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Abstract. We study the traveling waves of reaction-diffusion equations for a

diffusive SIR model. The existence of traveling waves is determined by the basic
reproduction number of the corresponding ordinary differential equations and

the minimal wave speed. Our proof is based on Schauder fixed point theorem

and Laplace transform.

1. Introduction. Kermack and McKendrik [32] proposed a simple deterministic
susceptible-infected-removed (SIR) model for an infectious disease outbreak in a
closed population consisting of susceptible individuals (S(t)), infected individuals
(I(t)) and removed individuals (R(t)). The Kermack-McKendrick SIR model when
individuals move randomly is given by the following reaction-diffusion system

∂tS = d1∂xxS − βSI, (1)

∂tI = d2∂xxI + βSI − γI, (2)

∂tR = d3∂xxR+ γI, (3)

where β is the transmission coefficient, γ is the recovery/remove rate, and d1, d2 and
d3 are the diffusion rates of the susceptible, infective and removed individuals, re-
spectively. The model captures the essential transmission dynamics using the mass
action and predicts infection propagation from the initial source of an outbreak.

As the model focuses on the outbreak situation and ignores the natural and
death process, the model system (1-3) has infinitely many disease-free equilibria
(S−∞, 0, 0) with arbitrary S−∞ > 0. A traveling wave solution is a special type of
solutions with the form (S(x+ ct), I(x+ ct), R(x+ ct)), and represents the transi-
tion from the initial disease-free equilibrium (S−∞, 0, 0) to another disease free state
(S+∞, 0, 0) with S+∞ being determined by the transmission rate and the disease
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specific recovery rate, as well as possibly the mobility of individuals. For applica-
tions to the disease control and prevention, it is important to determine whether
traveling waves exist and what the propagation speed c is.

Note that R does not appear in the first two equations (1) and (2), it suffices
to consider the two dimensional system for (S, I). Such a system with a kinetic
planar vector field provides a simple example of the general diffusive predator-prey
system. When the diffusion rate d1 is zero, Källén [30] showed that a nontrivial
traveling wave solution exists if and only if the basic reproduction number R0 :=
βS−∞/γ is no less than one and the traveling speed c exceeds a minimal value

c∗ := 2
√
d2(βS−∞ − γ). Hosono and Ilyas [26] proved the existence of a traveling

wave with any positive speed if the diffusion rate of the infected class d2 = 0. These
two results were later extended to the non-degenerate case d1 6= 0 and d2 6= 0 by
Hosono and Ilyas [27] with the aid of the shooting technique and invariant manifold
theory developed by Dunbar [18, 19]. In particular, it was proved that if the basic

reproduction number βS−∞/γ > 1, then for each c ≥ c∗ = 2
√
d2(βS−∞ − γ)

system (1-2) has a traveling wave solution (S(x+ct), I(x+ct)) satisfying S(±∞) =
S±∞, I(±∞) = 0, S−∞ > S∞. On the other hand, there is no traveling solution for
(1-2) if βS−∞/γ ≤ 1.

Here, we consider the SIR disease outbreak model with the standard incidence,
while the recovereds are removed from the population and thus not involved in the
contact and disease transmission. We refer to [8, 61] for the detailed epidemiological
consideration of the corresponding ODE model, and here we focus on the diffusive
system

∂tS = d1∂xxS − βSI/(S + I), (4)

∂tI = d2∂xxI + βSI/(S + I)− γI, (5)

∂tR = d3∂xxR+ γI. (6)

Again R does not appear in the first two equations and we only need to consider
the two dimensional system for S and I. In this paper, we shall show the analogous
existence and non-existence results for (4-5) hold. Specifically, we show that if R0 :=

β/γ > 1, then for each c > c∗ = 2
√
d2(β − γ) there exists a nonnegative constant

S∞ < S−∞ such that system (4-5) has a traveling wave solution (S(x+ct), I(x+ct))
satisfying S(±∞) = S±∞, I(±∞) = 0, S−∞ > S∞ and no traveling wave solution
for 0 < c < c∗. In addition, we show that if R0 := β/γ ≤ 1, there is no traveling
solution for (4-5).

Our method in this paper is mainly based on that in Wang and Wu [62] and
several early studies. We will employ the Schauder fixed point theorem (to prove
the existence theorem) for an equivalent non-monotone abstract operator, and the
challenging and difficult task is to construct and verify a suitable invariant convex
set for the non-monotone operator. Much of the existing theoretical development
on traveling waves has been built on the applications of the powerful theory of
monotone dynamical systems and some comparison arguments; see, for examples
[13, 50, 58] and references therein. Recently, a number of results on the existence of
traveling solutions for non-monotone spatial models have been obtained (see, e.g.
[17, 37, 40, 57]), where suitable invariant sets are carefully constructed and the
order-preserving properties of the involved operators are proved. The non-existence
proof is based on an argument applying two-side Laplace transform in [12, 14]. On
the other hand, the existence proof in [26, 27] was based on the shooting method
developed in [18, 19] and similar methods was used in [4, 29].
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The paper is organized as follows. In the following three sections, we will present
and prove the existence and non-existence theorem respectively. In Section 3, we will
introduce notations of differential and integral operators and state some properties
of these operators. The traveling wave solution is a fixed point of a map defined
in terms of the integral operators. Next, we construct an invariant convex cone
and verify the continuity and compactness of our map. Finally, we apply Schauder
fixed point theorem to prove the existence theorem. In Section 4, we prove the
non-existence theorem for two different cases: one is R0 > 1 and c < c∗; the other
is R0 ≤ 1. Conclusions and discussions are given in Section 5.

2. Main results. Because R does not appear in the system of equations for the
susceptible individuals S and infected individuals I, we omit the R equation and
study the following system with S and I only:

∂tS = d1∂xxS − βSI/(S + I), (7)

∂tI = d2∂xxI + βSI/(S + I)− γI. (8)

We look for the non-trivial and non-negative traveling wave solutions (S(x+ct), I(x+
ct)) which satisfy the following boundary conditions at infinity:

S(−∞) = S−∞, S(∞) < S−∞, I(±∞) = 0. (9)

The ordinary differential system describing the traveling waves (or wave profiles) is
given below:

cS′ = d1S
′′ − βSI/(S + I), (10)

cI ′ = d2I
′′ + βSI/(S + I)− γI. (11)

Our main theorem is stated as follows:

Theorem 2.1. If R0 := β/γ > 1 and c > c∗ := 2
√
d2(β − γ), then there exists a

non-trivial and non-negative traveling wave solutions (S, I) such that the boundary
conditions (9) are satisfied. Furthermore, S is monotonically decreasing, 0 ≤ I(x) ≤
S(−∞)− S(∞) for all x ∈ R, and∫ ∞

−∞
γI(x)dx =

∫ ∞
−∞

βS(x)I(x)

S(x) + I(x)
dx = c[S(−∞)− S(∞)]. (12)

If R0 = β/γ ≤ 1 or c < c∗ := 2
√
d2(β − γ), then there exist no non-trivial and

non-negative traveling wave solution (S, I) satisfying the boundary conditions (9).

