functions, that the asymptotic spreading speed could still be obtained with
the aid of carefully constructed monotone functions. Hsu and Zhao [14] and Li,
Lewis and Weinberger [23] just extended the theory of spreading speeds in the con-
text of non-monotone integro-difference equations. Their extensions relied on two
methods: the construction of two monotone operators (with appropriate properties)
and the application of fixed point theorems in Banach spaces–an approach also used
in Ma [27] and Wang [31] to establish the existence of traveling wave solutions of
reaction-diffusion equations. The results in this manuscript on the speed of prop-
agation for non-cooperative systems in the context of integro-difference equations
rely on the spreading results for monotone systems in Weinberger et al. [33].

In a recent paper, one of the authors [32] has established the minimum speed
and the existence of traveling solutions for a class of non-cooperative systems of
reaction-diffusion equations.

ut = Duxx + f(u) for x ∈ R, t ≥ 0.

where u = (ui), D = diag(d1, d2, ..., dN ), di > 0 for i = 1, ..., N

f(u) = (f1(u), f2(u), ..., fN (u))

The assumptions in [32] are similar to the assumptions (H1-H3) in this paper
for integro-difference equations. Many relevant results hold for both systems of
cooperative reaction-diffusion equations and integro-difference equations. Indeed,
[33, 22] and several others studied minimum speeds with a more abstract discrete-
time recursion systems which include both reaction-diffusion equations and integro-
difference equations. However, for non-cooperative systems, as we shall see, there
are many differences in proofs between systems of reaction-diffusion equations and
integro-difference equations. In particular, the versifications of upper and lower so-
lutions are completely different. Further, with more concrete models some sharper
results (Proposition 1) than those in [25, 33] can be obtained.

We highlight our results in the context of a two-dimensional nonlinear discrete
system describing the local nonlinear dynamics of two competing species with dis-
crete reproduction cycles [11]. The model focuses on the growth and spread of
these competing species with their population densities at generation n and spatial
location x being tracked by the state variables Xn(x) and Yn(x), respectively. The
system is a natural extension of the classical single population “scramble” com-
petition model of Ricker [3]. Specifically, the non-spatial interference-competition
model of Hassell and Comins is given by the following system of coupled nonlinear
difference equations:

Xn+1(x) = Xn(x)er1−Xn(x)−σ1Yn(x)

Yn+1(x) = Yn(x)er2−Yn(x)−σ2Xn(x)
(4)

where r1, r2, σ1, σ2 are all positive constants.
The possibility that individuals in the above two populations may disperse to

different sites is modeled with a redistribution kernel ki(y). Hence, a discrete-time
model, where individuals interact locally according to Model (4), can be naturally
formulated via a system of coupled nonlinear integro-difference equations. Hence,
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we have that

Xn+1(x) =

∫
R
k1(x− y)Xn(y)er1−Xn(y)−σ1Yn(y)dy

Yn+1(x) =

∫
R
k2(x− y)Yn(y)er2−Yn(y)−σ2Xn(y)dy

(5)

where the dispersal of the i-species is modeled by a redistribution kernel ki, i = 1, 2
that depends just on the signed distance x−y, connecting the “birth” y location and
the “settlement” location x. In other words, ki(y) is a homogenous “probability”
kernel that satisfies

∫∞
−∞ ki(y)dy = 1.

Since the above system is non-cooperative in general, it is in such a context
that new results will be formulated, and illustrated but first, we introduce the
notation that will be used for the explicit mathematical formulation of the dy-
namics of two-interacting, dispersing, and competing populations. Consequently,
β, β±, F, F±, r, u, v are used to denote vectors in RN or N -vector valued functions
while x, y, ξ are used to denote variables in R. The use of u = (ui) and v = (vi) ∈ RN
allow us to define u ≥ v whenever ui ≥ vi for all i; and u� v whenever ui > vi for
all i. We further define for any r = (ri)� 0, r ∈ RN the RN -interval

[0, r] = {u : 0 ≤ u ≤ r, u ∈ RN} ⊆ RN

and

Cr = {u = (u1, ..., uN ) : ui ∈ C(R,R), 0 ≤ ui(x) ≤ ri, x ∈ R, i = 1, ..., N},

where C(R,R) is the set of all continuous functions from R to R. Our focus will be
on the set Cβ+ , β+ � 0.

Specifically, we consider the system of integro-difference equations

un+1 = Q[F (un)]; (6)

where un = (uin) ∈ Cβ+ , F (u) = (fi(u));

Q[F (u)] = (Qi[F (u)]);

Qi[F (u)](x) =

∫
R
ki(x− y)fi

(
u(y)

)
dy;

un(x) is the density of individuals at point x and time/generation n; F (u) is the
density-dependent fecundity (local growth rate); and ki(x − y) (dispersal kernel)
models the dispersal of the ith species. It is assumed to depend only on the signed
distance x− y between the location of “birth” y and the “settlement” or “landing”
location x. As noted before, ki(x − y) can be viewed as a probability kernel since∫∞
−∞ ki(x)dx = 1. The notation Q[F (un)] is slightly different from those used in

[14, 23, 25, 33] and hence individuals wishing to compare results must account for
this since no F (as defined here) can be found in the standard literature notation
for integro-difference systems. Here, F is included since it is needed to carry out
the proofs involving non-monotone systems effectively.

The integro-difference system (6) models the reproduction and dispersal of a
time-synchronized species where all individuals first undergo reproduction, then
redistribute their offspring, and proceed to reproduce again. The goal here is to
carry out the characterization of the spreading speed, in a system involving a rather
general non-cooperative system (6), as the slowest speed of a family of non-constant
traveling wave solutions of (6).
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2. Non-cooperative systems’ results. Since the focus is on the characterization
of the speeds of propagation for (6) when the system is non-cooperative, we make
use of prior results, as is typical in mathematics, whenever possible of established
results for cooperative systems ([33]). The existence of two additional monotone
functions F± with the properties that the first lies above F and the second below F
is required by our method of proof. The use of this approach is motivated by prior
work on non-monotone equations [28, 14, 23, 27, 37, 31]. Specifically, we observe
that F± can be “constructed” via piecewise functions made up of “monotone pieces”
of F and the incorporation of appropriate constants. If F happens to be monotone,
then naturally F± = F . We introduce additional technical assumptions below.
These assumptions are critical since the feasibility of the mathematical analysis
depends on whether or not the components of our problem meet them:

(H1) For i = 1, ..., N , ki(τ) ≥ 0 is integrable on R, ki(τ) = ki(−τ), τ ∈ R, and∫
R ki(τ)dτ = 1,

∫
R ki(τ)eλτdτ < +∞, for all λ > 0.

(H2) (i) Let 0� β− = (β−i ) ≤ β = (βi) ≤ β+ = (β+
i ). Assume that F : [0, β+]→

[0, β+] is a continuous, twice piecewise continuous differentiable function,
and that there exist continuous, twice piecewise continuous differentiable
functions F± = (f±i ) : [0, β+]→ [0, β+] such that for u ∈ [0, β+],

F−(u) ≤ F (u) ≤ F+(u).

