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1. INTRODUCTION

We are concerned with determining values of A (eigenvalues), for which
there exist positive solutions of the boundary value problem

W+ da(t)f(u) =0, 0<r<1, (11)
u(0) = u(1) =0, (2)

where

(A)  f:[0,¢) - [0,) is continuous,

(B) a:[0,1] — [0, ) is continuous and does not vanish identically on
any subinterval, and

© fo=Ilim _,+(f(x)/x)and f, = lim__ (f(x)/x) exist.

We remark that, if u(¢) is a nonnegative solution of (1), (2), then wu(¢) is
concave on [0, 1].

Boundary value problems (11), (2) describe many phenomena in the
applied mathematical sciences, which can be found in the theory of
nonlinear diffusion generated by nonlinear sources, in thermal ignition of
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gases, and in concentration in chemical or biological problems, where only
positive solutions are meaningful; see, for example, [7, 11-13]. Also, the
problem (1), (2) has been dealt with by Fink [8] and Fink, Gatica, and
Hernandez [9] in modeling the one-dimensional case of the Dirichlet
problem, when a(¢) satisfies certain integrability conditions. The results of
[9] were generalized to nth order problems in [3].

For our motivation, we consider methods of solutions as (1), (2) arises
in applications involving nonlinear elliptic problems in annular regions; see
[1, 2, 6, 10, 15]. For the case when A =1 and f is either superlinear
(fy =0 and f, = »), or f is sublinear (f, = « and f, = 0), Erbe and
Wang [5] obtained solutions that are positive with respect to a cone and
which lie in an annular type region. The methods of [5] were then extended
to higher order boundary value problems in [4].

It is not required in this work that f be either sublinear or superlinear,
yet, as in [5, 4], the arguments presented here for obtaining solutions of
(12), (2), for certain A, involve concavity properties of solutions, which are
employed in defining a cone on which a positive integral operator is
defined. A Krasnosel’skii fixed point theorem [14] is applied to yield
positive solutions of (1), (2), for A belonging to an open interval.

In Section 2, we present some properties of Green’s functions that are
used in defining a positive operator. We also state the Krasnosel’skii fixed
point theorem. In Section 3, we give an appropriate Banach space and
construct a cone to which we apply the fixed point theorem yielding
solutions of (1), (2), for an open interval of eigenvalues.

2. SOME PRELIMINARIES

In this section, we state the above mentioned Krasnosel’skii fixed point
theorem. We will apply this fixed point theorem to a completely continu-
ous integral operator, whose kernel, G(t, s), is the Green’s function for

—y' =0, (3)
y(0) =y(1) = 0. (4)
In particular
t(l—-s), 0<tr<s<l,
Glt.s) = s(1—1), 0<s<t<l, ()
from which
G(t,s) >0 on (0,1) x (0,1), (6)

G(t,s) <G(s,5)=s(1-5), O<t,s<1, (7)
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and it is shown in [5] that

1

1 1 3
G(t,s)ZZG(s,s)=Zs(1—s), 4StSZ,0SSS1. (8)

We will apply the following fixed point theorem to obtain solutions of
(1)), (2), for certain A.

THEOREM 1. Let % be a Banach space, and let % C H be a cone in 5.
Assume €, Q, are open subsets of & with 0 € O, C Q, C Q,, and let

T: 20 (Q,\ Q) >
be a completely continuous operator such that, either

® NTull <llull, u e N dQ,, and | Tull = llul, u €2 N IQ,, or
(D) NTull = llull, u e N 9Q, and ||Tull < llull, u €2 N IQ,.

Then T has a fixed point in 2 0 (Q,\ Q,).

3. SOLUTIONS IN THE CONE

In this section, we will apply Theorem 1 to the eigenvalue problem (1),
(2). We note that u(¢) is a solution of (1), (2) if, and only if,

u(t) = /\fOlG(t,s)a(s)f(u(s)) ds, 0<t<1.

For our constructions, let % = CI[0, 1], with norm, [[x]| = sup, _, _4x(?)l.
Define a cone, &, by

1
P = {x eZlx(t) =00on[0,1], and min  x(t) > lexll}.
<3/4

1/4<t

Also, let the number 7 € [0, 1] be defined by
[ G(r,5)a(s)ds = max [V*G(1,5)a(s) ds. (9)
1/4 O<r<1 1/4

THEOREM 2. Assume that conditions (A), (B), and (C) are satisfied.
Then, for each A satisfying

4 1
(/&/iG(7.5)a(s) ds)f. s (fas(L —s)a(s) ds)f,’

there exists at least one solution of (1), (2) in 2.