Remark 1. It is easy to see that (cf. [59]) R0 := β/γ is the basic reproduction
number of the corresponding ordinary differential system. It is also obvious that the
minimal wave speed c∗ := 2

√
d2(β − γ) does not depend on the diffusion coefficient

of S. This speed is calculated from the characteristic function of the linearized
equation for I

f(λ) := −d2λ2 + cλ− (β − γ), (13)

at the disease free equilibrium (S−∞, 0). It is obvious that this function f has two
different roots if and only if c > c∗.
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3. Existence theorem. We first prove the existence of non-trivial and non-negative
traveling waves. Throughout this section, we always assume R0 := β/γ > 1 and c

is a fixed number greater than c∗ := 2
√
d2(β − γ). We denote by

λ0 :=
c−

√
c2 − 4d2(β − γ)

2d2
(14)

the smaller positive root of the characteristic function f defined in (13).

3.1. Differential operators and their inverses. In this subsection, we introduce
two second-order linear differential operators ∆1 and ∆2 and their inverses ∆−11 and
∆−12 . Given αi > 0 with i = 1 or 2, it is easily seen that the equation

− diλ2 + cλ+ αi = 0 (15)

has two roots

λ±i =
c±
√
c2 + 4diαi
2di

. (16)

Note that λ−i is negative and λ+i is positive, and note also that λ+i is greater than
−λ−i . We then choose αi to be sufficiently large such that

−λ−i > λ0

where λ0 is given in (14). We also need

α1 > β, α2 > γ

two conditions which will be used in the proof of Lemma 3.4. Denote

ρi := di(λ
+
i − λ

−
i ) =

√
c2 + 4diαi. (17)

We now define the second-order linear differential operator ∆i as

∆ih := −dih′′ + ch′ + αih (18)

for any h ∈ C2(R). The corresponding integral operator ∆−1i is defined by

(∆−1i h)(x) :=
1

ρi

∫ x

−∞
eλ

−
i (x−y)h(y)dy +

1

ρi

∫ ∞
x

eλ
+
i (x−y)h(y)dy (19)

for any h ∈ Cµ−,µ+(R) with µ− > λ−i and µ+ < λ+i , where

Cµ−,µ+(R) := {h ∈ C(R) : sup
x≤0
|h(x)e−µ

−x|+ sup
x≥0
|h(x)e−µ

+x| <∞}. (20)

Note that the asymptotic conditions in the definition of Cµ−,µ+(R) guarantee the

integral ∆−1i h to be well defined. In the following lemma, we prove that ∆−1i is
actually the inverse operator of ∆i.

Lemma 3.1. Let i = 1 or 2. We have

∆−1i (∆ih) = h (21)

for any h ∈ C2(R) such that h, h′, h′′ ∈ Cµ−,µ+(R) with µ− > λ−i and µ+ < λ+i ,
and

∆i(∆
−1
i h) = h (22)

for any h ∈ Cµ−,µ+(R) with µ− > λ−i and µ+ < λ+i .
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Proof. It follows from the definitions of ∆i and ∆−1i in (18) and (19) that

[∆−1i (∆ih)](x) =
1

ρi

∫ x

−∞
eλ

−
i (x−y)[−dih′′(y) + ch′(y) + αih(y)]dy

+
1

ρi

∫ ∞
x

eλ
+
i (x−y)[−dih′′(y) + ch′(y) + αih(y)]dy.

Making use of integration by parts, we obtain∫ x

−∞
eλ

−
i (x−y)h′(y)dy = h(x) + λ−i

∫ x

−∞
eλ

−
i (x−y)h(y)dy,

and ∫ x

−∞
eλ

−
i (x−y)h′′(y)dy = h′(x) + λ−i h(x) + (λ−i )2

∫ x

−∞
eλ

−
i (x−y)h(y)dy.

Therefore, we have∫ x

−∞
eλ

−
i (x−y)[−dih′′(y) + ch′(y) + αih(y)]dy = −dih′(x) + (−diλ−i + c)h(x).

Here we have used the fact that λ−i is the root of the equation −diλ2 + cλ+αi = 0;
see (15) and (16). Similarly, it can be shown that∫ ∞

x

eλ
+
i (x−y)[−dih′′(y) + ch′(y) + αih(y)]dy = dih

′(x) + (diλ
+
i − c)h(x).

Applying the above two equalities to the expression of ∆−1i (∆ih) gives

[∆−1i (∆ih)](x) =
di(λ

+
i − λ

−
i )

ρi
h(x) = h(x),

where in the last equality we have used the definition of ρi in (17). This proves
(21). For h ∈ Cµ−,µ+(R) with µ− > λ−i and µ+ < λ+i , we can differentiate (19)
twice to obtain

(∆−1i h)′(x) =
λ−i
ρi

∫ x

−∞
eλ

−
i (x−y)h(y)dy +

λ+i
ρi

∫ ∞
x

eλ
+
i (x−y)h(y)dy,

(∆−1i h)′′(x) =
(λ−i )2

ρi

∫ x

−∞
eλ

−
i (x−y)h(y)dy +

(λ+i )2

ρi

∫ ∞
x

eλ
+
i (x−y)h(y)dy

+
λ−i
ρi
h(x)− λ+i

ρi
h(x).

Noting that λ±i are two roots of the equation (15), it is readily seen from (17), (19)
and the above two equalities that

−di(∆−1i h)′′(x) + c(∆−1i h)′(x) + αi(∆
−1
i h)(x) = h(x).

This ends our proof of the lemma.

In the subsequent subsections, we will construct a convex invariant cone whose
lower bound is of the form

g(x) :=

{
eλx(1−Meεx), x ≤ x∗,
0, x ≥ x∗,
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where x∗ := − lnM/ε is the point at which g is not differentiable. If we introduce
the notation ∨ to denote the maximum of two numbers, then we can write g in a
simple formula

g(x) = eλx(1−Meεx) ∨ 0.

The following lemma will be used in the next subsection to prove cone invariance.

Lemma 3.2. Let i = 1 or 2. Given any M > 0, ε > 0 and λ such that λ−i < λ <
λ+ ε < λ+i , we have

∆−1i (∆ig) ≥ g (23)

for g(x) := eλx(1 −Meεx) ∨ 0. Note that g is not differentiable at x∗ := − lnM/ε
and the differential operator ∆ig is defined in the sense of distribution. In view of
(19) and λ−i < λ < λ+ε < λ+i , the integral ∆−1i (∆ig) is well defined because ∆ig is
continuous everywhere except at the point x∗ := − lnM/ε and e−λx|∆ig| is bounded
as x→ −∞ and e−(λ+ε)x|∆ig| is bounded as x→∞.