(ii) F (0) = 0, F (β) = β and there is no other positive equilibrium of Q[F ]
between 0 and β (that is, there is no constant v 6= β such that F (v) =
v, 0 � v ≤ β). F±(0) = 0, F±(β±) = β± and there is no other posi-
tive equilibrium of Q[F±] between 0 and β±. F has a finite number of
equilibria in [0, β+].

(iii) F± are nondecreasing functions on [0, β+] and F±(u) and F (u) have the
same Jacobian at 0.

Assumptions (H1-H2) do not suffice if the goal is to characterize the speeds of
propagation for (6). The assumption (H3), which includes the requirement that the
operator grows less than its linearization along the particular function νµe

−µx, is
essential since it implies that the operator Q does not display an Allee effect for
this particular function (see [33]). Assumption (H3), explicitly formulated below,
is satisfied by several biological systems of interest; this will be highlighted in our
example. Assumption (H3), hence does not severely handicap the usefulness of the
results in this manuscript.

The need for Frobenius’ theorem stating that any nonzero irreducible matrix with
nonnegative entries has a unique principal positive eigenvalue with a corresponding
principal eigenvector “made up” of strictly positive coordinates is implicit in As-
sumption (H3). The formulation of (H3) depends on the concept of irreducibility.
A matrix is irreducible if it is not similar to a lower triangular matrix with two
blocks via a permutation (See [13, 33]). By reordering the coordinates, one can
put any matrix into a block lower triangular form, then we say that the matrix is
in Frobenius form if all the diagonal blocks are irreducible (an irreducible matrix
consists of the single diagonal block which is the matrix itself). Here, we use the
definition of Frobenius form found in Weinberger et al. [33]. Following the approach
in [33], we conclude that for each µ > 0, the N ×N matrix Bµ is given by

Bµ = (bi,jµ ) =
(
∂jfi(0)

∫
R
ki(s)e

µsds
)
, (7)
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where bi,jµ is the (i, j) entry of the matrix, is in Frobenius form ([33]). In other words,
it is assumed that the needed reordering has been carried out for Bµ ([33]) so that
it is in Frobenius form. If λ(µ) denotes the principal eigenvalue of the first diagonal
blocks, then the formulation required by Assumption (H3) can be explicitly stated
as:

(H3) (i) Assume that Bµ is in Frobenius form and that the principal eigenva-
lue, λ(µ), of the first diagonal block is strictly larger than the principal
eigenvalues of other diagonal blocks. Further, let’s assume that Bµ has
a positive eigenvector νµ = (νiµ) � 0 corresponding to λ(µ) with the
additional requirement that λ(0) > 1.

(ii) For each µ > 0 and α > 0, we let v± = (v±i ) = (min{β±i , νiµα}), and
assume that

F±(v±) ≤ B0v
±.

(iii) For every sufficiently large positive integer k, there is a small constant
vector ω = (ωi)� 0 such that

F±(u) ≥ (1− 1

k
)B0u, u ∈ [0, ω],

Remark 1. If B0 is in Frobenius form, then Bµ is also in Frobenius form. Because
all the Bµ have the same zero entries, it follows that all the matrices Bµ are in
Frobenius form [33].

It follows from (H1) that λ(µ) is an even function. In fact, Lui showed ([25]) that
lnλ(µ) is a convex function and therefore, lnλ(µ) achieves its minimum at µ = 0.
Therefore the assumption that λ(0) > 1 implies that lnλ(µ) > 0. The statement in
Proposition 1 below, which is critical to the rest of analysis that leads to the main
result, involves the following function of the largest principal eigenvalue λ(µ)

Φ(µ) =
1

µ
lnλ(µ) > 0.

Part (5) of Proposition 1 highlights the use of this function in the construction of
lower solutions and estimates of the traveling wave solutions.

Proposition 1. Assume that (H1)− (H3) hold. Then

1 Φ(µ)→∞ as µ→ 0;
2 Φ(µ) is decreasing near µ = 0 and µ > 0;
3 Φ′(µ) changes sign at most once on (0,∞);
4 Φ(µ) has a minimum c∗ > 0.
5 For each c > c∗, there exist Λc > 0 and γ ∈ (1, 2) such that

Φ(Λc) = c, Φ(γΛc) < c.

Parts (1)-(4) of Proposition 1 are essentially due to Lui [25]. However, Lui’s
results only guarantee that c∗ ≥ 0. The proof of the strict inequality, that is, that
c∗ > 0, is found in the Appendix. This is also briefly discussed in a remark in [33,
pp. 197]. Since λ(µ) is a simple root of the characteristic equation of an irreducible
block, it can be shown that λ(µ) is twice continuously differentiable on R. Part (5)
is a direct consequence of the results stated in Parts (1)-(4).

A traveling wave solution un of (6) is defined as a solution of the form un(ξ) =
u(ξ − cn), u ∈ C(R,RN ). The theorems that guarantee the existence of traveling
wave solutions for cooperative systems have already been established (e.g. [22]). It
also has been established that the asymptotic spreading speed, for such systems, can
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be characterized as the speed of the slowest non-constant traveling wave solution
for monotone operators [22] and for scalar equations [36, 35, 14, 23].

We start with the statement of Theorem 2.1, the main theorem, which generalizes
results previously established for cooperative systems to non-cooperative systems.
Some parts of Theorem 2.1 such as the asymptotic behavior of traveling waves are
new even for cooperative systems. The new information about cooperative systems
are, in fact, required to be able to carry out the proofs of the results for non-
cooperative systems. The details associated with the proof of the main result are
included in a series of lemmas and theorems all collected in the following sections.

The two major new contributions in this paper are: 1) for a large class of non-
monotone systems (6), the question of the existence of the minimum speed of prop-
agation is settled (Theorem 2.1(i-ii)) and this speed is characterized as the speed of
the slowest non-constant traveling wave solution (Theorem 2.1(iii-v)); and 2) in the
case of competition models, a direct application of the main theorem helps identify
simple and meaningful conditions that turned out to be needed for the proofs of the
existence of traveling waves with the minimum speed of propagation (Theorem 5.1).
That is, what must be required to guarantee the success of a biological invasion.
It is worth re-iterating that the application of the results in this manuscript to the
study of relevant monotone operators case [22, 35] does give additional information.
In fact, these results help explicitly characterize the asymptotic behavior of trav-
eling waves via the careful analysis of eigenvalues and upper-lower solutions. This
analysis was not done before [22, 35] most likely because the focus was exclusively
in establishing the existence of traveling waves. The results and analysis for the
n-dimensional case is typically harder. Our approach works because the analysis of
the n dimensional case is closely related to the structure of the eigenvalues and cor-
responding eigenvectors, an analysis that is embedded in our study of the relevant
monotone operators.

