Convex solutions of boundary value problems

Haiyan Wang*
Department of Mathematics, University of Central Arkansas, Conway, AR 72035, USA
Received 9 December 2004

Available online 20 June 2005
Submitted by J. Mawhin

Abstract

We establish two criteria for the existence of convex solutions for a boundary value problem arising from the study of the existence of convex radial solutions for the Monge-Ampère equations. We shall use fixed point theorems in a cone. © 2005 Elsevier Inc. All rights reserved.

Keywords: Convex solutions; Monge-Ampère equations; Fixed index theorem

1. Introduction

In this paper we consider the existence of convex solutions for the boundary value problem

$$
\begin{align*}
& \left(\left(u^{\prime}(t)\right)^{n}\right)^{\prime}=n t^{n-1} f(-u(t)) \quad \text { in } 0<t<1, \\
& u^{\prime}(0)=0, \quad u(1)=0, \tag{1.1}
\end{align*}
$$

where $n \geqslant 1$. A nontrivial convex solution of (1.1) is negative on $[0,1)$. Such a problem occurs in the study of the existence of convex radial solutions for the Dirichlet problem of the Monge-Ampère equations

[^0]\[

$$
\begin{equation*}
\operatorname{det} D^{2} u=f(-u) \quad \text { in } B, \quad u=0 \quad \text { on } \partial B, \tag{1.2}
\end{equation*}
$$

\]

where $B=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$. In fact, a convex radial solution of (1.2) can be viewed as a solution of (1.1). Kutev [7] obtained the existence of convex radial solutions of (1.2) with $f(-u)=(-u)^{p}, n \neq p>0$ by reducing (1.2) to (1.1). We refer to [2,7] and references therein for further discussions regarding convex radial solutions of (1.2). Related results may be found in $[3,6,8]$.

In this paper we shall apply a fixed point theorem in a cone to show the existence of convex solutions of (1.1) under superlinearity and sublinearity assumptions on the nonlinearity f. Our assumption for this paper is:
(H1) $f:[0, \infty) \rightarrow[0, \infty)$ is continuous.
In order to state our results, we introduce the notation

$$
\begin{equation*}
f_{0}=\lim _{u \rightarrow 0} \frac{f(u)}{u^{n}} \quad \text { and } \quad f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u^{n}} \tag{1.3}
\end{equation*}
$$

Our main results are:
Theorem 1.1. Assume (H1) holds.
(a) If $f_{0}=0$ and $f_{\infty}=\infty$, then (1.1) has a nontrivial convex solution.
(b) If $f_{0}=\infty$ and $f_{\infty}=0$, then (1.1) has a nontrivial convex solution.

2. Preliminaries

With a simple transformation $v=-u$, (1.1) can be brought to the following equation:

$$
\begin{align*}
& \left(\left(-v^{\prime}(t)\right)^{n}\right)^{\prime}=n t^{n-1} f(v(t)) \quad \text { in } 0<t<1, \\
& v^{\prime}(0)=0, \quad v(1)=0 \tag{2.1}
\end{align*}
$$

Now we treat positive concave classical solutions of (2.1).
The following well-known result of the fixed point index is crucial in our arguments.
Lemma 2.1. [1,4,5] Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}=$ $\{v \in K:\|x\|<r\}$. Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous such that $T x \neq x$ for $x \in \partial K_{r}=\{v \in K:\|x\|=r\}$.
(i) If $\|T x\| \geqslant\|x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=0
$$

(ii) If $\|T x\| \leqslant\|x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=1
$$

In order to apply Lemma 2.1 to (2.1), let X be the Banach space $C[0,1]$ with $\|v\|=\sup _{t \in[0,1]}|v(t)|$.

