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It is well known that Michaelis—Menten kinetics is suitable for the response function in chemical reaction,
when the reaction rate does not increase indefinitely when an excess of resource is available. However, the
existing models for insulin therapies assume that the response function of insulin clearance is proportional
to the insulin concentration. In this paper, we propose a new model for insulin therapy for both type 1 and
type 2 diabetes mellitus, in which the insulin degradation rate assumes Michaelis—Menten kinetics. Our
analysis shows that it is possible to mimic pancreatic insulin secretion by exogenous insulin infusions, and
our numerical simulations provide clinical strategies for insulin-administration practices.
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1. Modelling the glucose-insulin feedback system

Diabetes mellitus is a disorder of the glucose—insulin endocrine metabolic regulatory system.
It is caused by the fact that either the pancreas does not produce enough insulin to consume
the glucose, or the insulin is not used efficiently by the cells to metabolize the glucose. The
diabetic population accounts for approximately 7% of the whole population in US, and the
health expense is huge (*132 billion US dollars annually, ADA, http://www.diabetes.org). Many
researchers have been attracted to the study of glucose—insulin regulatory system with an ultimate
goal of providing more efficient, effective, and economic insulin therapies for diabetics (e.g.,
[1,6-9,12,13,15,17,18,21,29,30,37,39,40,43,48,49]).

In the last two decades, several mathematical models have been proposed and studied with
the aim of understanding the system better, investigating possible pathways to diabetes melli-
tus, or providing more reasonable insulin administration practices ([4,5,10,13,14,25,27,28,33,35,
36,41,42,44,48,49] and references therein.) For example, recently, according to the mass con-
servation law, Li et al. [28] proposed a two-delay model for understanding the self-constrained
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regulatory mechanism of the system better. With the explicit delays, the model is more accurate
for depicting glucose—insulin endocrine metabolic dynamics. The model is given as follows.

G’ =G — L2(G®) — f3(G0) a1 (1) + fs(I (1 — 12))

, (1)
I'= fi(G(t — ) —di 1 (1),

where Gy, stands for the constant glucose exogenous infusion (enteral nutrition or constant infu-
sion), f>(G) stands for the insulin-independent glucose consumptions, f3(G) f4(I) stands for
the insulin-dependent glucose utilizations, f5(/) stands for the hepatic glucose production with
the delayed effect (1), f1(G) stands for the insulin secretion from the pancreas because of the
stimulations of elevated glucose concentration, t; reflects the time lag of the stimulation, and d;
is the insulin degradation rate.

However, the existing insulin therapy models are inadequate [13,14,48,49], either only type 1
diabetes insulin administration is considered [49], or some factor in the system is oversimplified.
For example, the insulin degradation rate is assumed to be proportional to insulin concentration
[28,45,48]. It is well known that in a chemical reaction, the change rate typically increases with
the increasing resource, but does not increase indefinitely when an excess of resource is available.
In the glucose—insulin metabolic system, the number of insulin receptors of each cell changes
vice versa with the circulating insulin concentration level. An increased insulin circulating level
reduces the number of insulin receptors per cell, and the decreased circulating level of insulin
triggers the number of receptors to increase. The number of receptors is increased during starvation
and decreased in obesity and acromegaly. But, the receptor affinity is decreased by excess gluco-
corticoids. The affinity of the receptor for the second insulin molecule is significantly lower than
for the first bound molecule. This may explain the negative cooperative interactions observed
during high insulin concentrations. That is, as the concentration of insulin increases and more
receptors become occupied, the affinity of the receptors for insulin decreases. Conversely, at low
insulin concentrations, positive cooperation has been recorded. In other words, the binding of
insulin to its receptor at low insulin concentrations seems to enhance the binding further [46].
Thus, it is more realistic to assume that the insulin degradation rate obeys Michaelis—Menten
kinetics given by

di1(1)
d+1@)°
where d; is the maximum insulin clearance rate and d, is the half-saturation value. The idea of
this paper is to propose an insulin therapy model suitable for both type 1 and type 2 diabetes
mellitus, and to incorporate the Michaelis—Menten response function as the insulin degradation
rate. The model is given by

G = Gu(t) — L(G®) — f(G®) fa(I () + f5(I(1)
di (1) @
dy +1(@)’

with initial conditions 7(0) > 0, G(0) > 0, and G(¢) = G(0) for t € [—11, 0], 71 > 0, where
a > 0 and B € [0, 1]. For type 1 diabetics, 8 = 0, as no insulin would be secreted from the
pancreas. For type 2 diabetics, 0 < 8 < 1 observing that some, although not enough, amount of
insulin can be secreted from pancreas [31]. The positive parameter « in Equation (2) describes
insulin-dosage adjustment, which could improve the control of glucose concentration of the sub-
jects. Furthermore, it has been revealed that the oscillatory insulin delivery with an ultradian
periodicity is more efficient in reducing blood glucose levels than constant insulin administration
[42]. In model 2, we assume that insulin injection /;, and glucose intake Gj, are positive periodic

