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Positive radial solutions for p-Laplacian systems

Donal O’Regan and Haiyan Wang

Summary. The paper deals with the existence of positive radial solutions for the p-Laplacian
system div(|∇ui|

p−2∇ui) + f i(u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n,
p > 1, x ∈ R

N . Here f i, i = 1, . . . , n, are continuous and nonnegative functions. Let u =

(u1, . . . , un), ‖u‖ =
∑n

i=1|ui|, f i
0 = lim‖u‖→0

fi(u)

‖u‖p−1 , f i
∞ = lim‖u‖→∞

fi(u)

‖u‖p−1 , i = 1, . . . , n,

f = (f1, . . . , fn), f0 =
∑n

i=1 f i
0 and f∞ =

∑n
i=1 f i

∞. We prove that f0 = ∞ and f∞ = 0
(sublinear), guarantee the existence of positive radial solutions for the problem. Our methods
employ fixed point theorems in a cone.
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1. Introduction

In this paper we consider the existence of positive radial solutions for the p-Lap-
lacian system







div
(
|∇u1|

p−2∇u1

)
+ f1(u1, . . . , un) = 0 in B

. . .

div
(
|∇un|

p−2∇un

)
+ fn(u1, . . . , un) = 0 in B

ui = 0 on ∂B, i = 1, . . . , n

(1.1)

where p > 1, B =
{
x ∈ R

N : |x| < 1, N ≥ 2
}
.

When p = 2, (1.1) becomes






∆u1 + f1(u1, . . . , un) = 0 in B

. . .

∆un + fn(u1, . . . , un) = 0 in B

ui = 0 on ∂B, i = 1, . . . , n.

(1.2)

When n = 1 and p = 2, (1.1) becomes
{

∆u + f(u) = 0 in B

u = 0 on ∂B.
(1.3)
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Notice that (1.3) has received extensive investigation in the past several decades.
Lions in [5] discussed, under various combinations of superlinearity or sublinearity
of f at infinity, f(0) = 0 and f(0) > 0, the existence and nonexistence of positive
solutions of (1.3) in a general bounded regular domain in R

N . The results of [5] are
also interpreted in terms of bifurcation diagrams. If 0 < β < 1, it is understood

that f(u) = (1 + αu)β (or uβ ) is sublinear. Note that f0 = limu→0+
f(u)

u
= ∞

and f∞ = limu→∞
f(u)

u
= 0. It is clear that the notation in (1.5), f0 and f∞, is

a convenient extension of f0 and f∞ defined above for the scalar cases. We shall
use f0 and f∞ to characterize sublinearity and superlinearty of (1.1). Thus, we say
(1.1) is sublinear if f0 = ∞ and f∞ = 0. In contrast, (1.1) is superlinear if f0 = 0
and f∞ = ∞.

Wang in [8] showed that the following parameterized problem,







div
(
|∇u1|

p−2∇u1

)
+ λf1(u1, . . . , un) = 0 in B

. . .

div
(
|∇un|

p−2∇un

)
+ λfn(u1, . . . , un) = 0 in B

ui = 0 on ∂B, i = 1, . . . , n

(1.4)

has a positive solution when λ > 0 is sufficiently small under some assumptions.
For the ODE case (N = 1), Wang in [7] proved that the existence, multiplicity
and nonexistence of positive solutions of (1.1) can be determined by appropriate
combinations of superlinearity and sublinearity of f(u) at zero and infinity.

In this paper we shall show that if (1.1) is sublinear, or f0 = ∞ and f∞ = 0,
then (1.1) has a positive solution.

We note that the ODE system (2.7) has a singularity at zero. It seems that
the fixed point theorem of compression/expansion type does not work in the case.
However we are able to use fixed point index to carry out our proof.

We now turn to general assumptions for this paper. Let R = (−∞,∞), R+ =
[0,∞) and R

n
+ = R+ × · · · × R+

︸ ︷︷ ︸

n

. Also, for u = (u1, . . . , un) ∈ R
n
+, let ‖u‖ =

∑n
i=1|ui|. We make the assumption:
(H1) f i : R

n
+ → R+ is continuous, i = 1, . . . , n.

In order to state our results we introduce the notation

f(u) = (f1(u), . . . , fn(u)) = (f1(u1, . . . , un), . . . , fn(u1, . . . , un)),

f i
0 = lim

‖u‖→0

f i(u)

‖u‖p−1
, f i

∞ = lim
‖u‖→∞

f i(u)

‖u‖p−1
, i = 1, . . . , n,

where u = (u1, . . . , un) ∈ R
n
+,

f0 =

n∑

i=1

f i
0, f∞ =

n∑

i=1

f i
∞. (1.5)

Our main result is
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Theorem 1.1. Assume (H1) holds. If f0 = ∞ and f∞ = 0, then (1.1) has a

positive radial solution.