Proof. Let x∗ := − lnM/ε be the point where g is not differentiable. For conve-
nience, we denote

fi(k) := −dik2 + ck + αi = di(k − λ−i )(λ+i − k), (24)

which has two roots λ±i as defined in (16). It is easily seen from (18) that

(∆ig)(x) =

{
fi(λ)eλx −Mfi(λ+ ε)e(λ+ε)x, x < x∗,

0, x > x∗.
(25)

We will consider the two cases x ≤ x∗ and x ≥ x∗ respectively. When x ≤ x∗, we
have from (19) and (25) that

[∆−1i (∆ig)](x) = fi(λ)A(λ)−Mfi(λ+ ε)A(λ+ ε), (26)

where

A(k) :=
1

ρi

∫ x

−∞
eλ

−
i (x−y)+kydy +

1

ρi

∫ x∗

x

eλ
+
i (x−y)+kydy

=
ekx(λ+i − λ

−
i )

ρi(k − λ−i )(λ+i − k)
− ekx

∗+λ+
i (x−x∗)

ρi(λ
+
i − k)

for k = λ or λ+ ε. In view of (17) and (24), it follows from the above equality that

fi(k)A(k) = ekx − k − λ−i
λ+i − λ

−
i

ekx
∗+λ+

i (x−x∗).

Applying this to (26) and on account of Meεx
∗

= 1, we obtain

[∆−1i (∆ig)](x) = [eλx − λ− λ−i
λ+i − λ

−
i

eλx
∗+λ+

i (x−x∗)]

−[Me(λ+ε)x − λ+ ε− λ−i
λ+i − λ

−
i

eλx
∗+λ+

i (x−x∗)]

= [eλx −Me(λ+ε)x] +
ε

λ+i − λ
−
i

eλx
∗+λ+

i (x−x∗)

≥ eλx −Me(λ+ε)x.

This proves (23) for x ≤ x∗. When x ≥ x∗, we have from (19) and (25) that

[∆−1i (∆ig)](x) = fi(λ)B(λ)−Mfi(λ+ ε)B(λ+ ε), (27)
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where

B(k) :=
1

ρi

∫ x∗

−∞
eλ

−
i (x−y)+kydy =

ekx
∗+λ−

i (x−x∗)

ρi(k − λ−i )

for k = λ or λ+ ε. In view of (17) and (24), it follows from the above equality that

fi(k)B(k) =
λ+i − k
λ+i − λ

−
i

ekx
∗+λ−

i (x−x∗).

Applying this to (27) and on account of Meεx
∗

= 1, we obtain

[∆−1i (∆ig)](x) =
λ+i − λ
λ+i − λ

−
i

eλx
∗+λ−

i (x−x∗) − λ+i − λ− ε
λ+i − λ

−
i

eλx
∗+λ−

i (x−x∗)

=
ε

λ+i − λ
−
i

eλx
∗+λ−

i (x−x∗)

≥ 0.

This gives (23) in the case x ≥ x∗.

3.2. Cone invariance. Given µ such that

λ0 < µ < −λ−i < λ+i , i = 1, 2.

(see the definitions of λ0 and λ−i in (14) and (16)), we have

λ−i < −µ < µ < λ+i , i = 1, 2.

Now we introduce the functional space

Bµ(R,R2) := {φ = (φ1, φ2) : φi ∈ C(R) & sup
x∈R

e−µ|x||φi(x)| <∞,∀i = 1, 2} (28)

equipped with the norm

|φ|µ :=
(

sup
x∈R

e−µ|x||φ1(x)|
)∨(

sup
x∈R

e−µ|x||φ2(x)|
)
. (29)

Recall that the symbol ∨ denotes the maximum of two numbers. It is easily seen
from (20) that

Bµ(R,R2) = C−µ,µ(R)× C−µ,µ(R).

We then define a map F = (F1, F2) on the space Bµ(R,R2): given φ = (φ1, φ2) ∈
Bµ(R,R2), let

F1(φ1, φ2) := ∆−11 [α1φ1 − βφ1φ2/(φ1 + φ2)]; (30)

F2(φ1, φ2) := ∆−12 [α2φ2 + βφ1φ2/(φ1 + φ2)− γφ2]. (31)

Since λ−i < −µ < µ < λ+i for i = 1 and 2, the nonlinear map F is well defined
for any nonnegative φ. To construct a convex invariant cone, we have to specify its
boundary, which are the super-solutions and sub-solutions given as below. Recall
the definition of λ0 in (14). Let S−∞ > 0 be as in the boundary conditions (9), we
define for x ∈ R the following

S+(x) := S−∞; (32)

S−(x) := S−∞(1−M1e
ε1x) ∨ 0; (33)

I+(x) := eλ0x; (34)

I−(x) := eλ0x(1−M2e
ε2x) ∨ 0, (35)

where M1,M2, ε1, ε2 are four positive constants to be determined in the following
lemma.



3310 XIANG-SHENG WANG, HAIYAN WANG AND JIANHONG WU

Lemma 3.3. Given sufficiently large M1 > 0, M2 > 0 and sufficiently small ε1 > 0,
ε2 > 0, we have

− βI+ ≥ −d1S′′− + cS′− (36)

for x ≤ x1 := −ε−11 lnM1, and

βS−I−/(S− + I−)− γI− ≥ −d2I ′′− + cI ′− (37)

for x ≤ x2 := −ε−12 lnM2.

Proof. In view of (33) and (34), the first inequality (36) is the same as

−βeλ0x ≥ S−∞eε1x(d1M1ε
2
1 − cM1ε1)

for all x ≤ x1 := −ε−11 lnM1. The above inequality can be written as

S−∞M1ε1(c− d1ε1) ≥ βe(λ0−ε1)x.

Note that x ≤ x1 := −ε−11 lnM1. It suffices to prove

S−∞M1ε1(c− d1ε1) ≥ βe−ε
−1
1 (λ0−ε1) lnM1 ,

which is obviously true if we choose M1 = 1/ε1 and let ε1 > 0 be sufficiently small.
Now we intend to prove the second inequality (37) for x < x2 := −ε−12 lnM2, which,
by subtracting both side by (β − γ)I, is the same as

−βI2−/(S− + I−) ≥ −d2I ′′− + cI ′− − (β − γ)I− = −M2f(λ0 + ε2)e(λ0+ε2)x,

where f is defined in (13) with λ0 as its smaller root. We first choose a sufficiently
small ε2 ∈ (0, λ0) such that f(λ0 + ε2) > 0. Then, we assume M2 is sufficiently
large that x2 < x1 holds. In view of (33) and (35), the above inequality can be
written as

− βe2λ0x(1−M2e
ε2x)2

S−∞(1−M1eε1x) + eλ0x(1−M2eε2x)
≥ −M2f(λ0 + ε2)e(λ0+ε2)x,

which is equivalent to

M2f(λ0 + ε2)[S−∞(1−M1e
ε1x) + eλ0x(1−M2e

ε2x)] ≥ βe(λ0−ε2)x(1−M2e
ε2x)2.

