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Abstract

We establish two criteria for the existence of convex solutions for a boundary value problem arising
from the study of the existence of convex radial solutions for the Monge—Ampere equations. We shall
use fixed point theorems in a cone.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the existence of convex solutions for the boundary value prob-
lem

((u/(l))”)/ =n""! f(-u@®) in0<t<l1,
W(©0)=0,  u(l)=0, (1.1)

where n > 1. A nontrivial convex solution of (1.1) is negative on [0, 1). Such a problem
occurs in the study of the existence of convex radial solutions for the Dirichlet problem of
the Monge—Ampere equations
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detD*u = f(—u) in B, u=0 ondB, (1.2)

where B = {x € R": |x| < 1}. In fact, a convex radial solution of (1.2) can be viewed as a
solution of (1.1). Kutev [7] obtained the existence of convex radial solutions of (1.2) with
f(—=u) = (—u)?, n # p > 0 by reducing (1.2) to (1.1). We refer to [2,7] and references
therein for further discussions regarding convex radial solutions of (1.2). Related results
may be found in [3,6,8].

In this paper we shall apply a fixed point theorem in a cone to show the existence of
convex solutions of (1.1) under superlinearity and sublinearity assumptions on the nonlin-
earity f. Our assumption for this paper is:

(H1) f:[0,00) — [0, 00) is continuous.

In order to state our results, we introduce the notation

fo= 11%% and  foo = Tim L2 (1.3)

u—oo yn

Our main results are:

Theorem 1.1. Assume (H1) holds.

(@) If fo=0and fx = 00, then (1.1) has a nontrivial convex solution.
(b) If fo=00 and foo =0, then (1.1) has a nontrivial convex solution.

2. Preliminaries

With a simple transformation v = —u, (1.1) can be brought to the following equation:
(=v®)") =n"""f(v@)) in0<r<1,
v'(0) =0, v(1) =0. 2.1)

Now we treat positive concave classical solutions of (2.1).
The following well-known result of the fixed point index is crucial in our arguments.

Lemma 2.1. [1,4,5] Let E be a Banach space and K a cone in E. Forr > 0, define K, =

{veK: ||x|| <r}. Assume that T : K, — K is completely continuous such that Tx # x for
xedK,={veK: |x|=r}

) If1Tx|| = |Ix|| for x € 9K, then
i(T,K,,K)=0.

@Gi) If \ITx| < |lx|| for x € 0K, then
i(T,K,,K)=1.
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In order to apply Lemma 2.1 to (2.1), let X be the Banach space C[0, 1] with

vl = sup,¢po,1y [v(D)].
Define the cone K by

1
K={veX:v() >0, i t) = — .
{v v(t) 1/413123/40() 4||vII}
Also, define, for r a positive number, £2, by
2,={vek: vl <r}
Note that 082, ={v e K: ||v| =r}.
Let the map T : K — X be defined by
1, s 1/n
Tv(t):/(/nr”lf(v(r))dr> ds, 0<t<l,
N0

Thus, if v € K is a nonzero positive fixed point of 7', then —v is a nontrivial convex
solution of (1.1). In view of Lemma 2.2, —v is negative for r € [0, 1).
The following lemma is a simple consequence of the concavity of v.

Lemma 2.2. Assume (H1) holds. Let v € X with v(t) > 0 for t € [0, 1]. If V/(¢) is nonin-
creasing on [0, 1], then

v(t) = min{t, 1 —t}|v]l, tel0,1].

In particular,

Lmin o0 > 5l
Proof. Since v/(¢) is nonincreasing, we have for 0 <7y <t <t; <1,
t
) = vit0) = [ V(5)ds > @ =10 @)
0]
and
4]
i) = v = [V6)ds < 0 = 0w/,
t
from which we have
(t1 — t)v(to) + (t — to)v(t1)

v(t) = P
1 — 10

Considering the above inequality on [0, o] and [o, 1], we have

v(@) = tllv]| forz€[0, 0],
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and
v(®) = (A =]l forzelo, 1],

where o € [0, 1] such that v(o) = ||v||. Hence,
v(t) > min{t, 1 —t}|jv]l, t€]0,1]. |

Lemma 2.3. Assume (H1) holds. Then T(K) C K and the map T : K — K is completely
continuous.

