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We study the existence of positive radial solutions of du+g(lx|) f(#)=0 in
annuli with Dirichlet (Dirichlet/Neumann) boundary conditions. We prove that the
problems have positive radial solutions on any annulus if f is sublinear at 0
and occ.  © 1994 Academic Press, Inc.

The existence and uniqueness of solutions for semilinear elliptic equa-
tions in general domains have been widely studied [ 1-4]. In this paper, we
consider the existence of positive radial solutions of the equation

Au+g(|x|) flu)=0, R,<|x|<R,, xeR", N=2 (L1)

with one of the following sets of boundary conditions,

u=0on |x|=R, and x| =R, (1.2a)
u=0on |x|=R, and Oufor=0on |x|=R,, (1.2b)
ou/or=0 on |x] =R, and u=0o0n |x|=R,, (1.2c)

where r=|x| and d/0r denotes differentiation in the radial direction, and
O0<R;<R,<.

First, let fo=1m, _, f(«)/u and f, =1lim, _, ,, f(u)/u

For (1.1)-(1.2a), when g(r)=1, Garaizar [6] proved the following
result.

Assume [ satisfies

(A-1y  feCl0, w), f(u)>0 for u>0 and f(0)=0,,
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(A-2) dyu* < f(u) < dyu* for large u, where d,,d,>0 and k> — 1.
(A-3) fo=0and k>1orfy=00 and k< 1.

Then there is a radial positive solution to (1.1}-(1.2a) for any R, < R;.
Bandle, Coffman, and Marcus [5] proved the theorem below.
Let fe C'[0, o) and satisfy (A-1)" and

(A-4) fis nondecreasing on (0, o).

If £ is superlinear at 0 and oo, or f,=0 and f,, = o0, then (1.1)-(1.2) has
a radial positive solution for any R, < R,. )

Also, it is remarked in [5] that (A-4)’ is not a necessary condition for
existence. This was confirmed by Coffman and Marcus [8], Bandle and
Kwong [9], Lin [7], and the author [10], who showed that f,=0 and
J+ =0 are sufficient to guarantee existence. Moreover, the approaches
used in [5-9] are the shooting method combined with the Sturm
comparion theorem and phase-plane method. The author [10] used the
fixed point theorem in cones to prove the results.

There naturally arises a question whether or not the assumption that f
is sublinear at 0 and oc, or fy=o¢ and £, =0, implies (1.1)}-(1.2) has a
positive radial solution for any annulus. Obviously the previous results
cannot deal with it. For example, let

u'?, u<l,
fa) = (=1+m2)u—1)+1, l<u<2,
Inw, uz?2,

Then fy;= o and f, =0. However, there does not exist k> — | such that
(A-2)" holds for the function f. But in applications of the following
theorem, it has a positive radial solution for any annulus.

We show that the answer to the question is yes by using fixed point
techniques. The main result is as follows.

THEOREM 1.  Assume [ satisfies

(A-1) feC[0, ), flu)z0 for uz=0.
(A-2) geC[0, c), g(r)=0 for r 20 and is not identically zero in any
finite subinterval of (0, o).

If f is sublinear at O and w, or fy= 0 and f,, =0, then (1.1)—(1.2) has a
positive radial solution for any annulus R, < |x| <R,.
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2

In view of the spherical symmetry of g(|x|), we seek a positive radial
solution u=u(r) to (1.1). Therefore we write (1.1)-(1.2) in the form

w'(r)+ [(N=1)/r]u'(r)+g(r) flu(r))=0, R, <r<R,, (2.1)

u(R,)=u(R,)=0, (2.2a)
U(R)=u'(R;)=0, (2.2b)
W(R,)=u(R,)=0. (2.2¢)

Let s= — [*1//¥~' dr and v(s) = u(r(s)), then (2.1)-(2.2) can be rewritten
as

v"(s) + r*N = (s) g(r(s)) f(u(s)) =0, m<s<0,
v(m)=10(0)=0,
v{m)=10v'(0)=0,
v'(m)=v(0)=0,
where m= — (R 1//" ' dr.

To be obvious, again let = (m—s)/m and z(t) = uv(s). Then (1.1)}-(1.2)
can also be written as

() +h(t) f(z(1))=0, O<e<l, (2.3)
2(0)=z(1) =0, (24a)
2(0) = 2'(1) =0, (2.4b)
Z'(0)=2(1)=0, (24¢c)

where a(1) = m?*r*¥ = Y(m(1 — 1)) g(r(m(1 — t))). It is easy to check that h(¢)
also satisfies (A-2).

From now on, we concentrate on (2.3)-(2.4). Indeed, if we prove that
there exists a positive solution to (2.3)~(2.4) for any m #0, then (1.1)-(1.2)
has a positive radial solution for any annulus, Hence, Theorem 1 is true.
In what follows, we use the following.