Note that x ≤ x2 := −ε−12 lnM2, we only need to prove

M2f(λ0 + ε2)S−∞(1−M1M
−ε1/ε2
2 ) ≥ βM−(λ0−ε2)/ε2

2 ,

which is true for large M2 because as M2 →∞, the left-hand side tends to infinity
and the right-hand side vanishes (recall that 0 < ε2 < λ0). This ends the proof of
our lemma.

With the aid of the super-solutions and sub-solutions, we are now ready to define
a convex cone Γ as

Γ := {(S, I) ∈ Bµ(R,R2) : S− ≤ S ≤ S+ & I− ≤ I ≤ I+}. (38)

Since µ > λ0 > 0, it is easily seen that Γ is uniformly bounded with respect to the
norm | · |µ defined in (29). The following lemma shows that this cone is invariant
under the map F = (F1, F2) defined in (30) and (31).

Lemma 3.4. The operator F = (F1, F2) maps Γ into Γ, namely, for any (S, I) ∈
Bµ(R,R2) such that S− ≤ S ≤ S+ and I− ≤ I ≤ I+, we have

S− ≤ F1(S, I) ≤ S+

and
I− ≤ F2(S, I) ≤ I+.
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Proof. Since α1S − βSI/(S + I) ≤ α1S+ = ∆1S+; see the definition of ∆1 in (18),
we obtain from (21) in Lemma 3.1 and (30) that

F1(S, I) ≤ ∆−11 (∆1S+) = S+.

By (36) in Lemma 3.3, we have for x ≤ x1,

α1S − βSI/(S + I) ≥ α1S− − βI+ ≥ α1S− − d1S′′− + cS′− = ∆1S−.

When x ≥ x1, it follows from α1 > β (recalling the choice of α1 in the paragraph
after (16)) and S−(x) = 0 that

α1S − βSI/(S + I) ≥ α1S − βS ≥ 0 = ∆1S−.

Coupling the above two inequalities and making use of (23) in Lemma 3.2 yield

F1(S, I) ≥ ∆−11 (∆1S−) = S−.

Since α2 > γ (by the choice of α2) and λ0 is the root of f defined in (13), we have

α2I + βSI/(S + I)− γI ≤ α2I+ + βI+ − γI+ = α2I+ − d2I ′′+ + cI ′+ = ∆2I+.

In view of (21) in Lemma 3.1, we obtain from the above inequality that

F2(S, I) ≤ ∆−12 (∆2I+) = I+.

By (37) in Lemma 3.3 and monotonicity of βSI/(S + I) with respect to both
variables S and I, we obtain

α2I +
βSI

S + I
− γI ≥ α2I− +

βS−I−
S− + I−

− γI− ≥ α2I− − d2I ′′− + cI ′− = ∆2I−

for x ≤ x2. When x ≥ x2, it is readily seen from α2 > γ and I−(x) = 0 that

α2I + βSI/(S + I)− γI ≥ α2I − γI ≥ 0 = ∆2I−.

A combination of the above two inequalities and (23) in Lemma 3.2 yields

F2(S, I) ≥ ∆−12 (∆2I−) ≥ I−.
This ends our proof of the lemma.

3.3. Continuity and compactness. Before applying Schauder fixed point theo-
rem, we should verify F is continuous and compact on Γ.

Lemma 3.5. The map F = (F1, F2) : Γ→ Γ defined in (30) and (31) is continuous
and compact with respect to the norm | · |µ defined in (29).

Proof. For any (S1, I1) ∈ Γ and (S2, I2) ∈ Γ, since

| βS1I1
S1 + I1

− βS2I2
S2 + I2

| = β| (S1 − S2)I1I2 + S1S2(I1 − I2)

(S1 + I1)(S2 + I2)
| ≤ β(|S1 − S2|+ |I1 − I2|),

we have

|(α1S1 −
βS1I1
S1 + I1

)− (α1S2 −
βS2I2
S2 + I2

)| ≤ (α1 + β)(|S1 − S2|+ |I1 − I2|).

Consequently, it follows from the definition (30) that

|F1(S1, I1)(x)− F1(S2, I2)(x)|e−µ|x| ≤ α1 + β

ρ1
(|S1 − S2|µ + |I1 − I2|µ)C(x),

where

C(x) := e−µ|x|[

∫ x

−∞
eλ

−
1 (x−y)+µ|y|dy +

∫ ∞
x

eλ
+
1 (x−y)+µ|y|dy].
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To prove the continuity of F1, it suffices to prove C(x) is uniformly bounded for
x ∈ R. Since λ−1 < −µ < µ < λ+1 , it can be obtained from L’Hôpital’s rule that

C(−∞) =
1

µ+ λ+1
− 1

µ+ λ−1
and

C(∞) =
1

λ+1 − µ
+

1

µ− λ−1
.

Hence, we conclude that C is uniformly bounded on R and consequently, F1 is
continuous with respect to the norm | · |µ. Similarly, we can show that F2 is also
continuous with respect to the norm | · |µ. To prove the compactness of F , we
shall make use of Arzela-Ascoli theorem and a standard diagonal process. Let
Ik := [−k, k] with k ∈ N be a compact interval on R and temporarily we regard Γ
as a bounded subset of C(Ik,R2) equipped with the maximum norm. Since F maps
Γ into Γ, it is obvious that F is uniformly bounded. We will use the following two
inequalities to show that F is equi-continuous. Namely, from the definition of Fi in
(30-31) and the definition of ∆−1i in (19) we have for any (S, I) ∈ Γ,

|[F1(S, I)]′(x)| ≤ −λ−1 α1S−∞
ρ1

∫ x

−∞
eλ

−
1 (x−y)dy +

λ+1 α1S−∞
ρ1

∫ ∞
x

eλ
+
1 (x−y)dy

=
2α1S−∞

ρ1
,

and

|[F2(S, I)]′(x)| ≤ −λ−2 (α2 + β − γ)

ρ2

∫ x

−∞
eλ

−
2 (x−y)+λ0ydy

+
λ+2 (α2 + β − γ)

ρ2

∫ ∞
x

eλ
+
2 (x−y)+λ0ydy

=
(α2 + β − γ)eλ0x

ρ2
(
−λ−2

λ0 − λ−2
+

λ+2
λ+2 − λ0

)

=
cλ0 + 2α2

ρ2
eλ0x.