The following theorem summarizes the main results.

Theorem 2.1. Assume (H1)− (H3) hold, then the following statements are valid:

(i) For any u0 ∈ Cβ with compact support and 0 ≤ u0 � β, the solution un of (6)
satisfies

lim
n→∞

sup
|x|≥nc

un(x) = 0, for c > c∗

(ii) For any strictly positive vector ω ∈ RN , there is a positive Rω with the property
that if u0 ∈ Cβ and u0 ≥ ω on an interval of length 2Rω, then the solution
un(x) of (6) satisfies

β− ≤ lim inf
n→∞

inf
|x|≤nc

un(x) ≤ β+, for 0 < c < c∗

(iii) For each c > c∗ (6) admits a traveling wave solution u(ξ − cn) = (ui(ξ − cn))
such that 0� u(ξ) ≤ β+, ξ ∈ R,

β− ≤ lim inf
ξ→−∞

u(ξ) ≤ lim sup
ξ→−∞

u(ξ) ≤ β+

limξ→∞ u(ξ) = 0 and

lim
ξ→∞

u(ξ)eΛcξ = νΛc . (8)

If, in addition, F is non-decreasing on Cβ, then u is non-increasing on R.
(iv) For c = c∗ (6) admits a non-constant traveling wave solution u(ξ − cn) =

(ui(ξ − cn)) such that 0 ≤ u(ξ) ≤ β+, ξ ∈ R.
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(v) For 0 < c < c∗ (6) does not admit a traveling wave solution un(ξ) = u(ξ− cn)
such that u ∈ Cβ+ with lim infξ→−∞ u(ξ)� 0 and u(+∞) = 0.

Remark 2. When F is monotone, F± = F, β± = β.

Remark 3. The assumption that F has a finite number of equilibria in [0, β+] is
only used in the proof of Theorem 2.1 (iv) and can be further relaxed. In fact, as long
as for some component i and a sufficiently small positive number δ, u = (ui) ≥ 0
with ui = δ are not equilibria of F , it can be verified that the conclusion is still
valid from the proof.

We shall establish Theorem 2.1 in Sections 3 and 4.

3. Spreading speeds. Our results on the speed of propagation for non-cooperative
systems make use of Theorem 3.1 below which collects the properties of the spread-
ing speed c∗ for monotone systems as established in Weinberger, Lewis and Li [33].
Theorem 3.1 extends the related spreading results in Lui [25] to systems of mono-
tone recursive operators with more than two equilibria. The operator at the center
of this manuscript may support more than two equilibria with one lying at the
boundary as in [33] (see Section 5).

Theorem 3.1. (Weinberger, Lewis and Li [33] [Lemma 2.2, Theorem 3.1]) Assume
(H1)−(H3) hold. Further assume that f i(x), i = 1, ..., N is non-decreasing. Then
the following statements are valid:

(i) For any u0 ∈ Cβ with compact support and 0 ≤ u0 � β, the solution un(x) of
(6) satisfies

lim
n→∞

sup
|x|≥nc

un(x) = 0, for c > c∗

(ii) For any strictly positive vector ω ∈ RN , there is a positive Rω with the property
that if u0 ∈ Cβ and u0 ≥ ω on an interval of length 2Rω, then the solution
un(x) of (6) satisfies

lim inf
n→∞

inf
|x|≤nc

un(x) = β, for 0 < c < c∗

It is clear that Q[F±] are monotone (order preserving) on Cβ+ . That is, if u, v ∈
Cβ+ and u(x) ≤ v(x), x ∈ R, then

Q[F±(u)](x) ≤ Q[F±(v)](x), x ∈ R.

Further, for u = (ui) ∈ Cβ+ and x ∈ R, we have

f−i
(
u(x)

)
≤ fi

(
u(x)

)
≤ f+

i

(
u(x)

)
, i = 1, ..., N.

and therefore

Q[F−(u)](x) ≤ Q[F (u)](x) ≤ Q[F+(u)](x), x ∈ R.

We are now able to establish Part (i) and (ii) of Theorem 2.1 by following essen-
tially the method of proof for the scalar cases found in [14, 23].
Proof of Parts (i) and (ii) of Theorem 2.1. Part (i). For a given u0 ∈ Cβ with
compact support, let un be the n-th iteration of Q[F ] starting from u0 and let u+

n

be the n-th iteration of Q[F+] starting from u0. By (H2), we have

0 ≤ un(x) ≤ u+
n (x), x ∈ R, n > 0.
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Thus for any c > c∗, it follows from Theorem 3.1 (i) that

lim
n→∞

sup
|x|≥nc

u+
n (x) = 0,

and hence

lim
n→∞

sup
|x|≥nc

|un(x)| = 0,

Part (ii). Let un, u
+
n be the n-th iteration of Q[F ],Q[F+] starting from u0 respec-

tively. Let vi0 = min{ui0, β−i }, i = 1, ..., N. Then v0 = (vi0) ∈ Cβ− . Letting u−n
denote the n-th iteration of Q[F−] starting from v0 and observing that v0 ≤ u0 and
β− ≤ β ≤ β+, from (H2), we have that

u−n (x) ≤ un(x) ≤ u+
n (x), x ∈ R, n > 0.

Theorem 3.1 (ii) states that for any strictly positive constant ω, there is a positive
Rω (choose the larger one between the Rω for F+ and the Rω for F−) with the
property that if u0 ≥ ω on an interval of length 2Rω. Hence, it follows that the
solutions u±n (x) satisfy

lim inf
t→∞

inf
|x|≤tc

u±(x) = β±, for 0 < c < c∗.

Thus for any c < c∗, it follows from Theorem 3.1 (ii) that

lim inf
n→∞

inf
|x|≤nc

u±n (x) = β±,

and consequently, that

β− ≤ lim inf
n→∞

inf
|x|≥nc

un(x) ≤ β+.

�

4. Characterization of c∗ as the slowest speeds of traveling waves. A non-
constant solution of (6) is a traveling wave of speed c provided that it has the
form un(x) = u(x − cn), where u ∈ C(R,RN ) and, of course, if it satisfies (6). By
substituting this form into (6), it follows that u(ξ) must satisfy the following system
of equations.

u(ξ) = Qc[F (u)](ξ) = (Qic[F (u)](ξ)) := Q[F (u)](ξ + c) (9)

In the rest of this section we complete the proof of Theorem 2.1 (iii), (iv) and (v),
that is, the portion of our main result that characterizes the spread speed c∗ as the
speed of the slowest member of a family of non-constant traveling wave solutions.
This is an extension of prior results for monotone operators [22] and for scalar
equations [36, 35, 14, 23].