FIXED POINT THEOREM [11]. Let E be a Banach space, P a cone in E,
Q, and 2, open subsets in E. Assume 0e€R,, Q,c£,, and
A: P (2,\2,) - P a completely continuous aperator. If

lAz| =z]|  for zePnoQ,,
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and \
1Az] < |z for ze PMog2,,

then A has a fixed point in P (Q,\82,).

First consider (2.3)-(2.4a). It is easy to check that (2.3)-(24a) is
equivalent to the integral equation

] def
2(1) = jo k(t, 5) h(s) f(z(s)) ds < Az(r),

where z(t)e C[0, 1], and

I(l—’S), K
S(l—(), 1>s.

kit )=
Denote P= {z(1): z(t)e C[0, 1], z(1) 20, min{z(t), 3<t<3} = |z||/4} (In
this paper, only the sup norm is used.). It is obvious that P is a cone in

C[0, 1]. Moreover, AP < P. Indeed, from k(1, s) < s(1 —s), it follows that
for any z(¢)€ P one has

Azl < jo' s(1 —5) h(s) f(z(s)) ds. (25)

On the other hand, as ;<7< 2, one also has

-~ 5)/4, <
ooz S
Hence, ’
k(t, )= s(1—5)/4, for i<r<i, O0<s<l.
Therefore,

min{Az(t), <1< 3} ,241'[' s(1 —s) h(s) f(z(s)) ds.
0

In applications of (2.5) it follows that
min{Az(?), ;<1< 2} > ||4z|/4.

Note that &(¢, s) >0, and so we conclude that 4ze P. It is also easy to
check that A4: P — P is completely continuous.
From f, = oo, there is an H, > 0 such that

flz)=Mz, 0O<z<H,.
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where the constant M > 0 satisfies
3/4
M4 [ k(S ) h(s) ds > 1,
1/4
Thus, for any z(1)e P and ||z|| = H,, it follows that

Az = [ (h, ) H0) £z s> [l 5) o) S(2(0)

3/4 '
> M4 [ k() h(s) ds lz) > Nzl

Therefore, let
Q,=1{z:2eC[0, 11, |z < H,};
then one has
Azl = |lzl, zePnaR,.

In what follows, we determine £2,. From f_ =0, it follows that there is
a g >0 such that

flz)<pz, for any z>g.

where the constant p >0 such that
1
pj s(1—s) h(s)ds < 1.
0

If /is bounded, say f(z)<N for ze(0, c0), where N is a positive
constant, then we choose H,>2H, such that for ze P and |z| = H,,

Az(1) = fo' k(t, s) h(s) f(z(5)) dssj: s(1 —s) h(s) fz(s)) ds
szvj' s(1 = s) h(s) ds < H,.
0

If f'is unbounded on (0, c0), H, is chosen so that H,>max{2H,, ¢} and
f(z)< f(H,) for 0<z< H,. Then for ze P and |z|| = H, we have

Az(z)=j°] k(1, 5) h(s) f(z(s))dssj: s(1 — s) h(s) f(H,)) ds

1
gpj s(1 —5) h(s) ds Hy < H,.
. ;
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In either case, put

,={z:zeC[0, 1], |zll < H,};
then

Azl < 2| for ze Pn0Q2,.

Now applying the fixed point theorem, we conclude that 4 has a fixed
point z in PN (Q,\2,) such that H,<|z|l < H,. Tt is also a solution 1o
(2.3)-(2.4a). Because of the properties of k(¢, s), it follows that z(¢) >0,
0 <t < 1. Therefore (1.1)—(1.2a) has a positive radial solution.

This completes the proof of the first part of Theorem 1.

Next we consider (2.3)-(2.4b) and (2.3}-(2.4c). It is easy to check that
(2.3)-(2.4b) and (2.3)-(2.4c) are equivalent to the integral equations z(¢) =
foki(t,5) h(s) flz(s)) ds=A,2(1) and  z(t)= [ ko(t, 5) h(s) f(z(s)) ds =
A, z(1), respectively, where z(1)e C[0, 1] and

11—y, 1<
1-—-1, 1>

t, I<s
s, t>s,

k,(1, s)={ ko1, s)={

For A, let P, be the cone

P, ={z(t) :ze C[0, 1], z(¢) >0, min{z(z), § <1< 1} = ||z]/2}.
For 4, let P, be the cone

Py={z(t):ze C[0, 1], z(t) >0, min{z(1), 0 <1 < 1} = ||z|//2}.

By the method above, the fixed point theorem is used to prove that both
(1.1)-(1.2b) and (1.1)~(1.2c) have positive solutions.
To sum up, we complete the proof of Theorem 1.
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