Here in the last step we have made use of the facts that λ0 defined in (14) is a root of
f in (13) and λ±2 defined in (16) are the roots of f2 in (24). Let {un} be a sequence
of Γ, which can be also viewed as a bounded subset of C(Ik) with Ik := [−k, k].
Since F is uniformly bounded and equi-continuous, by the Arzela-Ascoli theorem
and the standard diagonal process, we can extract a subsequence {unk

} such that
vnk

:= Funk
converges in C(Ik) for any k ∈ N. Let v be the limit of vnk

. It is
readily seen that v ∈ C(R,R2). Furthermore, since F (Γ) ⊂ Γ by Lemma 3.4 and
Γ is closed, it follows that v ∈ Γ. Now we come back to the norm | · |µ defined in
(29). Note that µ > λ0 > 0, it follows that ‖I+‖µ, the norm of I+ defined in (34),
is bounded. Indeed, Γ is uniformly bounded with respect to the norm | · |µ. Hence,
the norm ‖vnk

− v‖µ is uniformly bounded for all k ∈ N. Given any ε > 0, we can
find an integer M > 0 independent of vnk

such that

e−µ|x||vnk
(x)− v(x)| < ε

for any |x| > M and k ∈ N. Since vnk
converges to v on the compact interval

[−M,M ] with respect to the maximum norm, there exists K ∈ N such that

e−µ|x||vnk
(x)− v(x)| < ε
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for any |x| ≤ M and k > K. The above two inequalities imply that vnk
converges

to v with respect to the norm | · |µ. This proves the compactness of the map F .

3.4. Existence proof. In this subsection, we give the proof of the first part in
the statement of Theorem 2.1. Firstly, since F is continuous and compact on Γ by
Lemma 3.4 and Lemma 3.5, it follows from the Schauder fixed point theorem that
F has a fixed point (S, I) ∈ Γ such that

S = F1(S, I) = ∆−11 [α1S − βSI/(S + I)]; (39)

I = F2(S, I) = ∆−12 [α2I + βSI/(S + I)− γI]. (40)

Since S, I ∈ C−µ,µ(R) and λ−i < −µ < µ < λ+i for any i = 1, 2, it is readily seen
from (22) in Lemma 3.1 that

∆1S = α1S − βSI/(S + I),

∆2I = α2I + βSI/(S + I)− γI.
Recalling the definition of ∆i (with i = 1, 2) in (18), we conclude that (S, I) satisfy
the equations (10) and (11). For the sake of convenience, we repeat and relabel
them as

cS′ = d1S
′′ − βSI/(S + I); (41)

cI ′ = d2I
′′ + βSI/(S + I)− γI. (42)

Next, we will verify the boundary conditions (9). Since S− ≤ S ≤ S+ and I− ≤
I ≤ I+, we obtain from the definitions of S± and I± in (32-35) and the squeeze
theorem that S(x) → S−∞ and I(x) ∼ eλ0x as x → −∞. Furthermore, in view of
the integral representation of first derivative

(∆−1i h)′(x) =
λ−i
ρi

∫ x

−∞
eλ

−
i (x−y)h(y)dy +

λ+i
ρi

∫ ∞
x

eλ
+
i (x−y)h(y)dy

for any h ∈ C−µ,µ(R), we obtain from (39), (40) and L’Hôpital’s rule that S′(x)→ 0
and I ′(x) → 0 as x → −∞. Finally, from (41) and (42), it follows that the second
derivatives S′′ and I ′′ also vanish at −∞. We list the asymptotic behavior of S and
I below. As x→ −∞,

S(x)→ S−∞, I(x) ∼ eλ0x, S′(x)→ 0, I ′(x)→ 0, S′′(x)→ 0, I ′′(x)→ 0. (43)

Now we investigate asymptotic behavior of S and I as x → ∞. An integration of
(41) from −∞ to x gives

d1S
′(x) = c[S(x)− S−∞] +

∫ x

−∞

βS(y)I(y)

S(y) + I(y)
dy.

Since S(x) is uniformly bounded, the integral on the right-hand side should be
uniformly bounded; otherwise S′(x) → ∞ as x → ∞, which implies S(x) → ∞ as
x → ∞, a contradiction. Thus, we obtain that βSI/(S + I) is integrable on R,
which together with the above equality yields S′ is uniformly bounded on R. Note
that (41) implies

(e−cx/d1S′)′ = e−cx/d1(S′′ − cS′/d1) = e−cx/d1
βSI

d1(S + I)
.

Integrating the above equality from x to infinity gives

e−cx/d1S′(x) = −
∫ ∞
x

e−cy/d1
βS(y)I(y)

d1[S(y) + I(y)]
dy.
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Hence, S is non-increasing. Furthermore, since S and I are non-trivial; see (43),
the integral on the right-hand side of the above equality can not be identically zero,
which implies S′ is non-trivial and S(∞) < S(−∞). We are now ready to study
asymptotic behavior of I(x) as x→∞. From (42) we have

I(x) =
1

ρ

∫ x

−∞
eλ

−(x−y) βS(y)I(y)

S(y) + I(y)
dy +

1

ρ

∫ ∞
x

eλ
+(x−y) βS(y)I(y)

S(y) + I(y)
dy, (44)

where

λ± :=
c±

√
c2 + 4d2γ

2d2
and

ρ := d2(λ+ − λ−) =
√
c2 + 4d2γ.

Remark that λ± are the two roots of the characteristic equation

−d2λ2 + cλ+ γ = 0.

It is readily seen that λ− < 0 < λ+. We would also like to mention that the integral
in (44) is well defined because of the estimate βSI/(S+ I) ≤ βS−∞ and Lebesgue’s
dominated convergence theorem. Since βSI/(S + I) is integrable on R, it follows
from the integral equation (44) and Fubini’s theorem that I is also integral on R,
and ∫ ∞

−∞
I(x)dx =

1

γ

∫ ∞
−∞

βS(x)I(x)

S(x) + I(x)
dx. (45)

Furthermore, since

I ′(x) =
λ−

ρ

∫ x

−∞
eλ

−(x−y) βS(y)I(y)

S(y) + I(y)
dy +

λ+

ρ

∫ ∞
x

eλ
+(x−y) βS(y)I(y)

S(y) + I(y)
dy,

we have from λ− < 0 < λ+, βSI/(S + I) ≤ βI and ρ = d2(λ+ − λ−) that

|I ′(x)| ≤ β

d2

∫ ∞
−∞

I(x)dx.

Since I ′ is uniformly bounded and I ≥ 0 is integrable on R, it is easily seen that
I(x) → 0 as x → ∞; otherwise, we can find a number ε > 0, a sequence xn → ∞
and a number δ > 0 (since I ′ is uniformly bounded) such that I(x) > ε for all
|x − xn| < δ, which contradicts the integrability of I on R. Integrating (42) on
the real line, it then follows from (43) and (45) that I ′(x) → 0 as x → ∞ (noting
that this can be also obtained from the integral representation of I ′ in the last
two equation above by L’Hôpital’s rule). Again, from (42) we obtain I ′′(x)→ 0 as
x→∞. Since βSI/(S+I) is integrable on the real line, it follows from (41) and (43)
that S′ is uniformly bounded, which in turn implies S′′ is also uniformly bounded.
Since S′ ≤ 0 is integrable on R, it can be proved that S′(x) → 0 as x → ∞. This,
together with (41) gives S′′(x)→ 0 as x→∞. We list the asymptotic behavior of
S and I below. As x→∞,

S(x)→ S∞ < S−∞, I(x)→ 0, S′(x)→ 0, I ′(x)→ 0, S′′(x)→ 0, I ′′(x)→ 0.
(46)

Moreover, an integration of (41) on the real line yields∫ ∞
−∞

βS(x)I(x)

S(x) + I(x)
dx = c[S(−∞)− S(∞)]. (47)
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Finally, we intend to prove the inequality I(x) ≤ S(−∞) − S(∞) for all x ∈ R.
Since I(x) ∼ eλ0x as x→ −∞ and I(x)→ 0 as x→∞, we can define

J(x) := I(x) +
γ

c

∫ x

−∞
I(y)dy +

γ

c

∫ ∞
x

ec/d2(x−y)I(y)dy. (48)

It follows from (43), (45), (46), (47) and L’Hôpital’s rule that

lim
x→−∞

J(x) = 0, lim
x→∞

J(x) =
γ

c

∫ ∞
−∞

I(x)dx = S(−∞)− S(∞).