4.1. Upper and lower solutions. In this subsection, we verify that φ+ and φ−

defined below are the upper and lower solutions of (9) respectively. These solu-
tions are only continuous on R. Upper and lower solutions of this type have been
frequently used in the literature (see Diekmann [6], Weinberger [36], Lui [25], Wein-
berger, Lewis and Li [33], Rass and Radcliffe [26], Weng and Zhao [38], more recently
by Ma [27] and Wang [31]). In particular, the explicit use of upper vector-valued
solutions can be traced to the work in [25, 33, 26, 38]; for lower vector-valued solu-
tions, in the context of multi-type epidemic models, to the work in [26]; and in [38]
in the context of multi-type SIS epidemic models. Our construction of φ+ and φ−,
the upper and lower solutions of (9), is motivated by the research in these references.
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Our verification of the lower and upper solutions for n-dimensional systems is
new and different from the above mentioned references. The details follow below.

Let c > c∗, 1 < γ < 2, q > 1 and recall the definitions of Λc and γΛc as utilized
in Proposition 1. The corresponding positive eigenvectors νΛc and νγΛc of Bµ for
the eigenvalues λµ when µ = Λc, γΛc can therefore be identified.

Define

φ+(ξ) = (φ+
i ),

where

φ+
i = min{βi, νiΛce

−Λcξ}, ξ ∈ R;

and

φ−(ξ) = (φ−i ),

where

φ−i = max{0, νiΛce
−Λcξ − qνiγΛce

−γΛcξ}, ξ ∈ R.

It is clear that if ξ ≤
ln

βi
νi
Λc

−Λc
then φ+

i (ξ) = βi; and if ξ >
ln

βi
νi
Λc

−Λc
then φ+

i (ξ) =

νiΛce
−Λcξ. Similarly, if ξ ≤ ln(q

νiγΛc

νiΛc
) 1

(γ−1)Λc
then φ−i (ξ) = 0; and if ξ >

ln(q
νiγΛc

νiΛc
) 1

(γ−1)Λc
then φ−i (ξ) = νiΛce

−Λcξ − qνiγΛc
e−γΛcξ.

We choose q > 1 large enough so that

ln(q
νiγΛc

νiΛc
)

(γ − 1)Λc
>

ln βi
νiΛc

−Λc

and therefore

φ+
i (ξ) > φ−i (ξ), ξ ∈ R.

We verify in the two lemmas below that φ+ and φ− are upper and lower solutions
of (9) respectively. Since it is assumed that F is monotone in Lemma 4.1, then
F± = F, β± = β.

Lemma 4.1. Assume F is monotone and (H1)− (H3) hold. For any c > c∗, then
φ+ is an upper solution of Qc[F ]. That is

Qc[F (φ+)](ξ) ≤ φ+(ξ), ξ ∈ R.

Proof. Let ξ∗i =
ln

βi
νi
Λc

Λc
. Then φ+

i (ξ) = βi if ξ ≤ ξ∗i , and φ+
i (ξ) = νiΛce

−Λcξ if ξ > ξ∗i .

Note that φ+
i (ξ) ≤ νiΛce

−Λcξ, ξ ∈ R.
In view of (H3) we have, for ξ ∈ R

fi(φ
+(ξ)) ≤

N∑
j=1

∂jfi(0)φ+
i (ξ) ≤

N∑
j=1

∂jfi(0)νjΛce
−Λcξ
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Thus, for ξ ∈ R, in view of (7), (H3), Proposition 1, we obtain that

Qi[F (φ+)](ξ + c) ≤ e−Λc(ξ+c)
N∑
j=1

νjΛcb
i,j
Λc

= e−Λc(ξ+c)λ(Λc)ν
i
Λc

= e−Λc(ξ+c)eΛcΦ(Λc)νiΛc

= νiΛce
−Λc(ξ+c)eΛcc

= νiΛce
−Λcξ.

(10)

On the other hand, since φ+
i (ξ) ≤ βi, i = 1, ..., N , we have for ξ ∈ R

Qi[F (φ+)](ξ + c) ≤ βi. (11)

Thus, we have for ξ ∈ R

Qic[F (φ+)](ξ) = Qi[F (φ+)](ξ + c) ≤ φ+
i (ξ). (12)

This completes the proof of Lemma 4.1.
�

In order to verify that φ− is the lower solution, the following estimate for F is
needed. For N = 1, 2, Lemma 4.2 can be found in [31].

Lemma 4.2. Assume (H1 − H2) hold. There exist positive constants Di, i =
1, ..., N such that

fi(u) ≥
N∑
j=1

∂jfi(0)uj −Di

N∑
j=1

(uj)2, u = (uj), u ∈ [0, β+], i = 1, ..., N.

Proof. In a sufficiently small neighborhood of the origin, since F is twice continu-
ously differentiable. From the Taylor’s Theorem for multi-variable functions, for u
sufficiently small.

fi(u) =

N∑
j=1

∂jfi(0)uj +O(

N∑
j=1

(uj)2), u = (uj), u ∈ [0, β+], i = 1, ..., N.

There exist small ε > 0 and D′i > 0 such that for
∑n
j=1(uj)2 < ε

fi(u) ≥
N∑
j=1

∂jfi(0)uj −D′i
N∑
j=1

(uj)2, u = (uj), u ∈ [0, β+], i = 1, ..., N.

For u ∈ [0, β] and
∑n
j=1(uj)2 ≥ ε, noting that fi(u),

∑N
j=1 ∂jfi(0)uj are bounded,

we always choose a sufficiently large constant D′′i > 0 such that

fi(u) ≥
N∑
j=1

∂jfi(0)uj −D′′i
N∑
j=1

(uj)2.

Thus if we let Di = max{D′i, D′′i }, then Lemma 4.2 is proved. �

Lemma 4.3. Assume (H1) − (H3) hold. For any c > c∗ if q is sufficiently large,
φ− is a lower solution of Qc[F ]. That is

Qc[F (φ−)](ξ) ≥ φ−(ξ), ξ ∈ R.
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Proof. Again let ξ∗i = ln(q
νiγΛc

νiΛc
) 1

(γ−1)Λc
. Hence if ξ ≤ ξ∗i then φ−i (ξ) = 0; while if

ξ > ξ∗i then φ−i (ξ) = νiΛce
−Λcξ − qνiγΛc

e−γΛcξ. It is easy to see that

νiΛce
−Λcξ ≥ φ−(ξ) ≥ νiΛce

−Λcξ − qνiγΛce
−γΛcξ, ξ ∈ R, i = 1, ..., N. (13)

For ξ ∈ R, in view of Lemma 4.2, we have, for ξ ∈ R, i = 1, ..., N ,

f i(φ−(ξ)) ≥
N∑
j=1

∂jfi(0)φ−j (ξ)−Di

N∑
j=1

(φ−j (ξ))2

≥
N∑
j=1

∂jfi(0)νjΛce
−Λcξ − q

N∑
j=1

∂jfi(0)νjγΛc
e−γΛcξ − M̂ie

−2Λcξ

(14)

where M̂i = Di

∑N
j=1(νjΛc)

2 > 0. Now we are able to estimate Q[F (φ−)] for ξ ≥
mini ξ

∗
i , i = 1, ..., N as in (10)

