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Under the influence of human population distribution, the boyciana–fish ecological system is considered. 

First, the system can be described as a nonlinear partial differential algebraic equations system (PDAEs) 

with Neumann boundary conditions and ratio-dependent functional response. Second, we examine the 

system’s persistence properties: the loacl stabilities of positive steady states, the absorbtion region and 

the global stability. And the proposed approach is illustrated by numerical simulation. Finally, by using 

the realistic data collected in the past fourteen years, the PDAEs parameter optimization model is built 

to predict the boyciana population. 
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. Introduction 

In Northern China, Beidaihe wetland is located in the junc-

ion of three big ecosystems that are forest, ocean and wetland.

eidaihe wetland is one of the important channels for Far East

igratory birds. In September and October, there are about 400

pecies of birds which migrate to Beidaihe wetland park. At the

ame time, as an international tourist city, Beidaihe attracts a

arge number of tourists to travel from May to October. Due to the

ncreasing human activities, many living and breeding areas are

olluted, leading to the decrease of the bird population. 

Boyciana is one of the most sensitive species in Beidaihe

etland system. It is the first-grade state-protected animal in

hina. Boyciana was widely distributed in Northeast Asia. In 1986,

he experts found that 2729 boyciana moved through Beidaihe

etland region. However, in recent decades, the human’s activities

ade boyciana’s predatory object quantity to reducing. The habitat

nvironment of boyciana was also destroyed. Many environmental

actors influence the spatiotemporal distribution of boyciana such

s hidden factor, water factor, vegetation factor and food factor are

irectly or indirectly related to human activities [1] . 

Despite a rich literature on the spatiotemporal research of

cosystem [2] , the human’s interference in the ecological spa-

iotemporal process is rarely studied. Thus, the goal of the
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heoretical ecology model is to study how the interactions be-

ween boyciana and their food-wetland fish with human social

ehavior influence. 

Mathematically, reaction-diffusion equation can be used to

odel the spatiotemporal distribution and abundance of organisms

3–6] . In recent decades, the role of the reaction-diffusion effect in

aintaining bio-diversity has received a great deal of attention in

he literature on ecology conservation [7] . Empirical evidence sug-

ests that the spatial scale can influence population interactions.

he major classes of spatial models are those that treat space as a

ontinuum and describe the distribution of populations in terms of

ensities. A typical form of reaction-diffusion population model is 

∂x 

∂t 
= D �x + x f (z, x ) 

here x ( t, z ) is the population densities vector at time t and space

oint z, D is the diffusion constant matrix, � is the Laplace oper-

tor with respect to the spatial variable z , and f ( z, x ) is the growth

unction vector. Such an ecological model was first considered by

kellam [8] , and the reaction-diffusion biological models were also

tudied by Fisher [9] and Kolmogoroff [10] . 

For the predator–prey type reaction-diffusion biological mod-

ls, in reference to the functional response models, the traditional

sed function are Lotka–Volterra [11] , Allee effect [12] , Holloing

ype [13] , Bedding-DeAngelis [14] , ratio-dependent [15] etc. All the

redator–prey models cannot be directly applied in the human

nterference model (2.1) . The developed system includes three

nteraction species: boyciana, fish and human. 

http://dx.doi.org/10.1016/j.mbs.2016.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
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mailto:qlzhang@mail.neu.edu.cn
mailto:Haiyan.Wang@asu.edu
http://dx.doi.org/10.1016/j.mbs.2016.04.012


142 Y. Jiang et al. / Mathematical Biosciences 277 (2016) 141–152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The idealized spatial domain is a rectangular domain with the sea oriented 

direction z 1 and coast line direction z 2 . The wetland conservation is closed with no 

flux boundary conditions imposed. 
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In this purpose, the ratio-dependent reaction-diffusion system

model [15] is modified in which the incorporating one prey and

two competing predator species was considered. In [15] , we

replace one competing predator species by human. Specially, the

human influence part is some degenerated Fisher population

model of elliptic type. Although the global attractor and persis-

tence of the parabolic equations system was discussed in [15] by

comparison principle theory. While the model (2.1) involves some

elliptic equation, the new methods are proposed on the persis-

tence property. The diffusion-driven instability or turing instability,

which has attracted the attention of some investigators, is also

discussed in this study by using the qualitative theory. 

The aim of this work is to propose the qualitative analysis

about three species (boyciana, fish and human) interrelated spa-

tiotemporal ecological wetland model expressed in term of PDAEs.