Proof. Lemma 2.2 implies that 7(K) C K. It is not difficult to verify that 7' is compact
and continuous. O

Let
34, s N\
F:/(n/r"_l(z) dr) ds > 0.
/4 1/4

Lemma 2.4. Assume (H1) holds and let n > 0. If v € K and f(v(t)) = (v(t)n)" fort €
[1/4,3/4], then

ITvll = I'nllvll.

Proof. Note that from the definition of Tu that Tv(0) is the maximum value of Tu
on [0, 1]. It follows that

3/4 s 1/n
ITv| >/<n/r"—‘f(u(r))dr> ds
1/4 N 1/4
3/4 s 1/n
>/<n/r”_l(v(t)n)"dt> ds
/4 1/4
3/4 s | n 1/n
2/<n/r’z_l(zn|lv||) dr) ds
/4 1/4
34, s IR
>/<n/fn—l(z) dr) dsulvl
1/4  1/4
=Inlvl. O

Define a new function
*(v) = ma 1)i.
f*(w) 0<év{f( )}

/)

it

and £ = lim,_ LX.

Note that f; = lim,_
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Lemma 2.5. Assume (H1) holds. Then f§ = fo and [, = fc.

Proof. Itis easy to see that f' = fp. For the second part, we consider two cases, (a) f(v)
is bounded and (b) f(v) is unbounded. For the case (a), it follows that f¥ =0 = f. For
the case (b), for any § > 0, let M = maxog,<s{f(¢)} and

Ns=min{v: v=3, f(v) =M} >3,
then

max {f(H)} = f(Ny).

0<r<Ns

Thus, for any § > 0, there exists a Ns > § such that

f*(v)zmax{omax {rmn}. me}év{f(t)}}=N;r£>;v{f(t)} for v > Nj.

\\6

Hence, it follows, from the definitions of f, and fZ, that f% = foo. O

Lemma 2.6. Assume (H1) holds and let r > 0. If there exists an ¢ > 0 such that
f*(r) < e™r", then

ITv| <n'/e|v]| forveds,.

Proof. From the definition of T, we have for v € 952,
1,1

1/n
1TV g/(/m"—lf(v(r))dr> ds

0 0

1 1/n

< (/nt"_lf*(r)dt> ds
0
1 1/n

< (/nt"_lsnr"dt) ds
0

<n'"er

=n'"¢vl. O

3. Proof of Theorem 1.1
Part (a). It follows from Lemma 2.5 that fg‘ = 0. Therefore, we can choose r; > 0 so
that f*(r;) < &"r{, where the constant & > 0 satisfies
n'me <1.
We have by Lemma 2.6 that
ITv] <n'/e|v]| < |v] forveds2,.
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Now, since f» = 00, there is an H > 0 such that f@) = n"v" forv > H, where n>0is
chosen so that

I'n>1.

Let rp = max{2ry, 4H}. If v € 3£2,,, then

A

1
min t - =-rmn>H,
1/4@1@/4 v(r) = I|v|| e

which implies that

f(v(t)) >n" (v(t))n fort e |:i i]

It follows from Lemma 2.4 that
ITvll = Fyllvll > flvll  forveds2,.
By Lemma 2.1,
i(T,$2,,K)=1 and i(T,$£,, K)=0

It follows from the additivity of the fixed point index that i (7', £2,, \ (2,1, K)=—1. Thus,
i(T, $2,,\ .Q,l, K) # 0, which implies T has a fixed point v € £2, \ £2,, according to the
existence property of the fixed point index. The fixed point v € £2,, \ £2,, is the desired
positive solution of (2.1).

Part (b). If fo = oo, thereis a r; > 0 such that f(v) > n"v" for0 < v < ry, where n > 0
is chosen so that I'n > 1. If v € 982, then

f(v®) = (nv®))" fort e [0, 11.
Lemma 2.4 implies that
ITvll = Fnllvll > [lvll forveds2,.

We now determine £2,,. Since f3 = foo =0, there is a r; > 2ry such that f*(rp) <e"rj,
where the constant ¢ > 0 satisfies

em)/" < 1.
Thus, we have by Lemma 2.6

IToll < e/ v]l < vl forv e ds2,.
By Lemma 2.1,

i(T,$2,,,K)=0 and i(T,$2,,K)=1.

It follows from the additivity_ of the fixed point index that i (T, §2,, \ [_Zr] , K) =1. Thus,
T has a fixed point in £2,, \ §2,,, which is the desired positive solution of (2.1). O
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