I'=aliz(t) + BA(G(E — 1)) —
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functions with a common period, @ > 0. The common period is determined by the timing of meal
ingestion and by subcutaneous insulin administration on a period sufficiently large to imagine
both the glucose insulin mass administered eventually diffused in the IV compartment at the end
of the period. Since Equation (2) models the exogenous insulin administration for both types of
diabetes, the oscillations of insulin concentration and glucose concentration are resulted from the
forced terms with common period w; and the delay t; for insulin production is more significant
than the delayed effect of hepatic glucose production (7, in model (1)). So, for simplicity, this
delayed effect is neglected in Equation (2) for qualitative behaviour.
Throughout the paper, we assume the following conditions:

H1) G, Iin € C([0, 00), (0, 00)) are positive w-periodic functions.

(H2) fi(x), f2(x), f3(x), fa(x) € C'[0, 00) are positive for x > 0. f1(0) > 0, £2(0) = f3(0) = 0,
f4(0) > 0.

H3) fi(x), f5(x), f3(x), f4(x) are positive on (0;00).

(H4) fs € C'[0, 00) is positive on [0,00), f4(x) is negative on [0, 00).

(HS) There exist positive numbers b,, as, b3 such that, for 0 < x < oo,

0 < fox) < box

and

azx < f3(x) < bax.
(H6) dy > amaxe[0,0) fin(t) + B Max;cpo,00) f1(F).

Assumptions (H1)—(H6) are quite natural. Note that if f, takes the form in Equation (5), then
0 < 2(G) < (Up/CyV,)G. Thus, itis easy to see that conditions (H1)—(HS5) cover the model func-
tions in Equations (5)—(8) used in [25,27,41,44,48] for numerical simulations. Assumption (H6)
indicates that the maximum insulin clearance rate is larger than the addition of the maximum
insulin infusion and production rates. Physiologically, the shapes of the functions are important
instead of their forms [22] (Figure 1). The shapes of the functions are detailed in earlier studies
[22,25,28,41].

ENHANCED MODELING OF INSULIN THERAPIES

f;(x) fo(x)

(d) (e)
Figure 1. Shapes of functions fi(a), f2(b), f3(c), fa(d) and f5(e). Note: These figures are adapted from [28].
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2. Mathematical analysis

In this section, the positivity and boundedness of solutions of Equation (2) will be examined.
We will also state results for the existence of a positive solution of Equation (2) and its stability.
Detailed proofs of the existence and stability will be carried out in Appendices. Throughout this
section, we assume conditions (H1-H6) are true.

LeEMMA 2.1 Al solutions of Equation (2) exist fort > 0, and they are positive and bounded from
above.

Proof The solution for Equation (2) with the described initial conditions exist and is unique
[24]. Let (G(¢), 1(t)) be a solution of Equation (2) with initial conditions 7 (0) > 0, G(0) > 0,
and G(t) = G(0) for t € [—7y, 0]. If G(¢) is not positive, then r > 0, exists such that G(t) = 0.
Let o = inf{z : G(t) < 0}. Then, G(¢y) = 0 and G'(¢y) < 0. However,

G'(to) = Gul(to) + f5(I (t9)) > 0,

which is a contradiction. Therefore, G(¢) > 0 for # > 0. By the same argument, I (¢) is positive
forall t > 0.

Now we show the boundedness of (G (t), I(t)).

From Equation (2), we have

G'(t) < max Gin(1) —a3G(t)my + f5(0),
tel0,w

where my > 0 is the lower bound of f4(Z(¢)) on [0,00]. Therefore,

maxe(0,0)Gin(t) + f5(0)
aszmgy ’

G(1) < G(0)e~@mar for t > 0.

The boundedness also implies that G (¢) exists for all # > 0.
Now considering the second equation of (2), we have

di I

I't) <L — ,
® = dry +1

where L = oo maX,eo,q) fin(x) + B max,epo,00) f1(x) < 00, and d; — L > 0, according to (H6).
Now if I > (Ldy/(dy — L)) then I'(t) < 0. In fact, we can easily prove, by Lemma 2.2,

. Ld.
limsup I(t) < 3)
t—00 dl -
Thus, I (¢) is bounded and also implies that 7 (¢) exists for all # > 0. |

Let (I1(¢), G(¢)) be a solution of Equation (2). We define

G =limsupG(r), G = liminf G(t)
t—00 =00
and
[ =limsupI(r), I = liminfI(t)
t—00

—>00

Lemma 2.1 implies that G, G, I, I are all finite. The well-known fluctuation lemma is stated
below without proof. Its proof can be found in, e.g., Hirsch et al. [20].
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LEMMA 2.2 Let f:R — R be a differentiable function. If | =liminf,_ o f(t) <
limsup,_, ., f(t) = L, then there are sequences {t;} 1 0o, {sx} 1 00 such that for all k, f'(ty) =
f(s1) = 0, limgs o0 f(sx) =1 and limy—. o f(tx) = L.