Similarly, we obtain by differentiating (48) once, the asymptotic formulas (43) and
(46), and L’Hôpital’s rule that

J ′(x) = I ′(x) +
γ

d2

∫ ∞
x

ec/d2(x−y)I(y)dy

and

lim
x→−∞

J ′(x) = 0, lim
x→∞

J ′(x) = 0.

Furthermore, By differentiating (48) twice, it is readily seen from the differential
equation for I in (42) that

−d2J ′′ + cJ ′ = −d2I ′′ + cI ′ + γI = βSI/(S + I).

An integration of the above equation from x to ∞ gives

J ′(x) =
1

d2

∫ ∞
x

ec/d2(x−y)
βS(y)I(y)

S(y) + I(y)
dy.

Here we have used the fact that J ′(∞) = 0. Since J(∞) = S(−∞) − S(∞) by
the asymptotic formula obtained from the equation (48), we obtain from the above
equality that J(x) ≤ S(−∞)−S(∞) for all x ∈ R. Recall I(x) ≤ J(x) by definition
(48), it follows that I(x) ≤ S(−∞)−S(∞) for all x ∈ R. This ends the proof of all
statements in the first half of Theorem 2.1.

4. Non-existence. We repeat and relabel the differential equations (10) and (11)
and the boundary conditions (9) here.

cS′ = d1S
′′ − βSI/(S + I); (49)

cI ′ = d2I
′′ + βSI/(S + I)− γI. (50)

The boundary conditions subjected to the system are given by

S(−∞) = S−∞, S(∞) < S−∞, I(±∞) = 0. (51)

It is easily seen from (50) and (51) that I satisfies the integral equation (44). For
the sake of convenience, we rewrite it as

I(x) =
1

ρ

∫ x

−∞
eλ

−(x−y) βS(y)I(y)

S(y) + I(y)
dy +

1

ρ

∫ ∞
x

eλ
+(x−y) βS(y)I(y)

S(y) + I(y)
dy, (52)

where

λ± :=
c±

√
c2 + 4d2γ

2d2
and

ρ := d2(λ+ − λ−) =
√
c2 + 4d2γ.

Remark that λ± are the two roots of the characteristic equation

−d2λ2 + cλ+ γ = 0.
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It is readily seen that λ− < 0 < λ+. Note that the integral in (52) is well defined
because βSI/(S + I) vanishes as infinity; see (51). By (52), the derivative of I has
the following integral representation:

I ′(x) =
λ−

ρ

∫ x

−∞
eλ

−(x−y) βS(y)I(y)

S(y) + I(y)
dy +

λ+

ρ

∫ ∞
x

eλ
+(x−y) βS(y)I(y)

S(y) + I(y)
dy.

An application of L’Hôpital’s rule and (51) to the above equation yields I ′(±∞) = 0.
Applying this and (51) to (50) gives I ′′(±∞) = 0. We list the asymptotic behavior
of I as below.

I(±∞) = 0, I ′(±∞) = 0, I ′′(±∞) = 0. (53)

4.1. The case R0 > 1 and c < c∗. We prove by contradiction that if R0 > 1
and c < c∗, then there does not exist a non-trivial and non-negative traveling wave
solution pair satisfying the boundary conditions (9). Let (S, I) be the solution to
(10) and (11). Since βS/(S + I)→ β as x→ −∞, there exists x̄ such that

βS/(S + I)− γ > δ := (β − γ)/2 > 0

for all x < x̄. Applying this to (50) yields

cI ′ − d2I ′′ > δI ≥ 0 (54)

for all x < x̄. Since cI ′ − d2I ′′ is integrable at −∞ by (53), Lebesgue’s dominated
convergence theorem and the above inequality implies that I is also integrable at
−∞. Define

K(x) :=

∫ x

−∞
I(y)dy.

An integration of (54) yields

δK(x) ≤ cI(x)− d2I ′

for all x < x̄. A further integration together with non-negativeness of I gives∫ x

−∞
K(y)dy ≤ c/δK(x)

for all x < x̄. Since K is non-decreasing, we have

ηK(x− η) ≤
∫ x

η

K(y)dy ≤ c/δK(x)

for all η > 0 and all x < x̄. Hence, there exists a large η > 0 such that

K(x− η) < K(x)/2

for all x < x̄. Denote µ0 := (ln 2)/η > 0 and let

L(x) := K(x)e−µ0x.

It follows that

L(x− η) < L(x)

for all x < x̄, which implies L(x) = K(x)e−µ0x is bounded as x → −∞. Applying
(53) to (54) yields

cI ′ > d2I
′′, cI > d2I

′, cK > d2I.

Hence, we conclude that I(x)e−µ0x, I ′(x)e−µ0x and I ′′(x)e−µ0x are all bounded
as x → −∞. In view of (53), they are actually uniformly bounded on the whole
real line. Moreover, since I/(S + I) ≤ 1 and S(x) + I(x) → S−∞ as x → −∞,
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e−µ0xI(x)/[S(x) + I(x)] is also uniformly bounded on the real line. Now, we can
introduce two-side Laplace transform on the equation (50):

f(µ)

∫ ∞
−∞

e−µxI(x)dx = −
∫ ∞
−∞

e−µx
βI(x)2

S(x) + I(x)
dx,

where f is the characteristic function defined in (13) and we have made use of
the fact βSI/(S + I) = βI − βI2/(S + I). The integrals on both side of the
above equality are well defined for any µ ∈ (0, µ0). Since e−µ0xI(x)/[S(x) + I(x)]
is uniformly bounded on the real line and f(µ) is always negative for all µ ∈ R
(noting that c < c∗ = 2

√
4d2(β − γ)), the two Laplace integrals can be analytically

continued to the whole right half plane; otherwise the integral on the left has a
singularity at µ = µ∗ ∈ R and it is analytic for all µ < µ∗ (cf. [12, 62]). However,
since e−µ0xI(x)/[S(x) + I(x)] is uniformly bounded, the integral on the right is
actually analytic for all µ < µ∗ + µ0, a contradiction. Thus, the above equality
holds for all µ > 0 and can be rewritten as∫ ∞

−∞
e−µxI(x)[f(µ) +

βI(x)

S(x) + I(x)
]dx = 0.

