Positive Solutions for Nonlinear Eigenvalue Problems

Johnny Henderson*

Discrete and Statistical Sciences, Auburn University, Auburn, Alabama 36849-5307

and

Haiyan Wang[†]

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

Submitted by Joyce R. McLaughlin

Received June 26, 1995

1. INTRODUCTION

We are concerned with determining values of λ (eigenvalues), for which there exist positive solutions of the boundary value problem

$$u'' + \lambda a(t) f(u) = 0, \quad 0 < t < 1,$$
 (1 λ)

$$u(0) = u(1) = 0, (2)$$

where

- (A) $f: [0, \infty) \to [0, \infty)$ is continuous,
- (B) $a: [0,1] \to [0,\infty)$ is continuous and does not vanish identically on any subinterval, and

(C)
$$f_0 = \lim_{x \to 0^+} (f(x)/x)$$
 and $f_\infty = \lim_{x \to \infty} (f(x)/x)$ exist.

We remark that, if u(t) is a nonnegative solution of (1λ) , (2), then u(t) is concave on [0, 1].

Boundary value problems (1λ) , (2) describe many phenomena in the applied mathematical sciences, which can be found in the theory of nonlinear diffusion generated by nonlinear sources, in thermal ignition of

^{*}E-mail address: hendej2@mail.auburn.edu.

[†]E-mail address: wangh@math.msu.edu.

gases, and in concentration in chemical or biological problems, where only positive solutions are meaningful; see, for example, [7, 11–13]. Also, the problem (1λ) , (2) has been dealt with by Fink [8] and Fink, Gatica, and Hernandez [9] in modeling the one-dimensional case of the Dirichlet problem, when a(t) satisfies certain integrability conditions. The results of [9] were generalized to nth order problems in [3].

For our motivation, we consider methods of solutions as (1λ) , (2) arises in applications involving nonlinear elliptic problems in annular regions; see [1, 2, 6, 10, 15]. For the case when $\lambda = 1$ and f is either superlinear $(f_0 = 0 \text{ and } f_\infty = \infty)$, or f is sublinear $(f_0 = \infty \text{ and } f_\infty = 0)$, Erbe and Wang [5] obtained solutions that are positive with respect to a cone and which lie in an annular type region. The methods of [5] were then extended to higher order boundary value problems in [4].

It is not required in this work that f be either sublinear or superlinear, yet, as in [5, 4], the arguments presented here for obtaining solutions of (1λ) , (2), for certain λ , involve concavity properties of solutions, which are employed in defining a cone on which a positive integral operator is defined. A Krasnosel'skii fixed point theorem [14] is applied to yield positive solutions of (1λ) , (2), for λ belonging to an open interval.

In Section 2, we present some properties of Green's functions that are used in defining a positive operator. We also state the Krasnosel'skii fixed point theorem. In Section 3, we give an appropriate Banach space and construct a cone to which we apply the fixed point theorem yielding solutions of (1λ) , (2), for an open interval of eigenvalues.

2. SOME PRELIMINARIES

In this section, we state the above mentioned Krasnosel'skii fixed point theorem. We will apply this fixed point theorem to a completely continuous integral operator, whose kernel, G(t, s), is the Green's function for

$$-y''=0, (3)$$

$$y(0) = y(1) = 0. (4)$$

In particular

$$G(t,s) = \begin{cases} t(1-s), & 0 \le t \le s \le 1, \\ s(1-t), & 0 \le s \le t \le 1, \end{cases}$$
 (5)

from which

$$G(t,s) > 0$$
 on $(0,1) \times (0,1)$, (6)

$$G(t,s) \le G(s,s) = s(1-s), \quad 0 \le t, s \le 1,$$
 (7)

and it is shown in [5] that

$$G(t,s) \ge \frac{1}{4}G(s,s) = \frac{1}{4}s(1-s), \qquad \frac{1}{4} \le t \le \frac{3}{4}, 0 \le s \le 1.$$
 (8)

We will apply the following fixed point theorem to obtain solutions of (1λ) , (2), for certain λ .