Qi[F (φ−)](ξ + c) ≥ e−Λc(ξ+c)
N∑
j=1

νjΛcb
i,j
Λc
− qe−γΛc(ξ+c)

N∑
j=1

νjγΛc
bi,jγΛc

− M̂ie
−2Λc(ξ+c)

∫
R
ki(y)e2Λcydy

= νiΛce
−Λc(ξ+c)eΛcΦ(Λc) − qνiγΛce

−γΛc(ξ+c)eγΛcΦ(γΛc)

− M̂ie
−2Λc(ξ+c)

∫
R
ki(y)e2Λcydy

= νiΛce
−Λcξ − qνiγΛce

−γΛcξeγΛc(Φ(γΛc)−c)

− M̂ie
−2Λc(ξ+c)

∫
R
ki(y)e2Λcydy

= νiΛce
−Λcξ − qνiγΛce

−γΛcξ

+ qνiγΛce
−γΛcξ − qνiγΛce

−γΛcξeγΛc(Φ(γΛc)−c)

− M̂ie
−2Λc(ξ+c)

∫
R
ki(y)e2Λcydy

= φ−i (ξ) + e−γΛcξ
(
qνiγΛc

(
1− eγΛc(Φ(γΛc)−c)

)
− M̂ie

(γ−2)Λcξe−2Λcc

∫
R
ki(y)e2Λcydy

)

(15)

For ξ ≥ mini ξ
∗
i , e

(γ−2)Λcξ is bounded above. Finally, from (15) and the fact that
Φ(γΛc) < c, we conclude that there exists q > 0, which is independent of ξ, such
that, for ξ ≥ ξ∗i

Qi[F (φ−)](ξ + c) ≥ νiΛce
−Λcξ − qνiγΛce

−γΛcξ. (16)

And since φ−i (ξ) = 0 for ξ < ξ∗i , i = 1, ..., N

Qic[F (φ−)](ξ) = Qi[F (φ−)](ξ + c) ≥ φ−i (ξ), ξ ∈ R.

This completes the proof. �
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4.2. Proof of Theorem 2.1 (iii) with monotonicity of F . Theorems that
guarantee the existence of traveling wave solutions for cooperative systems have
been established (e.g. [22, 35]). In this section, it is assumed that F is non-
decreasing on [0, β] and from this assumption, we proceed to establish Theorem
2.1.

As stated in Section 2, even for the case of monotone operators, the results
and analysis in this manuscript are different from those found in [22, 35]. In fact,
we are able to characterize explicitly the asymptotic behavior of traveling waves
through the careful analysis of eigenvalues and upper-lower solutions ( an analysis
not provided in [22, 35]). The analysis of the asymptotic behavior of traveling wave
solutions for monotone operators enable us also to prove the existence of traveling
wave solutions for non monotone operators.

In order to complete the last step, the following Banach space is required,

Bρ = {u = (ui) : ui ∈ C(R), sup
ξ∈R
|ui(ξ)|eρξ <∞, i = 1, ..., N},

equipped with the weighted norm

‖u‖ρ =

N∑
i=1

sup
ξ∈R
|ui(ξ)|eρξ,

where C(R) denotes the set of all continuous functions on R, and where ρ is a
positive constant such that ρ < Λc. It follows that φ+ ∈ Bρ and φ− ∈ Bρ. Finally,
the following set is required (domain of the operator of interest):

Aρ = {u : u ∈ Bρ, φ−(ξ) ≤ u(ξ) ≤ φ+(ξ), ξ ∈ R}
It is clear that Aρ ⊆ Cβ . By the use of standard procedures (see [27, 14, 31]), it can
be shown that Qc[F ] is a continuous map of the bounded set Aρ into a compact
set. We state this result.

Lemma 4.4. Assume (H1) − (H3) hold. Then Qc[F ] : Aρ → Aρ is continuous
with the weighted norm ‖.‖ρ and relatively compact in Bρ.

Now we are in a position to prove Theorem 2.1 when F is monotone. Define the
following iteration

u1 = (ui1) = Qc[F (φ+)], un+1 = (uin) = Qc[F (un)], n ≥ 1. (17)

From Lemmas 4.1, 4.3, and the fact that F is non-decreasing, un is non-increasing
on R, it follows that

φ−i (ξ) ≤ uin+1(ξ) ≤ uin(ξ) ≤ φ+
i (ξ), ξ ∈ R, n ≥ 1, i = 1, ..., N.

By Lemma 4.4 and the monotonicity of (un), we conclude that there is u ∈ Aρ such
that limn→∞ ‖un − u‖ρ = 0. Lemma 4.4 then implies that Q[u] = u. Furthermore,
since u is non-increasing, it is clear that limξ→∞ ui(ξ) = 0, i = 1, ..., N . Now we

assume that limξ→−∞ ui(ξ) = k̂i, i = 1, ..., N k̂i > 0, i = 1, ..., N because of u ∈ Aρ.
Applying the dominated convergence theorem, we get k̂i = fi(k̂). By (H2), k̂ = β.
Finally, since

νiΛc(e
−Λcξ − qε−γΛcξ) ≤ ui(ξ) ≤ νiΛce

−Λcξ, ξ ∈ R
we conclude that

lim
ξ→∞

ui(ξ)eΛcξ = νiΛc , i = 1, ..., N. (18)

This completes the proof of Theorem 2.1 when F is monotone.
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4.3. Proof of Theorem 2.1 (iii). We proceed to characterize traveling wave so-
lutions when the assumption that F is monotone is dropped. We observe that our
treatment is different even for the scalar case (N = 1). The key mathematical ideas
used can be found in the literature with some differences. Specifically, our use of
the Schauder Fixed Point Theorem and the construction of the bounded set Dρ are
different from those found in [14, 23]. We observe that as noted in Section 4, both
Qc[F+] and Qc[F−] are monotone. We further observer that F, F+, F− have the
same linearization at the origin. In view of the results in Section 4, there exists a
non-increasing fixed point u− = (ui−) ∈ Cβ− of Qc[F−] such that

Qc[F−(u−)] = u−

and limξ→−∞ ui−(ξ) = β−i , i = 1, ..., N , and limξ→∞ ui−(ξ) = 0, i = 1, ..., N . Fur-

thermore, limξ→∞ ui−(ξ)eΛcξ = νiΛc , i = 1, ..., N. If we let

φ̃+(ξ) = (φ̃+
i ),

where

φ̃+
i = min{β+

i , ν
i
Λce
−Λcξ}, ξ ∈ R, i = 1, ..., N,

then according to Lemma 4.1, φ̃+ is an upper solution of Qc[F+]. Also if β+ is

replaced with β−, then φ̃+(ξ) is an upper solution of Qc[F−]. By the construction
of ui−(ξ), it follows that

u−(ξ) ≤ φ̃+(ξ), ξ ∈ R
In order to complete our argument we must reintroduce the following set:

Dρ = {u : u = (ui) ∈ Bρ, ui−(ξ) ≤ ui(ξ) ≤ φ̃+
i (ξ), ξ ∈ (−∞,∞), i = 1, ..., N},

where Bρ is defined in Section 4.2. It is clear that Dρ is a bounded nonempty closed
convex subset in Bρ. Furthermore, we have, for any u = (ui) ∈ D

u− = Qc[F−(u−)] ≤ Qc[F−(u)] ≤ Qc[F (u)] ≤ Qc[F+(u)] ≤ Qc[F+(φ̃+)] ≤ φ̃+.