LeEMMA 2.3 Equation (2) is uniformly persistent, i.e. solutions of Equation (2) are eventually
uniformly bounded from above and away from zero.

Proof We only need to show that G > 0 and [ > 0. By the fluctuation lemma, there exist a
sequence {#;} 1 oo, such that

G'#)=0, lim G@#)=G.
k— 00
Thus, the second equation of (2) gives, for all k,
0= G'(t) = Gu(ty) — [2(G(t)) — [H(Gt) fuI (1)) + fs(1 (1)),

and as f, is increasing and f5 is non-negative, we have

0> Gu(ty) — £2(G(t)) — [(G(#)) fallum),
where 1)y = maXx;e[o.00) I (#) > 0. Letting k — 1, we have

0= min Gin(t) = f2(G) ~ f5(G) falln).

If G = 0, we have
0> min G;,(t) >0,
re[0,00]

which is a contradiction. Thus, G > 0. It remains to show that / > 0. Again by the fluctuation
lemma, there exist a sequence {s;} 1 oo such that

I'(sp) =0, lim I(sp) =1.
k—o0
Thus, the second equation of (2) gives, for all k,

di1(sy)

0= I/(S;() = OlIin(S;() + lgfl(G(S;< - 1)) — m,
k

and as f; is non-negative, we have
0> o min {Ii,(¢)} — ﬂI(S’).
T tel0,w] d k
Letting k — oo, we have
d
0> in {fi, ()} — —1.
=z azg[l()l,lz})]{ in ()} b

If I =0, we have

0>« min {[;,(t)} > 0,
1€[0,w]

which is a contradiction. This completes the proof of the lemma. |
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To have a positive periodic solution, the left side of the second equation of (2) must change sign.
If the rates of insulin injection and insulin production, « /i, (¢) + Bf1(G(t — 1)), are too large,
then the rate of change of insulin, d//d¢, may be always positive and therefore Equation (2) does
not have a periodic solution. In the following existence theorem, we assume that o I;;, () + Bf1(x)
is small enough so that inequality Equation (16) in Appendix 1 holds.

THEOREM2.4  Ifmax;c(o,co]{e [in (1)} + maxXe(0,00) {B.f1 ()} is sufficiently small, then Equation (2)
has a positive periodic solution (G*, I'*).

Finally we state the stability result in the following theorem.

THEOREM 2.5 The periodic solution (G*, I’*) of Equation (2) is locally asymptotically stable if
conditions (18) and (19) in Appendix 2 are satisfied.

Precise mathematical expressions of conditions (18) and (19) are given in Appendix 2. Based on
the expressions of (18) and (19), and inequality Equation (3), if the maximal insulin clearance rate
d is large, the delay t; is small, then, as a lower bound of fy(t) = d\d»/(dy + 1 (t))(dy + I*(t)),
oy can be large so that ¢ >o0. Similarly, if f; and f3/ f4 are large, that is, the insulin utilizations
are more effective, then D > 0. These observations are in agreement with the study of Li and
Kuang [25].

The proof of Theorem 2.4 is based on the Krasnoselskii fixed point theorem (Lemma A.1), and
see Appendix 1 for details. The proof of Theorem 2.5 is based on a standard construction of a
Lyapunov functional and will be carried out in Appendix 2.

3. Applications in clinical insulin therapies

In this section, we will discuss an application of model (2) in clinical insulin therapies. The
simulations demonstrate that the new model (2) is suitable for the study of the effectiveness of
clinical insulin therapies. In particular, we will see that model (2) is more realistic. In a normal
subject, the liver releases glucose into the blood. This helps the body to maintain cells functioning
all 24 h. The pancreas responds by releasing a small but steady amount of insulin (basal) into the
bloodstream day and night in a pulsatile manner. After meals, a large amount of insulin (bolus)
is released enough to uptake the glucose produced when food is digested. The goal of intensive
insulin therapy is to mimic the natural pattern of insulin release from the pancreas so that plasma
glucose levels can be kept close to normal.

Currently, various insulin analogues are available for subcutaneous injection, for example,
rapid-acting insulin analogues (Lispro and Aspart), short-acting insulin analogues (buffered
regular insulin), intermediate-acting insulin analogues (Lente, NHP), and long-acting insulin
analogues (Glargine and Ultralente). Table 1 (adapted from [11]) lists the time needed for the
onset, peak, and duration of several types of insulin.