Example. Consider the example






div
(
|∇u1|

p−2∇u1

)
+ (u1 + · · · + un)p1 = 0 in B

. . .

div
(
|∇un|

p−2∇un

)
+ (u1 + · · · + un)pn = 0 in B

ui = 0 on ∂B, i = 1, . . . , n

(1.6)

where p > 1, 0 < p1, p2, . . . , pn < p−1, B =
{
x ∈ R

N : |x| < 1, N ≥ 2
}
. It is easy

to see that f0 = ∞ and f∞ = 0, then the example has a positive radial solution
according to Theorem 1.1.

2. Preliminaries

Let ϕ(t) = |t|p−2t, then, for t > 0, ϕ(t) = tp−1 and ϕ−1(t) = t
1

p−1 . It is easy to
see that ϕ−1(σϕ(t)) = ϕ−1(σ)t for t > 0 and σ > 0.

A radial solution of (1.1) can be considered as a solution of the system






(
rN−1ϕ(u′

1(r))
)′

+ rN−1f1(u) = 0, 0 < r < 1

. . .
(
rN−1ϕ(u′

n(r))
)′

+ rN−1fn(u) = 0, 0 < r < 1

u′(0) = u(1) = 0, i = 1, . . . , n.

(2.7)

We shall treat classical solutions of (2.7), namely a vector-valued function u =
(u1(r), . . . , un(r)) with ui ∈ C1[0, 1], and ϕ(u′

i) ∈ C1(0, 1), i = 1, . . . , n, which
satisfies (2.7). A solution u(r) = (u1(r), . . . , un(r)) is positive if ui(r) ≥ 0, i =
1, . . . , n, for all r ∈ (0, 1) and there is at least one nontrivial component of u. In
fact, it is easy to prove that such a nontrivial component of u is positive on (0, 1).

The following well-known result of the fixed point index is crucial in our argu-
ments.

Lemma 2.1 (([2, 4])). Let E be a Banach space and K a cone in E. For R > 0,
define KR =

{
u ∈ K : ‖x‖ < R

}
. Assume that T : K̄R → K is completely

continuous and ∂KR = {u ∈ K : ‖x‖ = R}.
(i) If there exists a x0 ∈ K \ {0} such that

x − Tx 6= tx0, for all x ∈ ∂KR and t ≥ 0,

then

i(T, KR, K) = 0.

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂KR and Tx 6= x for x ∈ ∂KR, then

i(T, KR, K) = 1.
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In order to apply Lemma 2.1 to (2.7), let X be the Banach space

C[0, 1] × · · · × C[0, 1]
︸ ︷︷ ︸

n

and, for u = (u1, . . . , un) ∈ X,

‖u‖ =
n∑

i=1

sup
t∈[0,1]

|ui(t)|.

For u ∈ X or R
n
+, ‖u‖ denotes the norm of u in X or R

n
+, respectively. Of course,

a constant function is an element of C[0, 1].
Let K be a cone in X defined by

K =
{
(u1, . . . , un) ∈ X : ui(t) ≥ 0, t ∈ [0, 1], i = 1, . . . , n

}
.

Also, for R a positive number, define ΩR by

ΩR =
{
u ∈ K : ‖u‖ < R

}
.

Note that ∂ΩR =
{
u ∈ K : ‖u‖ = R

}
.

Let T : K → X be a map with components (T 1, . . . , T n). We define T i,
i = 1, . . . , n, by

T iu(r) =

∫ 1

r

ϕ−1

(
1

sN−1

∫ s

0

τN−1f i(u(τ))dτ

)

ds, r ∈ [0, 1]. (2.8)

It is straightforward to verify that (2.7) is equivalent to the fixed point equation

Tu = u in K.

Lemma 2.2. Assume (H1) holds. Then T(K) ⊂ K and T : K → K is compact

and continuous.

Proof. It is clear that T(K) ⊂ K. We now show that T is compact. Let (um)m∈N

be a bounded sequence in K and let R > 0 be such that ‖um‖ ≤ R for all m ∈ N.
Hence, by the definition of T, we have, i = 1, . . . , n,

(T ium)′(r) =

{

−ϕ−1
(

1
rN−1

∫ r

0
τN−1f i(um(τ))dτ

)

, 0 < r < 1,

0, r = 0.