Define the cone K by

$$
K=\left\{v \in X: v(t) \geqslant 0, \min _{1 / 4 \leqslant t \leqslant 3 / 4} v(t) \geqslant \frac{1}{4}\|v\|\right\} .
$$

Also, define, for r a positive number, Ω_{r} by

$$
\Omega_{r}=\{v \in K:\|v\|<r\} .
$$

Note that $\partial \Omega_{r}=\{v \in K:\|v\|=r\}$.
Let the map $T: K \rightarrow X$ be defined by

$$
T v(t)=\int_{t}^{1}\left(\int_{0}^{s} n \tau^{n-1} f(v(\tau)) d \tau\right)^{1 / n} d s, \quad 0 \leqslant t \leqslant 1
$$

Thus, if $v \in K$ is a nonzero positive fixed point of T, then $-v$ is a nontrivial convex solution of (1.1). In view of Lemma 2.2, $-v$ is negative for $r \in[0,1)$.

The following lemma is a simple consequence of the concavity of v.
Lemma 2.2. Assume (H 1$)$ holds. Let $v \in X$ with $v(t) \geqslant 0$ for $t \in[0,1]$. If $v^{\prime}(t)$ is nonincreasing on $[0,1]$, then

$$
v(t) \geqslant \min \{t, 1-t\}\|v\|, \quad t \in[0,1] .
$$

In particular,

$$
\min _{1 / 4 \leqslant t \leqslant 3 / 4} v(t) \geqslant \frac{1}{4}\|v\| .
$$

Proof. Since $v^{\prime}(t)$ is nonincreasing, we have for $0 \leqslant t_{0}<t<t_{1} \leqslant 1$,

$$
v(t)-v\left(t_{0}\right)=\int_{t_{0}}^{t} v^{\prime}(s) d s \geqslant\left(t-t_{0}\right) v^{\prime}(t)
$$

and

$$
v\left(t_{1}\right)-v(t)=\int_{t}^{t_{1}} v^{\prime}(s) d s \leqslant\left(t_{1}-t\right) v^{\prime}(t)
$$

from which we have

$$
v(t) \geqslant \frac{\left(t_{1}-t\right) v\left(t_{0}\right)+\left(t-t_{0}\right) v\left(t_{1}\right)}{t_{1}-t_{0}}
$$

Considering the above inequality on $[0, \sigma]$ and $[\sigma, 1]$, we have

$$
v(t) \geqslant t\|v\| \quad \text { for } t \in[0, \sigma]
$$

and

$$
v(t) \geqslant(1-t)\|v\| \quad \text { for } t \in[\sigma, 1],
$$

where $\sigma \in[0,1]$ such that $v(\sigma)=\|v\|$. Hence,

$$
v(t) \geqslant \min \{t, 1-t\}\|v\|, \quad t \in[0,1] .
$$

Lemma 2.3. Assume $(\mathrm{H} 1)$ holds. Then $T(K) \subset K$ and the map $T: K \rightarrow K$ is completely continuous.

Proof. Lemma 2.2 implies that $T(K) \subset K$. It is not difficult to verify that T is compact and continuous.

Let

$$
\Gamma=\int_{1 / 4}^{3 / 4}\left(n \int_{1 / 4}^{s} \tau^{n-1}\left(\frac{1}{4}\right)^{n} d \tau\right)^{1 / n} d s>0
$$

Lemma 2.4. Assume (H1) holds and let $\eta>0$. If $v \in K$ and $f(v(t)) \geqslant(v(t) \eta)^{n}$ for $t \in$ [1/4,3/4], then

$$
\|T v\| \geqslant \Gamma \eta\|v\| .
$$

Proof. Note that from the definition of $T u$ that $T v(0)$ is the maximum value of $T u$ on $[0,1]$. It follows that

$$
\begin{aligned}
\|T v\| & \geqslant \int_{1 / 4}^{3 / 4}\left(n \int_{1 / 4}^{s} \tau^{n-1} f(v(\tau)) d \tau\right)^{1 / n} d s \\
& \geqslant \int_{1 / 4}^{3 / 4}\left(n \int_{1 / 4}^{s} \tau^{n-1}(v(\tau) \eta)^{n} d \tau\right)^{1 / n} d s \\
& \geqslant \int_{1 / 4}^{3 / 4}\left(n \int_{1 / 4}^{s} \tau^{n-1}\left(\frac{1}{4} \eta\|v\|\right)^{n} d \tau\right)^{1 / n} d s \\
& \geqslant \int_{1 / 4}^{3 / 4}\left(n \int_{1 / 4}^{s} \tau^{n-1}\left(\frac{1}{4}\right)^{n} d \tau\right)^{1 / n} d s \eta\|v\| \\
& =\Gamma \eta\|v\| .
\end{aligned}
$$