And as an application, it illustrates the numerical simulation and

prediction to show the effective of the results. 

The remaining part of this paper is organized as follows. In

Section 2 , the PDAEs model is built on the ecological system.

In Section 3 , by developed PDE energy estimation method, the

persistence property of the system (2.1) is examined. In addition,

the numerical simulations are carried out to show the effective of

the proposed results. In Section 4 , under some reasonable assump-

tions, with the data collected from the wetland conservation, the

PDAEs parameter optimal model is carried to predict the boyciana

population in the future. 

Notations: N 0 is natural number set. � is a bounded plane

domain with the boundary ∂�. ‖ · ‖ denotes the Euclidean norm

for vectors. For a symmetric matrix M, M > ( < )0 means that it is

positive (negative) definite. I is the identity matrix. The superscript

T is used for the transpose. Matrices, if not explicitly stated, are

assumed to have compatible dimensions. For the convenience, the

following Hilbert space is defined: 

H 2 (�) � { x : � × [0 , + ∞ ) → R 

n and ‖ x ‖ < ∞} 
with inner product and L 2 -norm respectively defined by 

〈 x, y 〉 � 

∫ 
�

x T y d z , ‖ x ‖ � 

{ ∫ 
�

‖ x ‖ 

2 d z 

} 1 / 2 
. 

2. Boyciana–fish–human model 

In a protected environment, human, boyciana and fish are cho-

sen as the research objects. The spatiotemporal dynamics between

boyciana and fish with human activity affect is 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂x 1 
∂t 

= d 1 �x 1 + x 1 

(
1 − x 1 − cx 2 

x 1 + αx 2 
− h 1 x 3 

)
, z ∈ �, t > 0 , 

∂x 2 
∂t 

= d 2 �x 2 + x 2 

(
−d + 

mx 1 
x 1 + αx 2 

− h 2 x 3 

)
, z ∈ �, t > 0 , 

0 = �x 3 + rx 3 (1 − x 3 ) , z ∈ �, 

∂x 1 
∂ n 

= 

∂x 2 
∂ n 

= 

∂x 3 
∂ n 

= 0 , z ∈ ∂�, t > 0 , 

x 1 (0 , z ) = x 0 1 ( z ) ≥ 0 , x 2 (0 , z ) = x 0 2 ( z ) ≥ 0 , z ∈ �. 

(2.1)

Here, the state variables are x 1 = x 1 (t, z ) , x 2 = x 2 (t, z ) , x 3 = x 3 ( z ) ,

� is an idealized rectangular domain (See Fig. 1 ), z = [ z 1 , z 2 ] ∈ �

is the spatial coordinate, n is the outward unit normal vector

of the boundary ∂�, the coefficients c, α, m, d, h 1 , h 2 and r are

positive constants. The initial value x 0 
1 
( z ) , x 0 

2 
( z ) are non-negative

smooth functions which are not identically zero. 
.1. Ecological description 

The system (2.1) describes the population dynamics of

oyciana–fish system with humans interference, which is dis-

ersed by diffusion in the habitat area � (See Fig. 1 ). 

x 1 (t, z ) , x 2 (t, z ) represent the population densities of fish and

oyciana at time t > 0 and spatial position z ∈ � respectively.

 3 ( z ) stands for the human density. x 0 
1 
( z ) , x 0 

2 
( z ) are the initial

opulation distribution of fish and bird respectively. Obviously,

hese two initial values are depended on the spatial the geo-

raphical position z . In this point of view, this is more realistic to

escribe spatial population distribution than the ODEs system. 

The Neumann boundary conditions 

∂x 1 
∂ n 

= 

∂x 2 
∂ n 

= 

∂x 3 
∂ n 

= 0 , z ∈ ∂�

ean that (2.1) is self-contained and has no population flux across

he boundary ∂�, so that ∂� acts as a perfect barrier to dispersal.

The interaction between fish and boyciana is based on two

atio-dependent functional response functions 

cx 1 x 2 
x 1 + αx 2 

, 
mx 1 x 2 

x 1 + αx 2 

here c is the capturing rate (or catching efficiency) of the boy-

iana, m is the conversion rate. Fish population follows the logistic

rowth in the absence of boyciana and human. d is the death rate

f boyciana. 