THEOREM 1. Let \mathscr{B} be a Banach space, and let $\mathscr{P} \subseteq \mathscr{B}$ be a cone in \mathscr{B} . Assume Ω_1, Ω_2 are open subsets of \mathscr{B} with $0 \in \Omega_1 \subset \overline{\Omega}_1 \subset \Omega_2$, and let

$$T: \mathscr{P} \cap \left(\overline{\Omega}_2 \setminus \Omega_1\right) \to \mathscr{P}$$

be a completely continuous operator such that, either

- (i) $||Tu|| \le ||u||$, $u \in \mathscr{P} \cap \partial \Omega_1$, and $||Tu|| \ge ||u||$, $u \in \mathscr{P} \cap \partial \Omega_2$, or
- (ii) $||Tu|| \ge ||u||$, $u \in \mathscr{P} \cap \partial \Omega_1$, and $||Tu|| \le ||u||$, $u \in \mathscr{P} \cap \partial \Omega_2$.

Then T has a fixed point in $\mathscr{P} \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

3. SOLUTIONS IN THE CONE

In this section, we will apply Theorem 1 to the eigenvalue problem (1λ) , (2). We note that u(t) is a solution of (1λ) , (2) if, and only if,

$$u(t) = \lambda \int_0^1 G(t, s) a(s) f(u(s)) ds, \qquad 0 \le t \le 1.$$

For our constructions, let $\mathscr{B} = C[0,1]$, with norm, $||x|| = \sup_{0 \le t \le 1} |x(t)|$. Define a cone, \mathscr{P} , by

$$\mathscr{P} = \left\{ x \in \mathscr{B} | x(t) \ge 0 \text{ on } [0,1], \text{ and } \min_{1/4 \le t \le 3/4} x(t) \ge \frac{1}{4} ||x|| \right\}.$$

Also, let the number $\tau \in [0, 1]$ be defined by

$$\int_{1/4}^{3/4} G(\tau, s) a(s) ds = \max_{0 \le t \le 1} \int_{1/4}^{3/4} G(t, s) a(s) ds.$$
 (9)

THEOREM 2. Assume that conditions (A), (B), and (C) are satisfied. Then, for each λ satisfying

$$\frac{4}{\left(\int_{1/4}^{3/4} G(\tau, s) a(s) \, ds\right) f_{\infty}} < \lambda < \frac{1}{\left(\int_{0}^{1} s(1 - s) a(s) \, ds\right) f_{0}}, \tag{10}$$

there exists at least one solution of (1λ) , (2) in \mathcal{P} .

Proof. Let λ be given as in (10). Now, let $\varepsilon > 0$ be chosen such that

$$\frac{4}{\left(\int_{1/4}^{3/4} G(\tau,s) a(s) \, ds\right) \left(f_{\infty} - \varepsilon\right)} \leq \lambda \leq \frac{1}{\left(\int_{0}^{1} s(1-s) a(s) \, ds\right) \left(f_{0} + \varepsilon\right)}.$$

Define an integral operator $T: \mathcal{P} \to \mathcal{B}$ by

$$Tu(t) = \lambda \int_0^1 G(t, s) a(s) f(u(s)) ds, \qquad u \in \mathscr{P}.$$
 (11)

We seek a fixed point of T in the cone \mathcal{P} .

Notice from (6) that, for $u \in \mathcal{P}$, $Tu(t) \ge 0$ on [0, 1]. Also, for $u \in \mathcal{P}$, we have from (7) that

$$Tu(t) = \lambda \int_0^1 G(t, s) a(s) f(u(s)) ds$$

$$\leq \lambda \int_0^1 s(1 - s) a(s) f(u(s)) ds,$$

so that

$$||Tu|| \le \lambda \int_0^1 s(1-s)a(s)f(u(s)) ds.$$
 (12)

And next, if $u \in \mathcal{P}$, we have by (8) and (12),

$$\min_{1/4 \le t \le 3/4} Tu(t) = \min_{1/4 \le t \le 3/4} \lambda \int_0^1 G(t, s) a(s) f(u(s)) ds$$

$$\ge \frac{\lambda}{4} \int_0^1 s(1 - s) a(s) f(u(s)) ds$$

$$\ge \frac{1}{4} ||Tu||.$$

As a consequence, $T: \mathscr{P} \to \mathscr{P}$. In addition, standard arguments show that T is completely continuous.