Therefore, Qc[F ] : Dρ → Dρ. Since the proof of Lemmas 4.4 does not need the
monotonicity of F−, in the same way it can be shown that Qc[F−] : Dρ → Bρ
is continuous and maps bounded sets into compact sets. Therefore, the Schauder
Fixed Point Theorem guarantees that the operator Qc[F ] has a fixed point u in

Dρ, a traveling wave solution of (6) for c > c∗. Since ui−(ξ) ≤ ui(ξ) ≤ φ̃+
i (ξ), ξ ∈

(−∞,∞), i = 1, ..., N , it is easy to see that for i = 1, ..., N , limξ→∞ ui(ξ) = 0,
limξ→∞ ui(ξ)eΛcξ = νiΛc ,

β−i ≤ lim inf
ξ→−∞

ui(ξ) ≤ lim sup
ξ→−∞

ui(ξ) ≤ β+
i

and 0 < ui−(ξ) ≤ ui(ξ) ≤ β+
i , ξ ∈ (−∞,∞). �

4.4. Proof of Theorem 2.1 (iv). Proof. The proof in this subsection follows the
approach found in [4, 14]. We make use of the results in Theorem 2.1 (iii). Hence,
for each m ∈ N, we choose cm > c∗ such that limm→∞ cm = c∗. According to
Theorem 2.1 (iii), for each cm there is a traveling wave solution um = (uim) of (6)
such that

um = Q[F (um)](ξ + cm).
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and

lim
ξ→∞

ui(ξ) = 0, β−i ≤ lim inf
ξ→−∞

uim(ξ) ≤ lim sup
ξ→−∞

uim(ξ) ≤ β+
i , i = 1, ..., N.

The use of standard procedures (see [27, 14, 31]) guarantees that (um) is equicontin-
uous and uniformly bounded on R. Hence, the Ascoli’s theorem implies that there
is a vector valued continuous function u = (ui) on R and a subsequence (umk) of
(um), such that

lim
k→∞

umk(ξ) = u(ξ)

uniformly in ξ on any compact interval of R. Further, the use of the dominated
convergence theorem guarantees that we have

u = Q[F (u)](ξ + c∗)

Because of the translation invariance of um, we can always assume that the first
component u1

m(0) equals to a sufficiently small positive number σ > 0 for all m.
Since there is only a finite number of equilibria, we can choose σ in such a way that
it is not the first component of any nontrivial equilibrium. Consequently, u is a
nonconstant traveling solution of (6) for c = c∗. �

4.5. Proof of Theorem 2.1 (v). The proof of the key result in this subsec-
tion follows the approach in [14, 23]. Suppose, by contradiction, that for some
c ∈ (0, c∗), (6) has a traveling wave un(x) = u(x − cn) such that u ∈ Cβ with
lim infx→−∞ u(x) � 0 and u(+∞) = 0. Thus u(x) can be larger than a positive
vector with arbitrary length. It follows from Theorem 2.1 (ii)

lim inf
n→∞

inf
|x|≤nc

un(x) ≥ β−, for 0 < c < c∗

If we now let ĉ ∈ (c, c∗) and x = ĉn, then

lim
n→∞

u
(
(ĉ− c)n

)
= lim
n→∞

un(ĉn) ≥ lim inf
n→∞

inf
|x|≤nĉ

un(x) ≥ β−,

but since limn→∞ u
(
(ĉ− c)n

)
= u(∞) = 0, we have reached a contradiction. �

5. Minimum speeds and traveling waves for a competition model. Hassell
and Comins’ model of the growth and spread of two population densities at time
n and location x under an interference competition regime is used to highlight the
applicability of the mathematical results established in this manuscript. We make
use of the local analysis (no spatial) results of their model as reported in [11].
The inclusion of the possibility of dispersal via the re-distribution kernel ki(x− y)
leads to Model (5). If the two spatially-explicit densities are denoted by Xn(x)
and Yn(x) then the model is still given locally by the set of nonlinear coupled
difference equations (4); with the addition of dispersal leads to (5). The following
results highlight the application of the main theorem. It highlights its contribution
towards increasing our understanding of the role of dispersal, in the context of local
competitive systems. There has been some additional contributions. In particular
we observe at this juncture that Li [24] has also investigated the minimum speed of
(5).

Model (5) can support four constant equilibria: the unpopulated state (0, 0);
the second-species monoculture state (0, r2); the first monculture state (r1, 0); and
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( r1−σ1r2
1−σ1σ2

, r2−σ2r1
1−σ1σ2

). The change of variables p = X, q = r2−Y allows to convert sys-

tem (5) into the following equivalent coupled system of integro-difference equations

pn+1(x) =

∫
R
k1(x− y)f(pn(y), qn(y))dy

qn+1(x) =

∫
R
k2(x− y)g(pn(y), qn(y))dy

(19)

where

f(p, q) = h(p)er1−σ1r2+σ1q

g(p, q) = r2 −
(
r2 − q

)
eq−σ2p

h(p) = pe−p

It is clear that (5) and (19) are not monotone systems. A straightforward calculation
shows that (19) has the four explicit equilibria (0, 0), (0, r2), (r1, r2) and

(
r1 − σ1r2

1− σ1σ2
, σ2

r1 − σ1r2

1− σ1σ2
).

Under the conditions of Theorem 5.1, we show in the Appendix that there are no
positive equilibrium of (19) between (0, 0) and (r1, r2). Theorem 2.1 is used to
guarantee the existence of a spreading speed and traveling wave solutions of the
nonmonotone system (19)(with accompanying results on the speed of propagation).
We summarize the results obtained in the context of this example in Theorem 5.1.
Its proof is outlined in the Appendix.

Theorem 5.1. Let 0 < r2 < 1 < r1, 0 < σ1 < 1 < σ2, σ1σ2 < 1, and

r2 < σ2e
r1−1−er1−1

and
σ1r2 < er1−1−er1−1

.

Assume that k1, k2 satisfy (H1) and
∫
R k1(s)eµsds ≥

∫
R k2(s)eµsds for µ > 0. Then

the conclusions of Theorem 2.1 hold for (19).