Our simulations are carried out with the same functions used in previous researches
([5,25,28,41,44]). These functions, f;;i = 1,2, 3,4, 5, take the following forms with experi-
mentally determined parameters given in Table 2 [41,44]. Model (2) utilizes the functions f} to
f5 in Equations (5)—(8) and the parameter values in Table 2 from [41,44], which are based on
experimental data. These experimental data were taken from normal subjects. With proper insulin
treatments, patients can maintain plasma glucose within a normal range, although hypoglycaemia
and hyperglycaemia can arise. Therefore, these functions and parameters can be used in the insulin
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Table 1. Pharmacokinetics of available insulin products [11].

Insulin Onset Peak Duration
Lispro 5-15min 30-90 min 3-5h
Aspart 10-20 min 1-3h 3-5h
Regular insulin 30-60 min 1-5h 6-10h
Buffered regular insulin 30-60 min 1-3h 8h
Lente 1-3h 6-14h 16-24h
NPH 1-2h 6-14h 16-24+h
Glargine 1.1h None 24h
Ultralente 4-6h 8-20h >24h

Table 2. Parameters of the functions in Equations (5)—(8).

Parameters Units Values
Ve 1 10
Uy mg-min~! 72
C mg-1~! 144
Cs mg-min~! 1000
Vy 1 3
Vi 1 11
t; min 100
R mU-min~! 210
C mg-1~! 2000
ap mg-17! 300
Up mg-min~! 40
Upn mg-min~! 940
B 1.77

Cy mU-1~! 80
Ry mg-min~! 180
a I-mU~! 0.29
Cs mU-17! 26
E l-min~! 0.2

Ve 1 10

therapy model (2) for diabetic patients.

Ji(G) = Ry /(1 +exp((Cy — G/ Vy)/a1)),

2(G) = Up(1 — exp(=G/(C2Vy))),

f3(G) = G/(C3Vy),

Jall) = U + (Un — Uo)/(1 + exp(=B In(1/C4(1/ Vi 4 1/(E1:))))),
fs(I) = Ry /(1 +exp@(l/V, — Cs))).

“4)
&)
(6)
(7
®)

The units of G and [ in the functions (5)—(8) are in milligrams and respectively. They are

converted to mgdl~! and uUml~! when plotting the figures.
Now, we consider model (2) with 7y = Smin, @ = 1, 8 = 0.3, d; = 150, and d, = 2300.

G' = Gu(1) — L(G®) — (G fuI (1) + fs(1(1))

1501 (z)

I'=Ea®) +031(G(r = 5) = 2355

®

If there is no insulin injection, or [;,(¢) = 0, the profiles of glucose and insulin of Equation (9)
is shown in Figure 2. We see that the blood glucose level is always above 120, which is considered
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Figure 2. (a) Glucose profile of (2) without insulin therapy. (b) Insulin profile of (2) without insulin therapy.

to be abnormal blood glucose level. Therefore, insulin injections are needed to bring the blood
glucose level down to normal.

As an example, to demonstrate how model (2) can be used in clinical insulin therapy strategies,
we select the combination of Lispro and Glargine to mimic the bolus insulin and basal insulin
infusion. For simplicity, we assume that Gi,(¢) and Ii, (¢) are periodic piecewise linear functions
defined by the following two expressions over a period of @ = 240 min. That is, we assume that
both the meal digestion and the diffusion of subcutaneous insulin injection are linearly dependent
on time. They can be extended to a periodic continuous function on [0, c0). Namely, a subject
consumes meal and is given insulin injection every 4 h. The maximum glucose intake was at
5mg/min attained at 15 min mark. The whole duration of the glucose intake lasted for 35 min.
Equation (10) is the glucose intake rate, Gi, (Figure 3).

5
0.25 4+ —t¢ 0<t<15
+ 5" <t <1,
Gin(1) = 1025 5& 15 <t <35 (10)
P s DS
0.25, 35 <t < 240.

We consider the combination of Glargine and Lispro insulins. The piecewise functions of
I; in Equation (11) and Iy, in Equation (12) mimic the insulin infusion rate if a patient
takes Lispro or Glargine. The rapid-acting insulin mimics the bolus ultradian insulin secretion
stimulated by the elevated glucose concentration level, while the long-acting insulin mimics
the basal pulsatile insulin secretion. It is clear that the common period for Gi,(¢) and I, (¢) is
o = 240 min.