Now, turning to f_0 , there exists an $H_1 > 0$ such that $f(x) \le (f_0 + \varepsilon)x$, for $0 < x \le H_1$. So, choosing $u \in \mathscr{P}$ with $||u|| = H_1$, we have from (7)

$$Tu(t) \le \lambda \int_0^1 s(1-s)a(s)f(u(s)) ds$$

$$\le \lambda \int_0^1 s(1-s)a(s)(f_0+\varepsilon)u(s) ds$$

$$\le \lambda \int_0^1 s(1-s)a(s) ds(f_0+\varepsilon)||u||$$

$$\le ||u||.$$

Consequently, $||Tu|| \le ||u||$. So, if we set

$$\Omega_1 = \{ x \in \mathcal{B} | \|x\| < H_1 \},$$

then

$$||Tu|| \le ||u||, \quad \text{for } u \in \mathscr{P} \cap \partial \Omega_1.$$
 (13)

Next, considering f_{∞} , there exists an $\overline{H}_2 > 0$ such that $f(x) \ge (f_{\infty} - \varepsilon)x$, for all $x \ge \overline{H}_2$. Let $H_2 = \max\{2H_1, 4\overline{H}_2\}$ and let

$$\Omega_2 = \{ x \in \mathcal{B} | ||x|| < H_2 \}.$$

If $u \in \mathscr{P}$ with $||u|| = H_2$, then $\min_{1/4 \le t \le 3/4} u(t) \ge \frac{1}{4} ||u|| \ge \overline{H}_2$, and

$$Tu(\tau) \ge \lambda \int_{1/4}^{3/4} G(\tau, s) a(s) f(u(s)) ds$$

$$\ge \lambda \int_{1/4}^{3/4} G(\tau, s) a(s) (f_{\infty} - \varepsilon) u(s) ds$$

$$\ge \frac{\lambda}{4} \int_{1/4}^{3/4} G(\tau, s) a(s) ds (f_{\infty} - \varepsilon) ||u||$$

$$\ge ||u||.$$

Thus, $||Tu|| \ge ||u||$. Hence,

$$||Tu|| \ge ||u||, \quad \text{for } u \in \mathscr{P} \cap \partial \Omega_2.$$
 (14)

Applying (i) of Theorem 1 to (13) and (14) yields that T has a fixed point $u(t) \in \mathscr{P} \cap (\overline{\Omega}_2 \setminus \Omega_1)$. As such, u(t) is a desired solution of (1λ) , (2) for the given λ . The proof is complete.

THEOREM 3. Assume that conditions (A), (B), and (C) are satisfied. Then, for each λ satisfying

$$\frac{4}{\left(\int_{1/4}^{3/4} G(\tau, s) a(s) \, ds\right) f_0} < \lambda < \frac{1}{\left(\int_0^1 s(1-s) a(s) \, ds\right) f_\infty}, \quad (15)$$

there exists at least one solution of (1λ) , (2) in \mathcal{P} .

Proof. Let λ be given as in (15), and choose $\varepsilon > 0$ such that

$$\frac{4}{\left(\int_{1/4}^{3/4} G(\tau,s) a(s) \, ds\right) (f_0 - \varepsilon)} \leq \lambda \leq \frac{1}{\left(\int_{0}^{1} s(1-s) a(s) \, ds\right) (f_{\infty} + \varepsilon)}.$$

Let T be the cone preserving, completely continuous operator that was defined by (11).

Beginning with f_0 , there exists an $H_1 > 0$ such that $f(x) \ge (f_0 - \varepsilon)x$, for $0 < x \le H_1$. So, for $u \in \mathscr{P}$ and $||u|| = H_1$, we have

$$Tu(\tau) = \lambda \int_0^1 G(\tau, s) a(s) f(u(s)) ds$$

$$\geq \lambda \int_{1/4}^{3/4} G(\tau, s) a(s) f(u(s)) ds$$

$$\geq \lambda \int_{1/4}^{3/4} G(\tau, s) a(s) (f_0 - \varepsilon) u(s) ds$$

$$\geq \frac{\lambda}{4} \int_{1/4}^{3/4} G(\tau, s) a(s) ds (f_0 - \varepsilon) ||u||$$

$$\geq ||u||.$$

Thus, $||Tu|| \ge ||u||$. So, if we let

$$\Omega_1 = \{ x \in \mathcal{B} | \|x\| < H_1 \},$$

then

$$||Tu|| \ge ||u||, \quad \text{for } u \in \mathscr{P} \cap \partial \Omega_1.$$
 (16)

It remains to consider f_{∞} . There exists an $\overline{H}_2 > 0$ such that $f(x) \le (f_{\infty} + \varepsilon)x$, for all $x \ge \overline{H}_2$. There are the two cases, (a) f is bounded, and (b) f is unbounded.