(10)
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Proof. Let A be given as in (10). Now, let & > 0 be chosen such that
4 1

(G, )a(s) ds)(. — &) =" = (s = $)a(s) d5)(Jo + )
Define an integral operator 7: & — % by
Tu(t) = AfolG(t,s)a(s)f(u(s)) ds, ue. (11)

We seek a fixed point of T in the cone .
Notice from (6) that, for u € .2, Tu(¢) > 0 on [0, 1]. Also, for u € %, we
have from (7) that

Tu(t) = AfOlG(t,s)a(s)f(u(s)) ds

< )\fols(l —s)a(s)f(u(s))ds,

so that
1
|1 Tull < /\fo s(1 —s)a(s)f(u(s)) ds. (12)
And next, if u €2, we have by (8) and (12),

min ~ Tu(t) = min )\fOlG(t,s)a(s)f(u(s))ds

1/4<1<3/4 1/4<1<3/4

v

A
Zfols(l —s)a(s)f(u(s)) ds

1
> —||Tull.
4
As a consequence, T: # — 2. In addition, standard arguments show that
T is completely continuous.

Now, turning to f,, there exists an H, > 0 such that f(x) < (f, + &)x,
for 0 < x < H,. So, choosing u € % with |lul| = H,, we have from (7)

Tu(t) < )\/Ols(l —s)a(s)f(u(s))ds
< )\j:s(l —s)a(s)(fy + €)u(s)ds

< )\/Ols(l —s)a(s) ds(fo, + &)llull

< [full.
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Consequently, [ITull < llull. So, if we set

O, = {x e 7| |x| < Hl},
then

1 Tull < lull, foru e n dQ,. (13)

Next, considering f.., there exists an_ﬁ2 > 0such that f(x) > (f, — &)x,
forall x > H,. Let H, = max{2H,,4H,} and let

Q, = {x ezllxll < H,}.

If u € with |lull = H,, then min, , _,_ 4,4 u(t) > jllull > H,, and
3/4
Tu(r) = A[ " G(r,s)a(s)f(u(s)) ds
1/4
> A[7" G(7,5)a(s)(f. — €)u(s) ds
1/4

> %j;i24G(7,s)a(s) ds(f. — &)llul
> [lull.

Thus, ||Tull > |lull. Hence,
ITull > llull,  foru ez n dQ,. (14)

Applying (i) of Theorem 1 to (13) and (14) yields that T has a fixed point
u(t) e 2 N (Q,\ Qy). As such, u(t) is a desired solution of (1), (2) for
the given A. The proof is complete. |

THEOREM 3. Assume that conditions (A), (B), and (C) are satisfied.
Then, for each A satisfying

4 1
([13/44G(7, s)a(s) ds)f0 A< (fols(l —s)a(s) ds)foc

there exists at least one solution of (1)), (2) in 2.

(15)

Proof. Let A be given as in (15), and choose & > 0 such that
4 1
i <A< :
(/26 (. s)a(s) ds)(fo — &) (Jos(1 = s)a(s) ds)(f. + &)
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Let T be the cone preserving, completely continuous operator that was
defined by (11).

Beginning with f,, there exists an H; > 0 such that f(x) > (f, — &)x,
for 0 <x < H,. So, for u €% and |lul| = H,, we have

Tu(r) = A/()lG(T,s)a(s)f(u(s)) ds
> /\fl?;/:G(T,s)a(s)f(u(s)) ds
> /\fliZAG(T,s)a(s)(fo — &)u(s) ds

A (34
> 1/1/4 G(r,s)a(s)ds(fy — &)llull

> lull.
Thus, ||Tull = |lull. So, if we let
Q, = {x €ezllxll < H},
then
1 Tull = lull, foru e n 9Q,. (16)

It remains to consider f.. There exists an H, > 0 such that f(x) <
(f. + &)x, for all x > H,. There are the two cases, (a) f is bounded, and
(b) f is unbounded.

For case (a), suppose N > 0 is such that f(x) <N, for all 0 < x < o,
Let H, = max{2H,, NA[{s(1 — s)a(s) ds}. Then, for u € & with |ull = H,,
we have

Tu(t) = )\fol G(t,s)a(s)f(u(s))ds

< ANfls(l —s)a(s) ds
0
< llull
so that [|Tull < [lull. So, if
Q, = {x ezllxll < H,},

then
ITull < llull,  forue®n Q,. (17)



258 HENDERSON AND WANG

0

For case (b), let H, > max{2H,, H,} be such that f(x) < f(H,), for
< x < H,. Choosing u € & with ||ull = H,,

Tu(t) < )\fols(l —s)a(s)f(u(s)) ds
< A/:s(l — s)a(s)f(H,) ds
< ALls(l —s)a(s)ds(f. + e)H,

- )\fols(l —s)a(s)ds(f, + &)llull

< llull,

and so ||Tull < |lu|l. For this case, if we let

th

0, = {xeallxll < H,),
en

| Tull < lull, foru e 2 N 9Q,. (18)

Thus, in either of the cases, an application of part (ii) of Theorem 1

yields a solution of (1), (2) which belongs to 2 N (Q,\ Q,). This
completes the proof. ||
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