Define a new function

$$
f^{*}(v)=\max _{0 \leqslant t \leqslant v}\{f(t)\} \text {. }
$$

Note that $f_{0}^{*}=\lim _{v \rightarrow 0} \frac{f^{*}(v)}{v^{n}}$ and $f_{\infty}^{*}=\lim _{v \rightarrow \infty} \frac{f^{*}(v)}{v^{n}}$.

Lemma 2.5. Assume (H1) holds. Then $f_{0}^{*}=f_{0}$ and $f_{\infty}^{*}=f_{\infty}$.
Proof. It is easy to see that $f_{0}^{*}=f_{0}$. For the second part, we consider two cases, (a) $f(v)$ is bounded and (b) $f(v)$ is unbounded. For the case (a), it follows that $f_{\infty}^{*}=0=f_{\infty}$. For the case (b), for any $\delta>0$, let $M=\max _{0 \leqslant t \leqslant \delta}\{f(t)\}$ and

$$
N_{\delta}=\min \{v: v \geqslant \delta, f(v) \geqslant M\} \geqslant \delta,
$$

then

$$
\max _{0 \leqslant t \leqslant N_{\delta}}\{f(t)\}=f\left(N_{\delta}\right) .
$$

Thus, for any $\delta>0$, there exists a $N_{\delta} \geqslant \delta$ such that

$$
f^{*}(v)=\max \left\{\max _{0 \leqslant t \leqslant N_{\delta}}\{f(t)\}, \max _{N_{\delta} \leqslant t \leqslant v}\{f(t)\}\right\}=\max _{N_{\delta} \leqslant t \leqslant v}\{f(t)\} \quad \text { for } v>N_{\delta}
$$

Hence, it follows, from the definitions of f_{∞} and f_{∞}^{*}, that $f_{\infty}^{*}=f_{\infty}$.
Lemma 2.6. Assume (H1) holds and let $r>0$. If there exists an $\varepsilon>0$ such that $f^{*}(r) \leqslant \varepsilon^{n} r^{n}$, then

$$
\|T v\| \leqslant n^{1 / n} \varepsilon\|v\| \quad \text { for } v \in \partial \Omega_{r}
$$

Proof. From the definition of T, we have for $v \in \partial \Omega_{r}$,

$$
\begin{aligned}
\|T v\| & \leqslant \int_{0}^{1}\left(\int_{0}^{1} n \tau^{n-1} f(v(\tau)) d \tau\right)^{1 / n} d s \\
& \leqslant\left(\int_{0}^{1} n \tau^{n-1} f^{*}(r) d \tau\right)^{1 / n} d s \\
& \leqslant\left(\int_{0}^{1} n \tau^{n-1} \varepsilon^{n} r^{n} d \tau\right)^{1 / n} d s \\
& \leqslant n^{1 / n} \varepsilon r \\
& =n^{1 / n} \varepsilon\|v\| .
\end{aligned}
$$

3. Proof of Theorem 1.1

Part (a). It follows from Lemma 2.5 that $f_{0}^{*}=0$. Therefore, we can choose $r_{1}>0$ so that $f^{*}\left(r_{1}\right) \leqslant \varepsilon^{n} r_{1}^{n}$, where the constant $\varepsilon>0$ satisfies

$$
n^{1 / n} \varepsilon<1
$$

We have by Lemma 2.6 that

$$
\|T v\| \leqslant n^{1 / n} \varepsilon\|v\|<\|v\| \quad \text { for } v \in \partial \Omega_{r_{1}} .
$$