N ispro

0.25, 0<t<15,
t—30

O.25+2<1+30 15), 15 <t <30,

Iinuspm(t) = - (11)

t —30

0254+2(1——+ )., 30=<t <120,
120 — 30

0.25, 120 <t < 240,

and
Iin(“urgine () =2. (12)
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Figure 3. (a) Glucose intake rate. (b) Insulin Lispro injection rate.
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Figure 4. Glucose and insulin profiles with the combination of Lispro and Glargine for Monod insulin-degradation
model (9) (a) Glucose profile of Equation (9). (b) Insulin profile of Equation (9).

With 1y = Smin and « = 1, 8 = 0.3, the simulation in Figure 4 (a) and (b) demonstrate the
glucose and insulin concentration profiles of four injections a day of bolus insulin Lispro and one
injection a day of basal insulin Glargine. The insulin injection rate is the combination of fing,,,;,. (7)

and iy, (t). Therefore, I;; in Equation (9) takes the following expression.

Tin (1) = ingrgine (1) F Jingi, (). 13)

Itis easy to see that i, in Equation (13) <10 and f;(x) < 210 for x € [0, 0o). Thus, the condition
(H6), di > o max;e(o,0] Lin(t) + max;ef0,00) f1(), is satisfied for model (9).
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The glucose level shown in Figure 4 (c) for model (9) is between 70 and 100 mg d1~!. It is seen
that the profiles are close to the profiles of a normal subject. We should also point out that blood
glucose levels could be close to 160 mgdl~! after meals [32].

4. Discussions

To optimize the strategies of insulin adminstration, we choose the combination of insulin Glargine
and Lispro as basal and bolus insulin, respectively, because clinical trials have shown that insulin
Glargine plus insulin Lispro can improve glycaemic control of type 1 diabetes [2]. In their study,
the combination of insulin Glargine with insulin Lispro was compared with NPH insulin plus
unmodified human insulin. It is reported that there was as much as 44% reduction of monthly rate
of nocturnal hypoglycaemia with Glargine plus Lispro. These improvements in blood glucose
control were obtained without any increase in episodes of hypoglycaemia. In fact, in another
clinical trial by Murphy et al. [34], it has been documented that combination therapy with insulin
Glargine plus insulin Lispro reduced the incidence of nocturnal hypoglycemia and was at least as
effective as R/NPH insulin therapy in maintaining glycaemic control.

Currently, an insulin pump is the most advanced method of insulin administration for type 1
diabetes [26]. With careful integration of the existing models for glucose absorption from the
gut and/or subcutaneous insulin absorption and the regulation of glucose—insulin, an artificial
pancreas can be created and put forward in clinical applications. The model proposed in this
paper when integrated with the models proposed in earlier studies [25,26], can form a solid
foundation for an artificial pancreas.

Model (2) does not take into account individual patient factors, such as age, treatment sched-
ule, and exercise. Patient factors, including individual variations in insulin absorption, levels of
exercise, local massage, and especially, local subcutaneous blood flow that can influence the
effectiveness of an insulin regimen [16]. The time taken to absorb one-half of an injected dose
of insulin may vary by 25-50% among individual patients [19]. Thus, it is important to imple-
ment individualized therapies, which are flexible to fit the needs of the patient. Model (2) can be
adjusted to reflect the patient factors by incorporating a time delay in 7, .

In model (2), we neglect the delayed effect of hepatic glucose production in fs. In fact, the
delayed effect on the dynamics of glucose and insulin for normal subjects under continuous and
constant glucose infusion can be significant [25,28]. We will further investigate the delayed effect
in a future research.

Experimental results by Rassam et al. [38] demonstrated that the injection of Lispro insulin
15-30 min before meal can optimally reduce postprandia hyperglycaemia. In our simulation, we
assume that lispro insulin is injected 15 min before meal. Other regular insulins are recommended
to be injected 30 or 45 min before meal. In practice, patients often inject insulin closer to mealtime,
causing a higher postprandial serum glucose level and an increased potential for hypoglycaemia
in the postabsorptive period. Thus, Lispro insulin results in more satisfactory postprandial glucose
control.

In summary, we propose a new insulin therapy model using Michaelis—Menten kinetics. We
are focusing on studying the dynamics of the model, and will continue the research and validate
the model to fit actual data of the subjects.
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Appendix 1. Proof of Theorem 2.4

In this section, we will give a proof of Theorem 2.4. A related result can be found in [47]. Before we state the Krasnoselskii
fixed point theorem, let us recall some concepts and conclusions of an operator in a cone in [23]. Let X be a Banach space
and K be a closed, non-empty subset of X. K is said to be acone if (1) ou + 8 € K forallu,v € K and all @, 8 > 0 and
(2)u, —u € K, imply u = 0. Assume 2 is a bounded open subset in X with the boundary 92, andlet T : K N Q — K
be completely continuous, such that 7x # x forx € 0Q N K.