The biological interpretation of the conditions in Theorem 5.1 in the context of
this application are straightforward. For an invasion to be successful, the overall
dispersal of the invader (X) is relatively larger than the overall dispersal of the
out-competed resident (Y). Further competition favors the invader whenever σ1 is
sufficiently small (invader less affected by competition) and σ2 is sufficiently large
(a relatively fragile resident, that is, the resident is more susceptible to interference
competition). Under these conditions, there exist traveling wave solutions of (19)
“loosely” connecting its two equilibria (0, 0) and (r1, r2). Equivalently, there are
traveling wave solutions of (5) “loosely” connecting its two boundary states (0, r2)
and (r1, 0). Here the term “loosely” means the traveling waves may oscillate around
the equilibria since they are not necessarily monotone. For specific ki, the exact
value of c∗ can be computed and compared to experimental data as it has been
done by Kot, Lewis, others and their collaborators (see past cited references).

6. Conclusions. Integro-difference systems arise naturally in the study of the dis-
persal of populations, including interacting populations, composed of organisms
that reproduce locally via discrete generations and compete for resources, before
dispersing . The brunt of the mathematical research has focused on the the study
of the existence of traveling wave solutions and characterizations of the spreading
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speed in the context of cooperative systems. In this paper, we characterize the
spreading speed for a large class of non cooperative systems, formulated in terms
of integro-difference equations, via the convergence of initial data to wave solu-
tions. The spreading speed is characterized as the slowest speed of a family of
non-constant traveling wave solutions. The results are applied to a spatially ex-
plicit version of non-cooperative local competitive system proposed by Hassell and
Comins (1976) [11]. We are in the process of applying these results to additional
ecological and epidemiological systems where the local population dynamics are
naturally non-cooperative. One of our goals is to increase our understanding of
the role of dispersal in communities where the local dynamics are richer, a possible
more realistic, than those previously supported by the mathematical theory.

Appendix. Proof of Proposition 1 (4). The conclusion is also briefly discussed
in a remark in [33, pp. 197]. If Φ(µ) = 1

µ lnλ(µ) achieves its minimum at a finite

µ, then c∗ = minµ>0 Φ(µ) > 0. Now let c∗ = limµ→∞
1
µ lnλ(µ). We recall that

λ(µ) is an eigenvalue of Bµ with a positive eigenvector. Thus there exists a positive
constant δ > 0 and a positive integer i ≤ N such that λ(µ) ≥ δ

∫
R ki(x)eµxdx. Thus

c∗ ≥ lim
µ→∞

1

µ
ln
(
δ

∫
R
ki(x)eµxdx

)
.

Let Ψ(µ) =
∫
R xki(x)eµxdx∫
R ki(x)eµxdx

, µ ≥ 0. Then by the L’Hopital’s rule we have c∗ ≥
limµ→∞Ψ(µ). Differentiation of Ψ and rearrangement of terms show

Ψ′(µ) =

∫
R
(
x−Ψ(µ)

)2
ki(x)eµxdx∫

R ki(x)eµxdx
> 0, µ ≥ 0,

also see Weinberger [36]. Note that Ψ(0) = 0 and therefore, c∗ ≥ limµ→∞Ψ(µ)
> 0. �
Proof of Theorem 5.1. We verify that the conditions (H1-H3) hold for (19). From
the assumptions of Theorem 5.1, (H1) holds for (19). We proceed to verify (H2) for
(19) which, as we had noticed earlier, has four equilibria (0, 0), (0, r2), (r1, r2) and

(
r1 − σ1r2

1− σ1σ2
, σ2

r1 − σ1r2

1− σ1σ2
). (20)

If it is further assumed that r1 > 1, r2 < 1, and σ1 < 1, σ2 > 1, σ1σ2 < 1 then

(
r1 − σ1r2

1− σ1σ2
, σ2

r1 − σ1r2

1− σ1σ2
)� (r1, r2). (21)

Thus (19) has no other positive equilibrium (p, q) between (0, 0) and (r1, r2) with
p > 0 and q > 0. Observe that 1 is the maximum point of h(p), that is, h(p) is
not monotone on [0, r1]. Further simple calculations show that gp(p, q) = σ2(r2 −
q)eq−σ2p ≥ 0, for q ∈ [0, r2], gq(p, q) = (1− r2 + q)eq−σ2p ≥ 0.

In order to use Theorem 2.1, we define the upper monotone function

h+(p) =

{
h(p), 0 ≤ p ≤ 1,

h(1) = e−1, 1 ≤ p.
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and corresponding monotone systems with h+

pn+1(x) =

∫
R
k1(x− y)f+(pn(y), qn(y))dy

qn+1(x) =

∫
R
k2(x− y)g(pn(y), qn(y))dy.

(22)

where f+(p, q) = h+(p)er1−σ1r2+σ1q.
The origin, (0, 0) is an equilibrium of (22) and g(p, q) = q has only two possible

solutions q∗ = r2 and q∗ = σ2p
∗. Thus for q∗ = r2, Equation (22) has two equilibria

(0, r2), (er1−1, r2). The second equilibrium (er1−1, r2) comes from the fact that
p∗ > 1 and therefore h+(p∗) = e−1. (If 0 < p∗ ≤ 1, then h+(p∗) = h(p∗) and
(p∗, q∗) = (r1, r2); however, r1 > 1, which is a contradiction). In order for Equation
(22) to have another positive equilibrium (p∗, q∗), when q∗ = σ2p

∗, it must satisfy
p∗ > 1 (otherwise, p∗ ≤ 1 and (p∗, q∗) is (20) which means that (21) implies that
p∗ > 1, a contradiction) and therefore

er1−σ1r2+σ1σ2p
∗−1 = p∗

q∗ = σ2p
∗.

(23)

We will use the inequality, ex ≥ x + 1, x ∈ R to estimate ex. Thus p∗ =
er1−σ1r2+σ1σ2p

∗−1 ≥ r1 − σ1r2 + σ1σ2p
∗ and p∗ ≥ r1−σ1r2

1−σ1σ2
> r1, which implies that

p∗ > er1−1, from the first equation of (23) and σ2r1 > r2. Again since σ2r1 > r2,
we also have q∗ = σ2p

∗ > r2 and thus Equation (22) has no positive equilibrium
between (0, 0) and (er1−1, r2).

There is a t0 ∈ (0, 1) such that h(t0) = h(er1−1) and define

h−(p) =

{
h(p), 0 ≤ p ≤ t0,

h(t0), t0 ≤ p ≤ er1−1.

and corresponding lower monotone system

pn+1(x) =

∫
R
k1(x− y)f−(pn(y), qn(y))dy

qn+1(x) =

∫
R
k2(x− y)g(pn(y), qn(y))dy.