This again leads to a contradiction because f(µ) + βI(x)
S(x)+I(x) → −∞ as µ → ∞,

but e−µxI(x) is always non-negative for all µ ∈ R; see [12, 62] for early ideas in
different settings. Finally, we conclude that if R0 > 1 and c < c∗ then there does not
exist a non-trivial and non-negative traveling wave solutions satisfying the boundary
conditions (9).

4.2. The case R0 ≤ 1. When R0 = β/γ ≤ 1, then βS(x)I(x)/[S(x)+I(x)] ≤ γI(x)
for all x ∈ R. From (50) we have

(e−c/d2xI ′)′ = − 1

d2
e−c/d2x[

βS(x)I(x)

S(x) + I(x)
− γI(x)] ≥ 0,

which implies that the function e−c/d2xI ′(x) is non-decreasing. Since I ′(∞) = 0 by
(53) and e−c/d2x → 0 as x→∞, it follows that I ′(x) ≤ 0 for all x ∈ R. Again from
I(±∞) = 0 in (53) we obtain I(x) = 0 for all x ∈ R, a contradiction. Therefore, we
have proved that if R0 ≤ 1, then there does not exist a non-trivial and non-negative
traveling wave solution satisfying the boundary conditions (9).

5. Conclusion and discussion. In this paper, we used a special type of dis-
ease outbreak model to show how to obtain the existence and non-existence of
non-trivial traveling wave solutions for general predator-prey systems with spatial
random movements characterized by the usual diffusion operator.

For the model under consideration, the traveling wave describes the disease prop-
agation into the susceptible population from an initial disease-free equilibrium to
the final, also disease-free, equilibrium. We proved that whether there is such a
traveling wave is totally determined by the kinetic dynamics, and more specifically
by the basic reproduction number R0 := β/γ calculated from the corresponding
ordinary differential system at the initial disease-free equilibrium. We further es-
tablished that the minimal wave speed c∗ = 2

√
d2(β − γ) is determined by the

mobility of the infected individuals and is linearly determined. Such a result for lin-
ear determinacy has been established for reaction-diffusion equations with kinetics
given by a cooperative vector field for more general reaction-diffusion systems ad-
mitting certain comparison principles. Extensions to reaction-diffusion systems with
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certain competitive kinetics have been obtained by using the standard ordering re-
lation with respect to competitive systems and the recent work [21] shows that these
extensions may remain valid for much more general competitive reaction-diffusion
systems with interspecific retarded competition (for which the kinetic system, a
delay differential system, does not generate monotone dynamical systems in infinite
dimensional phase spaces). Our work here indicated similar extensions can also be
obtained for certain predator-prey systems. As such, we have a relatively complete
picture about the existence of traveling waves for three building blocks (cooperation,
competition and predation) of more complex biological dynamics.

5.1. Open problems. Note that we have established that c∗ is indeed the minimal
wave speed, but it remains to show that c∗ coincides with the asymptotic speed of
propagation. The pioneering work of Fisher [22] obtained such a result on the
asymptotic speed of propagation for a logistic-based reaction-diffusion model for
the spread of an advantageous gene in a spatially extended population, and this
work has been extended to the most general format involving order-preserving and
monotone dynamical systems. It remains to be shown that such a result is valid
for many predator-prey systems, and in particular for epidemic models. Should we
verify that c∗ is indeed the asymptotic speed of propagation for the spatial epidemic
model, we can conclude that for a given initial condition corresponding to a spatially
localized disease, the epidemic model solution will evolve into a wave of infective
individuals moving into the susceptible region with the constant velocity given by
c∗.

It would be interesting to know the value of S(∞) = S∞ for the traveling wave
solutions which gives the number of susceptible individuals that remain after the
infective wave has passed. For the system (1-2) with mass action incidence, it can
be shown that

S(∞)− S(−∞) =
γ

β
ln

S(∞)

S(−∞)

providing the diffusion d1 for susceptible individuals is zero; see [30] or [35]. The
above formula coincides with the final size relation for the corresponding ordinary
differential system without diffusion (see, for example, [8]). For the general system
(1-2) with nonzero diffusion terms, however, it seems impossible to obtain a simple
formula connecting S(−∞) and S(∞); see a discussion of this problem in [35].
The situation could become easier for the considered system (7-8) with standard
incidence function where the recovered individuals are removed from the disease
infection process. In this case, S should be considered as the size of the susceptible
populations who will be eventually exposed to the disease and thus become infected.
As such, for the kinetic ODE model, we do have S(∞) = 0; see [61].

The existence of traveling waves in the limit case c = c∗ may be established using
a standard limiting argument, such as the one provided in [21], when R0 := β/γ > 1.
Here we sketch a somehow different version of the argument. First, choose µ which
lies in the interval of λ0(c∗) and −(λ−1 (c∗) ∨ λ−2 (c∗)), recalling the definition of
λ0 and λ±i in (14) and (16). For each c ∈ (c∗, c∗ + δ) with δ given and small
enough, we can find a traveling wave solution pair (Sc, Ic) ∈ Γ(c) ⊂ Bµ(R,R2)
such that F (Sc, Ic) = (Sc, Ic); see the definition of the functional space Bµ(R,R2)
in (28), the map F in (30)-(31), and the convex cone Γ in (38). We define a new
cone Γ∗ ⊂ Bµ(R,R2) consists of the function pairs bounded by the following four
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functions:

S∗+(x) := S−∞,

S∗−(x) := S−∞(1−M∗1 eε
∗
1x) ∨ 0,

I∗+(x) :=

{
eλ0(c

∗)x, x ≥ 0,

eλ0(c
∗+δ)x, x ≤ 0,

I∗−(x) := 0,

where M∗1 and ε∗1 are constructed such that (36) is satisfied for c = c∗; see the
proof in Lemma 3.3. Since λ0(c) is a decreasing function of c and (S∗−)′ is non-
positive, it is readily seen that (36) is satisfied for all c ∈ [c∗, c∗ + δ]. Moreover,
Γ∗ constructed above contains the union ∪c∗<c≤c+δΓ(c). It is also noted that Γ∗

is uniformly bounded in Bµ(R,R2) with respect to the norm | · |µ defined in (29).
Thus, we could find a subsequence, still denoted by (Sc, Ic), which converges to
(S, I) in Bµ(R,R2). Since −λ−i (c∗) < −µ < µ < λ+i (c) from our choice of µ, we
can take limit c → c∗ in the equations F (Sc, Ic) = (Sc, Ic) and apply Lebesgue’s
dominant theorem to obtain F ∗(S, I) = (S, I), where the star denotes the map F
defined in (30)-(31) with c = c∗, namely, the second-order differential operators
∆∗i h = −dih′′+ c∗h′+αih. Therefore, we have proved that (S, I) is a fixed point of
the map F ∗, and consequently, it is a traveling solution pair. A similar argument
as in the proof of existence theorem shows that this fixed point actually satisfies
the equality (12) and I(±∞) = 0. It seems difficult to show the limit is non-trivial
because we have infinity many equilibria and the standard argument as in [21] fails.
However, should we find a nontrivial uniform lower bound for the peak value of Ic
for any c ∈ (c∗, c∗+ δ], we can choose Ic(0) to be uniformly bounded by translation
and conclude that the limit is nontrivial (i.e., I(0) > 0). It is worth noting that the
infected number at peak time for the corresponding ordinary differential system is

Ipeak = S−∞R
−R0/(R0−1)
0 (R0 − 1),

where S−∞ could also be viewed as the final size and R0 := β/γ is the basic repro-
duction number. It would be interesting to determine peak value of the traveling
wave solutions for the reaction-diffusion system.