Now, since $f_{\infty}=\infty$, there is an $\hat{H}>0$ such that $f(v) \geqslant \eta^{n} v^{n}$ for $v \geqslant \hat{H}$, where $\eta>0$ is chosen so that

$$
\Gamma \eta>1 .
$$

Let $r_{2}=\max \left\{2 r_{1}, 4 \hat{H}\right\}$. If $v \in \partial \Omega_{r_{2}}$, then

$$
\min _{1 / 4 \leqslant t \leqslant 3 / 4} v(t) \geqslant \frac{1}{4}\|v\|=\frac{1}{4} r_{2} \geqslant \hat{H}
$$

which implies that

$$
f(v(t)) \geqslant \eta^{n}(v(t))^{n} \quad \text { for } t \in\left[\frac{1}{4}, \frac{3}{4}\right] .
$$

It follows from Lemma 2.4 that

$$
\|T v\| \geqslant \Gamma \eta\|v\|>\|v\| \quad \text { for } v \in \partial \Omega_{r_{2}}
$$

By Lemma 2.1,

$$
i\left(T, \Omega_{r_{1}}, K\right)=1 \quad \text { and } \quad i\left(T, \Omega_{r_{2}}, K\right)=0
$$

It follows from the additivity of the fixed point index that $i\left(T, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=-1$. Thus, $i\left(T, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right) \neq 0$, which implies T has a fixed point $v \in \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$ according to the existence property of the fixed point index. The fixed point $v \in \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$ is the desired positive solution of (2.1).

Part (b). If $f_{0}=\infty$, there is a $r_{1}>0$ such that $f(v) \geqslant \eta^{n} v^{n}$ for $0 \leqslant v \leqslant r_{1}$, where $\eta>0$ is chosen so that $\Gamma \eta>1$. If $v \in \partial \Omega_{r_{1}}$, then

$$
f(v(t)) \geqslant(\eta v(t))^{n} \quad \text { for } t \in[0,1] .
$$

Lemma 2.4 implies that

$$
\|T v\| \geqslant \Gamma \eta\|v\|>\|v\| \quad \text { for } v \in \partial \Omega_{r_{1}} .
$$

We now determine $\Omega_{r_{2}}$. Since $f_{\infty}^{*}=f_{\infty}=0$, there is a $r_{2}>2 r_{1}$ such that $f^{*}\left(r_{2}\right) \leqslant \varepsilon^{n} r_{2}^{n}$, where the constant $\varepsilon>0$ satisfies

$$
\varepsilon(n)^{1 / n}<1 \text {. }
$$

Thus, we have by Lemma 2.6

$$
\|T v\| \leqslant \varepsilon(n)^{1 / n}\|v\|<\|v\| \quad \text { for } v \in \partial \Omega_{r_{2}} .
$$

By Lemma 2.1,

$$
i\left(T, \Omega_{r_{1}}, K\right)=0 \quad \text { and } \quad i\left(T, \Omega_{r_{2}}, K\right)=1
$$

It follows from the additivity of the fixed point index that $i\left(T, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=1$. Thus, T has a fixed point in $\Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$, which is the desired positive solution of (2.1).

References

[1] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[2] Ph. Delanoe, Radially symmetric boundary value problems for real and complex elliptic Monge-Ampère equations, J. Differential Equations 58 (1985) 318-344.
[3] L.H. Erbe, H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994) 743-748.
[4] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988.
[5] M. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[6] P.L. Lions, Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl. (4) 142 (1985) 263-275.
[7] N.D. Kutev, Nontrivial solutions for the equations of Monge-Ampère type, J. Math. Anal. Appl. 132 (1988) 424-433.
[8] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003) 287-306.

[^0]: * Present address: New College of Interdisciplinary Arts and Sciences, Arizona State University, PO Box 37100, Phoenix, AZ 85069, USA.

 E-mail address: wangh@asu.edu.
 0022-247X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jmaa.2005.05.067