(24)

where f−(p, q) = h−(p)er1−σ1r2+σ1q. Then

0 < h−(p) ≤ h(p) ≤ h+(p) ≤ h′(0)p, p ∈ (0, er1−1]

h−(0) = h+(0) = 0, h±(p), h(p) have the same derivative at 0.
Since g(p, q) = q has only two possible solutions q = r2 and q = σ2p and h(t0) =

t0e
−t0 = h(er1−1) = er1−1e−e

r1−1

, we can therefore calculate that (24) has three

equilibria (0, 0), (0, r2) and (t1, r2) where t1 = e2r1−1−er1−1

. Again (t1, r2) comes
from the fact that t1 ≥ t0 and h(t1) = h(t0). (The same argument applied to (22)
implies that t1 < t0 is a contradiction. ) We will now show that

t1 < r1. (25)

Indeed, since Expression (25) is equivalent to 2r1 − 1− er1−1 < ln r1, we let l(x) =
2x− 1− ex−1 − lnx and therefore l(1) = 0 and

l′(x) = 2− ex−1 − 1

x
≤ 2− x− 1

x
< 0, for x > 1,



2262 HAIYAN WANG AND CARLOS CASTILLO-CHAVEZ

p

h
h+

er1 1
r1

h

1t0
t1

Figure 1. The construction of h+ and h−. The red curve is h. t1
is always less than r1.

and this verifies (25). Since 0 < t0 < 1 < r1, the following inequality holds

0 < er1−1−er1−1

< t0 = et0er1−1e−e
r1−1

< e2r1−1−er1−1

= t1. (26)

If (p∗, q∗) is a another positive equilibrium of (24) when q∗ = σ2p
∗, then it must

satisfy p∗ > t0 (otherwise, p∗ ≤ t0 and (p∗, q∗) is (20) and from (21) we have that
p∗ > 1 > t0, a contradiction) and therefore

er1−1e−e
r1−1

er1−σ1r2+σ1σ2p
∗

= p∗

q∗ = σ2p
∗.

(27)

Since r1 > σ1r2 and p∗ > 0, we have p∗ > er1−1−er1−1

. In view of the assumption,

σ2e
r1−1−er1−1

> r2 and System (27), we have q∗ > r2. Again from (27), we have

p∗ > e2r1−1−er1−1

= t1. Thus (24) has no other positive equilibrium between (0, 0)
and (t1, r2) and

(0, 0)� (t1, r2) ≤ (r1, r2) ≤ (er1−1, r2).

See Fig. 6 for the construction of h+ and h−. Let β− = (t1, r2) and β+ = (er1−1, r2)
and we have verified (H2) for (19).

We now proceed to verify (H3) for (19). The matrix in (7) for (19) is

Bµ = (bi,jµ ) =

(
er1−σ1r2

∫
R k1(s)eµsds 0

r2σ2

∫
R k2(s)eµsds (1− r2)

∫
R k2(s)eµsds

)
(28)
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Since er1−σ1r2 > 1 > 1− r2, the principal eigenvalue for the matrix is

λ(µ) = er1−σ1r2

∫
R
k1(s)eµsds

and the corresponding positive eigenvector

ηµ =

(
ν

(1)
µ

ν
(2)
µ

)
=

(
er1−σ1r2

∫
R k1(s)eµsds−(1−r2)

∫
R k2(s)eµsds

r2σ2

∫
R k2(s)eµsds

1

)
. (29)

Because
∫
R k2(s)eµsds ≤

∫
R k1(s)eµsds, canceling

∫
R k2(s)eµsds in ν

(1)
µ leads to

ν(1)
µ ≥ er1−σ1r2 − (1− r2)

r2σ2
≥ 1

σ2
+
er1−σ1r2 − 1

r2σ2
≥ 1

σ2

(30)

It is clear now that (H3)(i) holds. We can proceed to verify (H3)(ii) for (22). Let

(p, q) = (min{er1−1, ν(1)
µ α},min{r2, α}), α > 0.

Since eq−σ2p ≥ 1 + q − σ2p, we need to show that

h+(p)er1−σ1r2+σ1q ≤ er1−σ1r2p

r2 −
(
r2 − q

)
eq−σ2p ≤ r2σ2p+ (1− r2)q + q(q − σ2p)

≤ r2σ2p+ (1− r2)q

(31)

Therefore, it is easy to see that we only need to verify that

q ≤ σ2p (32)

and

h+(p)

p
≤ e−σ1q (33)

For (32), we need to consider the two cases: p = er1−1 and p = ν
(1)
µ α. If p = er1−1,

then

q ≤ r2 ≤ σ2e
r1−1 (34)

which is true by the assumption (r2 < σ2e
r1−1−er1−1

). If p = ν
(1)
µ α, then q ≤ α ≤

σ2ν
(1)
µ α, which is true because of (30).

In order to verify (33), first assume that p ∈ (0, 1), then h+(p) = pe−p and

p = ν
(1)
µ α since er1−1 > 1. Since e−σ1α ≤ e−σ1q, it suffices to verify that e−ν

(1)
µ α ≤

e−σ1α, which is true because of (30) and σ2σ1 < 1. For the case p ≥ 1 we have
h+(p) = e−1. Again since

e−r2 ≤ e−σ1r2 ≤ e−σ1q, (35)

it suffices to verify e−1

p ≤ e
−1 ≤ e−r2 , which holds because r2 < 1.

It remains to verify (H3)(ii) for (24). Let

(p, q) = (min{t1, ν(1)
µ α},min{r2, α}), α > 0.

For (32), we need to consider the two cases: p = t1 and p = ν
(1)
µ α. If p = t1,

from the assumptions, we have

q ≤ r2 ≤ σ2e
r1−1−er1−1

< σ2e
2r1−1−er1−1

= σ2t1 = σ2p (36)

and then (32) holds. If p = ν
(1)
µ α, then q ≤ α ≤ σ2ν

(1)
µ α, which is true because of

(30).
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We must verify (33) (with h+ being replaced by h−) for (24). If 0 < p < t0, then

h−(p) = pe−p and p = ν
(1)
µ α because of (26). Since e−σ1α ≤ e−σ1q, it suffices to

verify that e−ν
(1)
µ α ≤ e−σ1α, which is true because of (30) and σ2σ1 < 1. For the

case that p ≥ t0, then h−(p) = h(t0). From the definition of h− and (35) we see
that it suffices to verify that

h−(p)

p
≤ h(t0)

t0
= e−t0 ≤ e−σ1r2 (37)

holds, which follows from Expression (26) and the assumption,

e−t0 ≤ e−e
r1−1−er1−1

≤ e−σ1r2 . (38)

We observe here that the assumption σ1r2 < er1−1−er1−1

can be relaxed as long as
(37)(t0 ≥ σ1r2) holds.

To verify (H3)(iii), we note that h−(p) = h+(p) = h(p) for p small, and conclude
from Lemma 4.2, for sufficiently larger k, there is a small ω � 0, if 0 ≤ (p, q) ≤ ω,
f(p, q) ≥ f(p, 0) ≥ (1− 1

k )er1−σ1r2p and g(p, q) ≥ (1− 1
k )r2σ2p+ (1− 1

k )(1− r2)q.
This concludes the proof of Theorem 5.1 since the conditions (H1-H3) have been

verified. �
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