5.2. A brief survey of the literature. We conclude this paper with a short
survey on the traveling waves of epidemiological models, so we can indicate how our
results here can be further generalized. We refer to [48, 50, 51] and references therein
for more comprehensive reviews on spatial dynamics in epidemiological models.
When the incidence function in the Kermack–McKendrick model is replaced by a
general function f(S)I, Kennedy and Aris [35] conducted some linear analysis for
the special case with zero diffusion rate of susceptible individuals, as well as some
numerical simulations for the general case. Using phase plane analysis, the singular
perturbation method and the center manifold theory, Smith and Zhao [55] proved
the existence of traveling wave solutions when the diffusive rate for the susceptible
individuals is small. For an arbitrary diffusion coefficient, Huang [29] established
an existence result by using shooting method and a Lyapunov function.

In a discussion attached to the paper of Bartlett [6], Kendall [33] proposed a
generalized Kermack–McKendrick model with the incidence function replaced by a
non-local integral. In [34], Kendall approximated the integral by a diffusion term
and provided a threshold condition for the existence of traveling wave solutions.
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Mollison [42] then studied the special case when the weight in the Kendall’s inte-
gral is an exponential function and the remove rate γ is zero. The general case
was subsequently fully investigated by Atkinson and Reuter [5], Brown and Carr
[9], and Diekmann [13]. We refer to Mollison [43] for an excellent survey for the
progress in traveling waves of the Kendall’s model until 1977. Non-local interaction
arises naturally in epidemic models when age structures are considered (cf. [23]).
Using the method of upper and lower solutions, Ducrot [16] proved the existence of
traveling wave solutions to the following scalar age-structure model:

∂tu+ ∂au = ∆u+ u(1− u)π(a),

where π(a) = exp[
∫ a
0
δ(a′)da′] with δ being age-dependent death rate. Later, Ducrot

and Magal [17] studied the traveling wave solutions to a more general epidemic
model with age-of-infection structure. In [52], Ruan and Xiao proved existence of
traveling wave solutions to the host-vector disease model with specific exponential
kernels (i.e., G(t) = c2te−ct or G(t) = ce−ct):

∂tu = d∂xxu− au+ b(1− u)

∫ t

−∞
G(t− s)u(s, x)ds.

See also [60] for a result with the general kernel, and Pan [47] for the case with
non-local diffusion. Recently, Wang and Wu [62] obtained the existence (and
non-existence) of traveling wave solutions for a general class of diffusive Kermack–
McKendrick models with nonlocal and delayed disease transmission and Gan et al.
[24] and Yang et al. [69] both considered the case with birth and death processes
incorporated, using the idea of partial quasi-monotonicity developed in Huang and
Zou [28]. We remark that in the work of [63], the Schauder fixed point theorem
was used to obtain the existence of wave solutions for models with stage struc-
ture. We believe our current work can be extended to general epidemic models
with structured populations.

Much has been done for the endemic rather than outbreak Kermack–McKendrick
model that involves demography. For instance, Abual-Rub [3] studied traveling
waves of diffusive Kermack–McKendrick model with logistic birth, constant vacci-
nation and no diffusion on susceptible. Djebali [15] proved an existence theorem of
traveling wave solutions to a diffusive Kermack–McKendrick model with external
sources.

Wave solutions for epidemic models involving animal hosts and vectors have
been intensively studied in the past. For the spread of rabies: in [31], Källén et al.
formulated a simple model for the spatial spread and control of rabies; Murray et
al. [46] studied traveling waves of such models where the rabid foxes are assumed
to wonder randomly; Bosch et al. [7] calculated numerically traveling velocity of
rabies; and Murray and Seward [45] studied the spatial speed of rabies in foxes with
immunity. Other studies include [25] for measles epidemics; [11] for Lyme disease;
[56] and [41] for dengue; and [1] and [2] for Hantavirus infection in deer mice.

Capasso et al. [10] proposed a simple cholera epidemic model as follows

∂tu1 = d1∆u1 − a11u1 + a12u2,

∂tu2 = d2∆u2 − a22u2 + g(u1).

When d2 = 0, the space dimension is one and g is monotone, Zhao and Wang
[72] established the existence of Fisher type traveling wave solutions by using the
method of upper and lower solutions. By applying phase plane techniques and spec-
trum analysis, Xu and Zhao [67] established existence, uniqueness and exponential
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stability of bistable monotone traveling waves. They later [68] obtained existence
threshold of traveling wave solutions by applying the theory of monotone traveling
waves developed by Thieme and Zhao [58]. Their results were then extended by
Wu and Liu [65] to the non-monotone case by constructing two auxiliary monotone
equations. If latency is considered and takes a special form, namely, g(u) replaced
by pu(t − τ)e−au(t−τ), Yang et al. [70] proved the stability of traveling fronts by
using weighted energy method and the comparison principle. When there are two
distinct human habitats without migration, Mukhopadhyay and Bhattacharyya [44]
established the existence of traveling wave solutions by constructing upper and lower
solutions. For the non-autonomous case (i.e., g depends also on time t), Liang et al.
[38] developed a theory of traveling wave based on some abstract results of Liang
and Zhao [39]. These abstract results were also used by Weng and Zhao [64] to
prove the existence of traveling waves to a multi-type SIS model, offering an answer
to an open problem presented by Rass and Radcliffe [48]. Later, Zhang and Zhao
[71] applied the abstract theory in [39] to obtain existence theorem of traveling wave
solutions to a spatial discrete SIS model.

It is interesting to note that it is not always the case that traveling wave solutions
exist for a large continuous set of wave speeds. Wylie et al. [66] provided an
example for which traveling waves connecting two stable equilibria can exist only
for a discrete set of wave speeds. It is also encouraging to note there has been
substantial progress towards numerical computations of traveling wave in epidemic
models: for example, in [36], Kuperman and Wio conducted some numerical analysis
on the traveling waves of epidemiological models with spatial dependence; Sazanov
et al. [53, 54] considered numerically traveling wave solutions for a one-dimensional
lattice of SIR model; Faddy and Slorach [20] provided bounds on the velocity of
traveling fronts for an epidemic model with spatial connected colonies; and Renshaw
[49] later derived some recurrence relationships between the coefficients of traveling
wave solutions which are quite useful for numerical calculations.
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