LEMMA .1 Krasnoselskii’s Fixed Point Theorem [23]. Let X be a Banach space and let K € X be a cone in X. Assume
that 21, Q2 are open subsets of X with 0 € Q, Q1 C Q2 and let
T:KN(Q\Q) — K
be a completely continuous operator, such that either
M NITx| < llxll,x € KNoQy and |Tx|| > [x]l,x € K N0
or
@) ITx|l = llxll,x € KN and |Tx| < [x|l,x € KN
is true. Then T has a fixed point in K N (Q2\Q1).

First, since fy is bounded below and above, we can assume there exist two positive numbers m4 and My, such that
my < fa(x) < My, forx € [0, 00).

Also, since f5(x) is bounded above and Gi,(#) is positive periodic on [0, 00), there exist two positive numbers ms and
M5, such that
ms < min Giy(t) + fs(x) < max Gi(t) + fs(x) < Ms, forx € [0, c0).
1€[0,0] 1€[0,0]

Now, consider the Banach space

X = {(u(),v()) :u(),v() € CR,R), u(t + w) = u(t), v(t + w) = v(t)},
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with || (u, v)|| = max{sup, (9 o0) [4 (@), SUP;¢[0 ) v (#)[}. Define a cone K in X by

K={uv)eX: ul)= % sup [u()], () = % sup [v(@0)]r € [0, ]},
1

t€[0,00] t€[0,00
where A, B, C, D are defined by the following expressions:

1 eb2w+b3 Mo

= ehrwtbsMyw _ | >0, B= eazomy _ | >0,

1 e (d1/d2)

——— >0, D=—"—"—""—>0.
e?(di/dy) — 1

ri = Amsw >0, r, = BMsw >0, C=
e?(d/(d2 +r2)) — 1

It can be verified that A < B and C < D. Indeed, (HS) implies b3 > a3. Now from the fact that M4 > m4, we have
brw + b3Myw > azwmy, which implies thateb2@+b3Mao _ | > easoms _ 1 Now since byw + b3 Maw > 0, we can obtain
A < B.Noting w(d1/d2) > w(d1/(d2 + r2)), by the same argument, we have C < D.

We then define two open sets €2, and 2,, as

Q= {,v) € X, v)] <ri}

and
Q, ={(,v) € X : |(u, v)|| <r2}.
Note that 902,; = {(u,v) € X : ||(u,v)|| =r;}, i=1,2 and

KN(@\Q) ={X:ueK,rn<|uvl=<r)

Define the map T (u; v) = (T} (u, v), Ta(u, v)) : K N (22\Q1) — X by

1w
Ty (o), v(1)) = / Us(t, $)[Gin(s) + f5(u(s))]ds, "
t
and
+w
Ta(u(t), v() = / Uy (e, $)lalin + Bfi (u(t — )] ds, s
t
where
U5y = SO 0)) + (30 /u() f10©)) 40
u(t, e fo [(f2©))/0) + (f3®))/u(®)) fa(w(©)]1do — 1
and
Ust, s) = e({r (di/(dy +v(©)) 40
e [ (ds + v(6))) d6 — 1
Note that
0 0
s = % * %-ﬂl(v(@)) < by + b3Mjy.
Thus

A<U,(t,s)<B, t<s<t+o.
In addition, for (i, v) € K N (22\Q1)

dy dy dy

— < —————— < —, 0 e (—00,00),
dy+ry T d+v) T da ( )

and
C<Uyt,s) <D, t<s<t+o.

In order to use the above fixed point theorem we need the following lemma.

LemMa .2 T : K N(Q\Q1) — K is compact and continuous.
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Proof We only consider the first component 77 (#, v). The proof for 7> (u, v) is the same. In view of the definition of 77,
for (u, v) € K, we have

t+2w
Ti(u, V)t + ) = / Uu(t + @, 5)[Gin(s) + f5(v(s)]ds

1+

o
:f Uyt + 0,0 + 0)[Gin(0 + @) + f5(v(0 + w))]dO

t+w

=/ Uy (t, $)[Gin(s) + f5(v(s))]ds
t

= Ti(u, v)(1).

It is easy to see that lem[Gm (s) + fs(v(s)]ds is a constant because of the periodicity of [Gin(7) + f5(v(f))]. One can
show that, for (u, v) € K N (52\(21) and ¢t € [0, w],

t+w
i, v)(1) = A / [Gin(s) + f5(u(s))] ds
t
A w
_ A / [Gin(s) + f3(v(s))] ds
B Jo

A
2 5 sup Ty (u, v)(D)].
1 [10,0]