For case (a), suppose N > 0 is such that $f(x) \le N$, for all $0 < x < \infty$. Let $H_2 = \max\{2H_1, N\lambda \int_0^1 s(1-s)a(s) \, ds\}$. Then, for $u \in \mathscr{P}$ with $||u|| = H_2$, we have

$$Tu(t) = \lambda \int_0^1 G(t, s) a(s) f(u(s)) ds$$

$$\leq \lambda N \int_0^1 s(1 - s) a(s) ds$$

$$\leq ||u||,$$

so that $||Tu|| \le ||u||$. So, if

$$\Omega_2 = \{ x \in \mathcal{B} | \|x\| < H_2 \},$$

then

$$||Tu|| \le ||u||, \quad \text{for } u \in \mathscr{P} \cap \partial \Omega_2.$$
 (17)

For case (b), let $H_2 > \max\{2H_1, \overline{H}_2\}$ be such that $f(x) \leq f(H_2)$, for $0 < x \leq H_2$. Choosing $u \in \mathscr{P}$ with $||u|| = H_2$,

$$Tu(t) \leq \lambda \int_0^1 s(1-s)a(s)f(u(s)) ds$$

$$\leq \lambda \int_0^1 s(1-s)a(s)f(H_2) ds$$

$$\leq \lambda \int_0^1 s(1-s)a(s) ds(f_\infty + \varepsilon)H_2$$

$$= \lambda \int_0^1 s(1-s)a(s) ds(f_\infty + \varepsilon)||u||$$

$$\leq ||u||,$$

and so $||Tu|| \le ||u||$. For this case, if we let

$$\Omega_2 = \{ x \in \mathcal{B} | \|x\| < H_2 \},$$

then

$$||Tu|| \le ||u||, \quad \text{for } u \in \mathscr{P} \cap \partial \Omega_2.$$
 (18)

Thus, in either of the cases, an application of part (ii) of Theorem 1 yields a solution of (1λ) , (2) which belongs to $\mathscr{P}\cap(\overline{\Omega}_2\setminus\Omega_1)$. This completes the proof.

REFERENCES

- C. Bandle, C. V. Coffman, and M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations 69 (1987), 322–345.
- C. Bandle and M. K. Kwong, Semilinear elliptic problems in annular domains, J. Appl. Math. Phys. 40 (1989), 245–257.
- C. J. Chyan and J. Henderson, Positive solutions for singular higher order nonlinear equations, Differential Equations Dynam. Systems 2 (1994), 153-160.
- 4. P. W. Eloe and J. Henderson, Positive solutions for higher order differential equations, *Elec. J. Differential Equations* **3** (1995), 1–8.
- 5. L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, *Proc. Amer. Math. Soc.* **120** (1994), 743–748.
- L. H. Erbe and H. Wang, Existence and nonexistence of positive solutions in annular domains, WSSIAA 3 (1994), 207-217.
- D. G. de Figueiredo, P. L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pura Appl. 61 (1982), 41–63.
- A. M. Fink, The radial Laplacian Gel'fand problem, in "Delay and Differential Equations" pp. 93–98, World Scientific, River Edge, New Jersey, 1992.

- 9. A. M. Fink, J. A. Gatica, and G. E. Hernandez, Eigenvalues of generalized Gel'fand models, *Nonlinear Anal.* **20** (1993), 1453–1468.
- 10. X. Garaizer, Existence of positive radial solutions for semilinear elliptic problems in the annulus, *J. Differential Equations* **70** (1987), 69–72.
- H. B. Keller, Some positive problems suggested by nonlinear heat generation, in "Bifurcation Theory and Nonlinear Eigenvalue Problems" (J. B. Keller and S. Antman, Eds.), pp. 217–255, Benjamin, Elmsford, New York, 1969.
- 12. H. J. Kuiper, On positive solutions of nonlinear elliptic eigenvalue problems, *Rend. Circ. Mat. Palermo* (2) **20** (1979), 113–138.
- 13. L. Sanchez, Positive solutions for a class of semilinear two-point boundary value problems, *Bull. Austral. Math. Soc.* **45** (1992), 439–451.
- M. A. Krasnosel'skii, "Positive Solutions of Operator Equations," Noordhoff, Groningen, 1964.
- H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994), 1–7.