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Convex solutions of boundary value problems
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Abstract

We establish two criteria for the existence of convex solutions for a boundary value problem arising
from the study of the existence of convex radial solutions for the Monge–Ampère equations. We shall
use fixed point theorems in a cone.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the existence of convex solutions for the boundary value prob-
lem ((

u′(t)
)n)′ = ntn−1f

(−u(t)
)

in 0 < t < 1,

u′(0) = 0, u(1) = 0, (1.1)

where n � 1. A nontrivial convex solution of (1.1) is negative on [0,1). Such a problem
occurs in the study of the existence of convex radial solutions for the Dirichlet problem of
the Monge–Ampère equations
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detD2u = f (−u) in B, u = 0 on ∂B, (1.2)

where B = {x ∈ R
n: |x| < 1}. In fact, a convex radial solution of (1.2) can be viewed as a

solution of (1.1). Kutev [7] obtained the existence of convex radial solutions of (1.2) with
f (−u) = (−u)p , n �= p > 0 by reducing (1.2) to (1.1). We refer to [2,7] and references
therein for further discussions regarding convex radial solutions of (1.2). Related results
may be found in [3,6,8].

In this paper we shall apply a fixed point theorem in a cone to show the existence of
convex solutions of (1.1) under superlinearity and sublinearity assumptions on the nonlin-
earity f . Our assumption for this paper is:

(H1) f : [0,∞) → [0,∞) is continuous.

In order to state our results, we introduce the notation

f0 = lim
u→0

f (u)

un
and f∞ = lim

u→∞
f (u)

un
. (1.3)

Our main results are:

Theorem 1.1. Assume (H1) holds.

(a) If f0 = 0 and f∞ = ∞, then (1.1) has a nontrivial convex solution.
(b) If f0 = ∞ and f∞ = 0, then (1.1) has a nontrivial convex solution.

2. Preliminaries

With a simple transformation v = −u, (1.1) can be brought to the following equation:((−v′(t)
)n)′ = ntn−1f

(
v(t)

)
in 0 < t < 1,

v′(0) = 0, v(1) = 0. (2.1)

Now we treat positive concave classical solutions of (2.1).
The following well-known result of the fixed point index is crucial in our arguments.

Lemma 2.1. [1,4,5] Let E be a Banach space and K a cone in E. For r > 0, define Kr =
{v ∈ K: ‖x‖ < r}. Assume that T : K̄r → K is completely continuous such that T x �= x for
x ∈ ∂Kr = {v ∈ K: ‖x‖ = r}.

(i) If ‖T x‖ � ‖x‖ for x ∈ ∂Kr , then

i(T ,Kr,K) = 0.

(ii) If ‖T x‖ � ‖x‖ for x ∈ ∂Kr , then

i(T ,Kr,K) = 1.
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In order to apply Lemma 2.1 to (2.1), let X be the Banach space C[0,1] with
‖v‖ = supt∈[0,1] |v(t)|.

Define the cone K by

K =
{
v ∈ X: v(t) � 0, min

1/4�t�3/4
v(t) � 1

4
‖v‖

}
.

Also, define, for r a positive number, Ωr by

Ωr = {
v ∈ K: ‖v‖ < r

}
.

Note that ∂Ωr = {v ∈ K: ‖v‖ = r}.
Let the map T :K → X be defined by

T v(t) =
1∫

t

( s∫
0

nτn−1f
(
v(τ)

)
dτ

)1/n

ds, 0 � t � 1,

Thus, if v ∈ K is a nonzero positive fixed point of T , then −v is a nontrivial convex
solution of (1.1). In view of Lemma 2.2, −v is negative for r ∈ [0,1).

The following lemma is a simple consequence of the concavity of v.

Lemma 2.2. Assume (H1) holds. Let v ∈ X with v(t) � 0 for t ∈ [0,1]. If v′(t) is nonin-
creasing on [0,1], then

v(t) � min{t,1 − t}‖v‖, t ∈ [0,1].
In particular,

min
1/4�t�3/4

v(t) � 1

4
‖v‖.

Proof. Since v′(t) is nonincreasing, we have for 0 � t0 < t < t1 � 1,

v(t) − v(t0) =
t∫

t0

v′(s) ds � (t − t0)v
′(t)

and

v(t1) − v(t) =
t1∫

t

v′(s) ds � (t1 − t)v′(t),

from which we have

v(t) � (t1 − t)v(t0) + (t − t0)v(t1)

t1 − t0
.

Considering the above inequality on [0, σ ] and [σ,1], we have

v(t) � t‖v‖ for t ∈ [0, σ ],
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and

v(t) � (1 − t)‖v‖ for t ∈ [σ,1],
where σ ∈ [0,1] such that v(σ ) = ‖v‖. Hence,

v(t) � min{t,1 − t}‖v‖, t ∈ [0,1]. �
Lemma 2.3. Assume (H1) holds. Then T (K) ⊂ K and the map T :K → K is completely
continuous.

Proof. Lemma 2.2 implies that T (K) ⊂ K. It is not difficult to verify that T is compact
and continuous. �

Let

Γ =
3/4∫

1/4

(
n

s∫
1/4

τn−1
(

1

4

)n

dτ

)1/n

ds > 0.