Thus T (K N (2\21)) C K and it is easy to show that T is compact and continuous. | |
LEMMA .3 If (u, v) is a fixed point of T in K N (Q2\21), then (u, v) is a positive periodic solution of (2).
Proof If (u,v) € K N (Q2\Q1) and T (u, v) = u, then

d 1o
u'(t) = P (/ Uu(t, )[Gin(s) + fs(v(S))]dS)
t

=Uu(t, 1+ 0)(Gin(t + @) + f5((t + w))) — Uu(t, )(Gin (1) + f5(v(2))

_ <f2(u(l)) + S3(u@))
u(t) u(t)

= (Uu@t, 1 + @) = Uy (1, )(Gin (1) + f5(v(2)))

_{ Low@®) i S3(u@))
u(t) u(t)

. (fz(u(t)) n f3(u())
o u(t) u(t)

= Gin() + fs(v®) — 2 ®) — f3u®) fa(v()).

f4(v(t))> Ty (u, v)(1)

f4(v(t))> Ty (u, v) (1)

f4(v(1))) u(@®) +[Gin (1) + fs(v())]

In the same way, we can show that

div(t)
dy + (1)’

V' (t) = alyp + Bfi(u(t — 1)) —
Thus, (u, v) is a non-negative w-periodic solution of (2), which is also positive.

We are now in a position to prove the existence of periodic solution of (2).
Then for (u, v) € 0%2,,, we have

tH+w )
TiGu,v) < A / [G(s) + f5(u(s))]ds
t

—A /O [Gin(s) + f5(v(s))] ds
< Amsw =ry.

Thus, for (u, v) € 982,
17 @, )| = lI(u, V).
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On the other hand, for (u, v) € 3L2,,, we have

+w
Ti(u,v) < B/ [Gin(s) + fs(v(s))]ds
t

_ B /0 [Gin(s) + f3(v(s))] ds

< BMsw =rs,

and

tHw
Ty(u,v) < Df (el + Bfi (u(t — 71))] ds

-D /0 [lin + Bfi(u(t — 1)) ds.

Now, since max;e[o,wj{etfin (t)} + Mmaxye(o,00) {Bf1(x)} is sufficient small and we can assume that

D/ [alin + Bfi1(u@ — 1)) ds < ra. 16)
0

Thus, we have
T>(u, v) < rp.
Consequently, (u, v) € 092,
IT G, )| < [l (u, V)]l
It follows from Lemma A.1 that T has a fixed point in £2,, \€2,,, and hence Equation (2) has a positive w-periodic solution.
This completes the proof of Theorem 2.4. |

Appendix 2: Proof of Theorem 2.5

In this section, we shall show that the periodic solution (G*(¢), I*(t)) of Equation (2) is locally asymptotically stable.
Our proof is based on the construction of Lyapunov functionals. Before we proceed to discuss stability, we state a lemma
from [3] without proof, which will be employed to establish stability.

LEMMA .4 Let h be a real number and f be a non-negative function defined on [h, 00) such that f is integrable on [h, 00)
and is uniformly continuous on [h, 00). Then lim;_,~, f () = 0.

Now assume (G (1), 1(t)) is a solution of Equation (2) with initial condition 7 (0) > 0, G(0) > 0, and /(¢) = 1(0) for
t € [—11, 0]. For simplicity we use the transformation

u=G@Et)—G*(t), v=I1@)—I*@).

Also let
didy

fo@) = .
(da + 1(1))(d2 + I*(2))
Note that both I and /* are bounded for ¢ > 0. Therefore, there exist a positive number o such that

oo < fo(?).
Thus
i = djle(é;)(d; iﬁ’) ()m +BUAGE =) — fi(G (= 11))
= — fo + BG( — 1) — G*(t — ) £{(E1)
= —fo(t)v + But — ) 1),
and

i(t) = (G (1) — fo(G(®) = HGD) fuT (1) + fs(I(1) = Gin(t) + f2(G* (1) + f3(G* 1) fu(I* (D)) — fs(I* (1))
=—(2(G®) — (G 1)) — f3(G®) fuT (1) — f3(G* ) fa(I* ) + (fsT (1) — f5I* (1))
= —uf3(6) — v(G1) f3(Ea) — uf3 (&) faI™ (1)) + v (1) f5(55),

where & is between G(t — 71) and G* (¢t — 11), and &, &3 > 0 are between G () and G*(¢), & > 0 is between 7 (¢) and
I*(t), & is between I (¢) and I*(¢). Note that ]‘5’(55) is negative because of (H4). We can also assume that f3(G(¢)) and
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fa(I*) are bounded by the following positive values
0 < f3(Gm) = f3(G®) = f3(GM), fort =0,

and

0 < fulln) < fuI* (1)) < fa(Iy), fort =0,
where G,,, Gy, I, I > 0 are constants. In addition, it is easy to find positive constants o; and X;,i = 1,2, 3,4, 5, so
that f/ &),i=1,2,3,4, and | fs’ (&5)| are bounded by the following positive values

0 < fl(o1) < fl(&) = f(Z0),

and
0 < |f5(05)] < |f5(5)) < |f5(Z5)l.