Then it is easy to see that both (Tum)m∈N and ((Tum)′)m∈N are uniformly
bounded sequences (so (Tum)m∈N is equicontinuous on [0,1]). It follows from
the Arzela–Ascoli theorem that there exists a v ∈ K and a subsequence of Tum

converging to v in X .
It remains to show the continuity of T. Let us take a sequence (um)m∈N in

K converging to u ∈ K in X and fix i, i = 1, . . . , n. Note that ϕ−1 and f i(u)
are continuous. It is not hard to see that the Dominated Convergence Theorem
guarantees that

lim
m→∞

T ium(r) = T iu(r) (2.9)
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for each r ∈ [0, 1]. Moreover, the compactness of T i implies that T ium(r) converges
uniformly to T iu(r) on [0, 1]. Suppose this is false. Then there exists ε0 > 0 and
a subsequence (umj

)j∈N of (um)m∈N such that

sup
r∈[0,1]

|T iumj
(r) − T iu(r)| ≥ ε0, j ∈ N. (2.10)

Now, it follows from the compactness of T i that there exists a subsequence of
(umj

)j∈N (without loss of generality assume the subsequence is (umj
)j∈N) such

that (T iumj
)j∈N converges uniformly to y0 ∈ C[0, 1]. Thus, from (2.10), we easily

see that
sup

r∈[0,1]

|y0(r) − T iu(r)| ≥ ε0. (2.11)

On the other hand, from the pointwise convergence (2.9) we obtain

y0(r) = T iu(r), r ∈ [0, 1].

This is a contradiction to (2.11). Therefore T is continuous. �

For each i = 1, . . . , n, define a new function f̂ i(t) : R+ → R+ by

f̂ i(t) = max
{
f i(u) : u ∈ R

n
+ and ‖u‖ ≤ t

}
.

Note that f̂ i
0 = limt→0+

f̂i(t)
ϕ(t) and f̂ i

∞ = limt→∞
f̂i(t)
ϕ(t) .

Lemma 2.3 ([7]). Assume (H1) hold. Then f̂ i
0 = f i

0 and f̂ i
∞ = f i

∞, i = 1, . . . , n.

Proof. It is easy to see that f̂ i
0 = f i

0. For the second part, we consider the two
cases, (a) f i(u) is bounded and (b) f i(u) is unbounded. For case (a), it follows,

from limt→∞ ϕ(t) = ∞, that f̂ i
∞ = 0 = f i

∞. For case (b), for any δ > 0, let

M = f̂ i(δ) and

Nδ = inf
{
‖u‖ : u ∈ R

n
+, ‖u‖ ≥ δ, f i(u) ≥ M

}
≥ δ,

then

max
{
f i(u) : ‖u‖ ≤ Nδ, u ∈ R

n
+

}
= M = max

{
f i(u) : ‖u‖ = Nδ, u ∈ R

n
+

}
.

Thus, for any δ > 0, there exists a Nδ ≥ δ such that

f̂ i(t) = max
{
f i(u) : Nδ ≤ ‖u‖ ≤ t, u ∈ R

n
+

}
for t > Nδ.

Now, suppose that f i
∞ < ∞. In other words, for any ε > 0, there is a δ > 0 such

that

f i
∞ − ε <

f i(u)

ϕ(‖u‖)
< f i

∞ + ε, for u ∈ R
n
+, ‖u‖ > δ. (2.12)

Thus, for t > Nδ, there exist u1,u2 ∈ R
n
+ such that ‖u1‖ = t, t ≥ ‖u2‖ ≥ Nδ and

f i(u2) = f̂ i(t). Therefore,

f i(u1)

ϕ(‖u1‖)
≤

f̂ i(t)

ϕ(t)
=

f i(u2)

ϕ(t)
≤

f i(u2)

ϕ(‖u2‖)
. (2.13)
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Now (2.12) and (2.13) yield that

f i
∞ − ε <

f̂ i(t)

ϕ(t)
< f i

∞ + ε for t > Nδ. (2.14)

Hence f̂ i
∞ = f i

∞. Similarly, we can show f̂ i
∞ = f i

∞ if f i
∞ = ∞.

Lemma 2.4. Assume (H1) hold and let r > 0. If there exits an ε > 0 such that

f̂ i(r) ≤ ϕ(ε)ϕ(r), i = 1, . . . , n,

then

‖Tu‖ ≤ nε‖u‖ for u ∈ ∂Ωr.