Lemma 2.4. Assume (H1) holds and let η > 0. If v ∈ K and f (v(t)) � (v(t)η)n for t ∈
[1/4,3/4], then

‖T v‖ � Γ η‖v‖.
Proof. Note that from the definition of T u that T v(0) is the maximum value of T u

on [0,1]. It follows that

‖T v‖ �
3/4∫

1/4

(
n

s∫
1/4

τn−1f
(
v(τ)

)
dτ

)1/n

ds

�
3/4∫

1/4

(
n

s∫
1/4

τn−1(v(τ)η
)n

dτ

)1/n

ds

�
3/4∫

1/4

(
n

s∫
1/4

τn−1
(

1

4
η‖v‖

)n

dτ

)1/n

ds

�
3/4∫

1/4

(
n

s∫
1/4

τn−1
(

1

4

)n

dτ

)1/n

dsη‖v‖

= Γ η‖v‖. �
Define a new function

f ∗(v) = max
0�t�v

{
f (t)

}
.

Note that f ∗ = limv→0
f ∗(v)

n and f ∗∞ = limv→∞ f ∗(v)
n .
0 v v
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Lemma 2.5. Assume (H1) holds. Then f ∗
0 = f0 and f ∗∞ = f∞.

Proof. It is easy to see that f ∗
0 = f0. For the second part, we consider two cases, (a) f (v)

is bounded and (b) f (v) is unbounded. For the case (a), it follows that f ∗∞ = 0 = f∞. For
the case (b), for any δ > 0, let M = max0�t�δ{f (t)} and

Nδ = min
{
v: v � δ, f (v) � M

}
� δ,

then

max
0�t�Nδ

{
f (t)

} = f (Nδ).

Thus, for any δ > 0, there exists a Nδ � δ such that

f ∗(v) = max
{

max
0�t�Nδ

{
f (t)

}
, max

Nδ�t�v

{
f (t)

}} = max
Nδ�t�v

{
f (t)

}
for v > Nδ.

Hence, it follows, from the definitions of f∞ and f ∗∞, that f ∗∞ = f∞. �
Lemma 2.6. Assume (H1) holds and let r > 0. If there exists an ε > 0 such that
f ∗(r) � εnrn, then

‖T v‖ � n1/nε‖v‖ for v ∈ ∂Ωr .

Proof. From the definition of T , we have for v ∈ ∂Ωr ,

‖T v‖ �
1∫

0

( 1∫
0

nτn−1f
(
v(τ)

)
dτ

)1/n

ds

�
( 1∫

0

nτn−1f ∗(r) dτ

)1/n

ds

�
( 1∫

0

nτn−1εnrn dτ

)1/n

ds

� n1/nεr

= n1/nε‖v‖. �

3. Proof of Theorem 1.1

Part (a). It follows from Lemma 2.5 that f ∗
0 = 0. Therefore, we can choose r1 > 0 so

that f ∗(r1) � εnrn
1 , where the constant ε > 0 satisfies

n1/nε < 1.

We have by Lemma 2.6 that

‖T v‖ � n1/nε‖v‖ < ‖v‖ for v ∈ ∂Ωr .
1
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Now, since f∞ = ∞, there is an Ĥ > 0 such that f (v) � ηnvn for v � Ĥ , where η > 0 is
chosen so that

Γ η > 1.

Let r2 = max{2r1,4Ĥ }. If v ∈ ∂Ωr2 , then

min
1/4�t�3/4

v(t) � 1

4
‖v‖ = 1

4
r2 � Ĥ ,

which implies that

f
(
v(t)

)
� ηn

(
v(t)

)n for t ∈
[

1

4
,

3

4

]
.

It follows from Lemma 2.4 that

‖T v‖ � Γ η‖v‖ > ‖v‖ for v ∈ ∂Ωr2 .

By Lemma 2.1,

i(T ,Ωr1 ,K) = 1 and i(T ,Ωr2 ,K) = 0.

It follows from the additivity of the fixed point index that i(T ,Ωr2 \ Ω̄r1,K) = −1. Thus,
i(T ,Ωr2 \ Ω̄r1,K) �= 0, which implies T has a fixed point v ∈ Ωr2 \ Ω̄r1 according to the
existence property of the fixed point index. The fixed point v ∈ Ωr2 \ Ω̄r1 is the desired
positive solution of (2.1).

Part (b). If f0 = ∞, there is a r1 > 0 such that f (v) � ηnvn for 0 � v � r1, where η > 0
is chosen so that Γ η > 1. If v ∈ ∂Ωr1 , then

f
(
v(t)

)
�

(
ηv(t)

)n for t ∈ [0,1].
Lemma 2.4 implies that

‖T v‖ � Γ η‖v‖ > ‖v‖ for v ∈ ∂Ωr1 .

We now determine Ωr2 . Since f ∗∞ = f∞ = 0, there is a r2 > 2r1 such that f ∗(r2) � εnrn
2 ,

where the constant ε > 0 satisfies

ε(n)1/n < 1.

Thus, we have by Lemma 2.6

‖T v‖ � ε(n)1/n‖v‖ < ‖v‖ for v ∈ ∂Ωr2 .

By Lemma 2.1,

i(T ,Ωr1 ,K) = 0 and i(T ,Ωr2 ,K) = 1.

It follows from the additivity of the fixed point index that i(T ,Ωr2 \ Ω̄r1,K) = 1. Thus,
T has a fixed point in Ωr \ Ω̄r , which is the desired positive solution of (2.1). �
2 1
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