Define a function
Lo, 1,
Vi@t) = EU + Eu
Then, we calculate the derivative of Vj(¢) along the solution of Equation (2).
Vi(t) = vv' 4+ uu,
= (= fov+ Bult — 1) f{(€D) + u( — ufs(52) — vf3(G®)) f4(64) — uf3(83) faI* () + v (1) f5(€5)),

= —foV* =i (F3(E) + f1(83) faT* (1)) — uvf3(G (@) f4(54)

t
+ uvBfi (&) + uvfs(Es) — vBfi (1) u'(s) ds,

-1

= — o —u*(H(&) + FE) 1T (1)) — uvf3(G©) f1(Ea) + uvBf(E1)
t
+ uvfi(Es) — BfL(ED / (= v(Ous) f1(E2) — vOV() (GD) f1(Ea)
-1

— v(Ou(s) f3(83) fa(I* (5)) + v(D)v(s) f35(5)) ds
We will make use of the inequality
1 1
ab < Eeaz + sz, e>0

to estimate V; (7). In particular, we choose € = 1 for the terms without integrals and € = f(X;) > 0 for the integral terms
and produce the following estimates.

Vi(t) < —aov? — u?(f3(02) + fi(03) falmp))

+ 5(»42 + v (3(Mg) f1(Z4) + BF(ZD) + 1 f£(5)))

£(E2) ds

+ e f S 1 fEno
Eﬁfl 1) B (fl(z) f] 1)v

HED

£3(23) fa(My) ds

2
+ ﬁfl(El) ( u(s) + f{(ZNDv (f)> f3(Mg) f4(Z4) ds
i

1 () t (“2( = t
+2ﬂf1(1 ey + f{(E)v* ()

5) " %
+ ﬁfl(El)/ (fl(Z ) +f1(21)v2(t)> [f5(Xs)| ds.

We now define four additional functions in order to handle the four terms with integrals.
ﬂ t t
=Sne [ [
2 1—11
=2 e i / f W(5) ds do,
T

*fa(zs)fzt(Ml)/ / u%(s) ds do

and

,3 t t
Vs = 5|f§(25)|/ / W (s) ds dor.
t—1 Jo
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Note that
=5 pie [ _ o ds+ 2 e,
75 = -5 poto iz 7 26 as + 2 o) i,
V= f§f§(23)f4(M1) t;l u*(s) ds + %fé(&)ﬂ;(Mz)uz,
and

t
Vs = f§|f5’(zs)|/ W (s) ds + %lf_é@s)luz-
=1

Now consider a Lyapunov functional
Viy=Vi+Va+Va+Va+Vs
and differentiate V (¢) along the solution of Equation (2). After rearranging the terms, we get

V() =~ 50200 — (M) Fi(E0) — BF{(E) ~ | (Ss)]
= Bo (F{(Z0) f5(Z2) = B, (F{(Z1)) f3(Mg) f4(Z4)
— 1B (Z0))* F(Z3) FAM) — Bri(F{(Z0)*1 f5(E5)])
- %Mz(zfz/(az) +2f3(03) falmp) = f3(Mg) f1(E4) — Bf{(Z1) — | f5(Z5)]
— 1183 (Z2) — 11Bf(Mg) [1(Z4) — T Bf3(3) f3(M)) — 11 Bl f1(E5)1).

Now if
€ =200 — f3(Mg) f1(24) — BFI(21) — | fi(E5)| = Bri(f{(Z1)* £3(Z2)
— BT (f{(Z0)* (M) £1(Za) — T B (ED)* f3(E3) fla(M)
— BT (f{(Z))1f5(Es)| > 0
and

D =2f3(02) + 2 f3(03) falmy) — f3(Mq) f1(Z4) — BF{(Z1) — | f(Z5)]
= uBf(E2) — uBf3(Mo) f3(Z4) — 11 Bf(Z3) fa(Mp) — 11 Bl f5(Es)]| > 0,

then Equation (17) becomes

. ¢ D
V) < —Evz - =

an

(18)

19

(20)

It is easy to see that V (¢) is decreasing. Integrating on both sides of Equation (20) from O to ¢ and rearranging the terms,

we produce

¢ [ D [!
V() + 7/ v2(s) ds + —/ u? ds < V(0).
2 Jo 2 Jo

Hence, v2, u? € L'[0, 00). It is also easy to see that v2, u?, and their derivatives are bounded on [0, 00). Then, it follows

that «? and v? are uniformly continuous on [0, c0). By Lemma A.4 we have

lim u?> =0
—00

and
lim v2> = 0.

=00
Therefore, the periodic solution is locally asymptotically stable.