Proof. From the definition of T , for u ∈ ∂Ωr, we have

‖Tu‖ =

n∑

i=1

sup
t∈[0,1]

|T iu(t)|

=
n∑

i=1

∫ 1

0

ϕ−1

[
1

sN−1

∫ s

0

τN−1f i(u(τ))dτ

]

ds

≤

n∑

i=1

∫ 1

0

ϕ−1

[
1

sN−1

∫ s

0

τN−1dτf̂ i(r)

]

ds

≤ nϕ−1[ϕ(ε)ϕ(r)]

= nϕ−1[ϕ(εr)]

= nε‖u‖. �

3. Proof of Theorem 1.1

Proof. Since f0 = ∞, there exists a component f i such that f i
0 = ∞. Therefore,

there is an r1 > 0 such that

f i(u) ≥ ϕ(η)ϕ(‖u‖) (3.15)

for u = (u1, . . . , un) ∈ R
n
+ and ‖u‖ ≤ r1, where η > 0 is chosen so that

η

2
ϕ−1

(
1

N4N

)

≥ 1. (3.16)

If u − Tu = 0 for some u ∈ ∂Ur1
, we already have the desired solution of (1.1).

Therefore we assume that

u − Tu 6= 0 for all u ∈ ∂Ur1
, (3.17)

We now claim that

u − Tu 6= tv, for all u ∈ ∂Ωr1
and t ≥ 0, (3.18)
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where v = (θ(r), . . . , θ(r)), and θ ∈ C[0, 1] such that 0 ≤ θ(r) ≤ 1 on [0, 1],
θ(r) ≡ 1 on [0, 1

4 ] and θ(r) ≡ 0 on [12 , 1]. Thus, v ∈ K \ {0}. If there exists
u∗ = (u∗

1, . . . , u
∗
n) ∈ ∂Ωr1

and t0 ≥ 0 such that u∗−Tu∗ = t0v, we shall show this
leads to a contradiction. Since (3.17) is true, we have t0 > 0. Since T(K) ⊂ K,
we obtain that u∗

i (r) ≥ t0θ(r) for all r ∈ [0, 1]. Let

t∗ = sup
{
t : u∗

i (r) ≥ tθ(r) for all r ∈ [0, 1]
}
.

It follows that t0 ≤ t∗ < ∞ and u∗
i (r) ≥ t∗θ(r) for all r ∈ [0, 1]. Now, for r ∈ [0, 1

2 ],
we have

u∗
i (r) = Tiu∗(r) + t0θ(r)

=

∫ 1

r

ϕ−1

(
1

sN−1

∫ s

0

τN−1f i(u∗(τ))dτ

)

ds + t0θ(r).

Note that
∑n

j=1 u∗
j (r) ≤ r1 for r ∈ [0, 1]. Also (3.15) implies that, for r ∈ [0, 1

2 ],

u∗
i (r) ≥

∫ 1

1
2

ϕ−1

(
1

sN−1

∫ s

0

τN−1ϕ(η)ϕ

( n∑

j=1

u∗
j (τ)

)

dτ

)

ds + t0θ(r)

≥

∫ 1

1
2

ϕ−1(

∫ s

0

τN−1ϕ(η)ϕ(u∗
i (τ))dτ)ds + t0θ(r)

≥
1

2
ϕ−1

(∫ 1
4

0

τN−1ϕ(η)ϕ(t∗θ(τ))dτ

)

+ t0θ(r)

=
1

2
ϕ−1

(∫ 1
4

0

τN−1dτϕ(η)ϕ(t∗)

)

+ t0θ(r)

=
1

2
ϕ−1

(
1

N4N
ϕ(ηt∗)

)

+ t0θ(r).

Now, in view of the fact that ϕ−1(σϕ(t)) = ϕ−1(σ)t, we have, for r ∈ [0, 1
2 ],

u∗
i (r) ≥ t∗

η

2
ϕ−1

(
1

N4N

)

+ t0θ(r).

≥ t∗ + t0θ(r)

≥ (t∗ + t0)θ(r),

and hence since θ(r) = 0 on
[

1
2 , 1

]
we have

u∗
i (r) ≥ (t∗ + t0)θ(r), r ∈ [0, 1],

which is a contradiction to the definition of t∗. Thus, in view of Lemma 2.1,

i(T, Ωr1
, K) = 0.

We now determine Ωr2
. Notice that f∞ = 0 implies that f i

∞ = 0, i = 1, . . . , n.

It follows from Lemma 2.3 that f̂ i
∞ = 0, i = 1, . . . , n. Therefore there is an r2 > 2r1

such that
f̂ i(r2) ≤ ϕ(ε)ϕ(r2), i = 1, . . . , n,
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where the constant ε > 0 satisfies

nε < 1.

Thus, we have by Lemma 2.4 that

‖Tu‖ ≤ nε‖u‖ < ‖u‖ for u ∈ ∂Ωr2
.

By Lemma 2.1,
i(T, Ωr2

, K) = 1.

It follows from the additivity of the fixed point index that i(T, Ωr2
\ Ω̄r1

, K) = 1.
Thus, T has a fixed point in Ωr2

\ Ω̄r1
, which is the desired positive solution

of (1.1).
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