When the distribution of the individuals is not uniform and

epends on different spatial locations, the standard method to

escribe the spatial effects is to introduce the diffusion terms.

herefore, the diffusion coefficient matrix about the fish and the

oyciana is introduced, that is 

d 1 0 

0 d 2 

)
�x (2.2)

here x = [ x 1 (t, z ) , x 2 (t, z )] T , � = �2 
i =1 

∂ 2 z i 
is the Laplace operator.

t is well known that the appearance of the spatial dispersal

akes the dynamics and behaviors of the boyciana–fish system

ven more complicated. 

Specifically, for a wetland ecosystem, the influence of human

an be regarded as an invasive species and not be affected by

ther species. Therefore, mathematically, −h 1 x 3 and −h 2 x 3 are

dded in the first two equations of (2.1) which represent the

uman’s interferences on fish and boyciana, respectively. 

The third equation of (2.1) is derived from the well-known

isher equation 

∂x 3 (t, z ) 

∂t 
= �x 3 (t, z ) + rx 3 (t, z )(1 − x 3 (t, z )) , z ∈ �, t > 0 . (2.3)

here the nonlinear function rx 3 (1 − x 3 ) is referred to as a logis-

ic nonlinearity. Since the local human population distribution can
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each a time independent dynamic balance in a short time. Thus

2.3) degenerates to the following elliptic equation 

 = �x 3 ( z ) + r 3 x 3 ( z )(1 − x 3 ( z )) , z ∈ �. (2.4)

.2. PDAEs description 

By [16] , the system (2.1) can be rewritten as the following ma-

rix form 

 

∂x 

∂t 
= D �x + f (x ) (2.5)

ubject to the boundary conditions (BCs) 

∂x ι(t, z ) 

∂ n 

= 0 , z ∈ ∂�, ι ∈ ϑ BC (2.6)

nd the initial conditions (ICs) 

 κ (0 , z ) = x 0 κ ( z ) , z ∈ �, κ ∈ ϑ IC (2.7)

here x = (x 1 , x 2 , x 3 ) 
T , ϑ BC = { 1 , 2 , 3 } , ϑ IC = { 1 , 2 } and 

 = 

( 

1 0 0 

0 1 0 

0 0 0 

) 

, D = diag (D 1 , 1) , D 1 = 

(
d 1 0 

0 d 2 

)
, 

f (x ) = 

⎛ 

⎝ 

x 1 
(
1 − x 1 − cx 2 

x 1 + αx 2 
− h 1 x 3 

)
x 2 
(
−b + 

mx 1 
x 1 + αx 2 

− h 2 x 3 
)

rx 3 (1 − x 3 ) 

⎞ 

⎠ . 

he applications and mathematically research on PDAEs have at-

racted increasing attention to academics [17–19] . In view of the

atest literature in reaction-diffusion system research, in most of

hese system, the derivative coefficient matrix D is invertible. In

ther words, they are the parabolic type nonlinear partial differen-

ial equations system (PDEs). Most of them can be analyzed with

he existing qualitative theory [20] directly. 

However, from the above PDAEs system (2.5) –(2.7) , the time

erivative coefficient matrix 

 = 

( 

1 0 0 

0 1 0 

0 0 0 

) 

s singular. Mathematically, it is a generalization of the classical

arabolic PDEs system with E as a unit matrix. Because some the-

retical results [21,22] cannot be directly applied in this parabolic–

lliptic type, researches in the singular case are relatively scarce.

he identifiability and stability properties of some PDAEs have

een studied [16] with singular system theory. 

On the other hand, in the field of control, this system is also

alled singular distributed parameter system (SDPS). If the diffu-

ion term (2.2) is not include in this system, it changes to a singu-

ar system or generalized state-space system [23] . 

. Local and global stability 

In this section, the focus lies in the steady state solutions of

2.1) . Since the semi-linear elliptic part of (2.1) is independent of

ime, the following parabolic subsystem is the main concern: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂x 1 
∂t 

= d 1 �x 1 + x 1 

(
1 − x 1 − cx 2 

x 1 + αx 2 
− h 1 x 3 

)
, z ∈ �, t > 0 , 

∂x 2 
∂t 

= d 2 �x 2 + x 2 

(
−d + 

mx 1 
x 1 + αx 2 

− h 2 x 3 

)
, z ∈ �, t > 0 , 

∂x 1 
∂ n 

= 

∂x 2 
∂ n 

= 0 , z ∈ ∂�, t > 0 , 

x 1 (0 , z ) = x 0 1 ( z ) ≥ 0 , x 2 (0 , z ) = x 0 2 ( z ) ≥ 0 , z ∈ �. 

(3.1) 
here x 3 satisfies the elliptic boundary problem 

 

0 = �x 3 ( z ) + rx 3 ( z ) , z ∈ �, 

∂x 3 ( z ) 

∂ n 

= 0 , z ∈ ∂�. 
(3.2) 

In comparison with the autonomous system in [14] , as external

nput variables, human influence functions h 1 x 3 , h 2 x 3 are added

nto the nonlinear parabolic subsystem (3.1) . This leads to different

ynamic behavior with human population distribution x 3 ( z ) . 

In order to clearly present the human population distribu-

ion, the property of x 3 ( z ) is first considered in Section 3.1 . In

ection 3.1 , it also shows that the human spatial distribution x 3 ( z )

s directly related to the intrinsic growth distribution parameter r .

n consequence, this lead us to investigate the persistence property

f (3.1) with parameter r in Sections 3.2 –3.4 . 

.1. Studied on the human distribution subsystem 

Consider the human distribution subsystem in (2.1) 
 

0 = �x 3 ( z ) + rx 3 ( z )(1 − x 3 ( z )) , z ∈ �, 

∂x 3 ( z ) 

∂ n 

= 0 , z ∈ ∂�. 
(3.3) 

he solution of (3.3) represents the spatial distribution of the hu-

an population which has direct influence on the populations

f boyciana and their food. With the existing results in elliptic

DE theory [21,24] , the solution of the system (3.3) could be not

nique. Specially, x 3 ( z ) depends not only on the choice of param-

ter r but also on the shape of the domain � [21] . The following

iscusses the existence and uniqueness of the solution of (3.3) and

ives some ecological description on the positive solution. 

First of all, it is obvious that the system (3.3) has a coupled

pper and lower constant solutions 

¯
 3 ( z ) = 1 , x 3 ( z ) = 0 , z ∈ �. 

he trivial solution x̄ 3 ( z ) = 1 can be interpreted as human popula-

ion density reaches the wetland ecology system capacity limit. In

ther words, the wetland area is facing the human’s over develop-

ent threat. On the other hand, the solution x 3 ( z ) = 0 means that

he wetland ecology system is in a human-free environment. How-

ver, under the realistic circumstance, human population density

as decreasing property along z 1 axis 

(see Fig. 1 ) which is perpendicular to the coastline. Therefore,

hat the study is interested in is the nontrivial solution of Neu-

ann problem (3.3) . 

heorem 3.1 (Uniqueness of nontrivial positive solution) . Let

1 ( �) be the first eigenvalue of the following eigenvalue problem 

 

0 = �x 3 ( z ) + rx 3 ( z ) , z ∈ �, 

∂x 3 ( z ) 

∂ n 

= 0 , z ∈ ∂�. 
(3.4) 

f r > λ1 ( �) holds, then (3.3) has a unique nontrivial positive solution

 

p 
3 
( z ) such that 0 ≤ x 

p 
3 
( z ) ≤ 1 and 

lim 

↘ λ1 (�) 
x p 

3 
( z ) = 0 , 

∫ 
�

x p 
3 
( z ) d z ≤ (r − λ1 (�)) | �| , (3.5)

here ↘ represents the right limit, | �| is the measure of �. Addition-

lly, if ∂� ∈ C 1 then 

lim →∞ 

x p 
3 

= 1 , z ∈ �′ . (3.6)

here �′ ⊂ � is closed in �. 

roof. Noticing that x̄ 3 , x 3 are a couple of upper and lower solu-

ions of (3.3) , by directly using the comparison principle [24] , there

xists a nonconstant positive solution x 
p 
3 
( z ) satisfies 0 ≤ x 

p 
3 

≤ 1 .
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Fig. 2. Human distribution curve with different parameter values r , � = [0 , π ] . 
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For the uniqueness of the nontrivial positive solutions, [25, Sec-

tion 3.5.3] shows that (4.1) has the unique positive solution x 
p 
3 
( z )

if and only if 

r > λ1 (�) 

where λ1 ( �) is the first eigenvalue of (3.4) . This completes the

proof. �

By the above discussion, three nonnegative solutions of (3.3) are

obtained 

x 3 = 0 , ̄x 3 = 1 , x p 
3 
( z ) . 

These correspond to three different kinds of population distribu-

tion: human-free, population limit and normal non-uniform distri-

bution. The biological interpretation of Theorem 3.1 is that if the

wetland system has the humans carrying capacity 1 then over all

of � the total population would be | �|. So the integral inequal-

ity (3.5) shows that the total population reduces with r approach

λ1 ( �). The limit equality (3.6) shows if the spatial scale of � as

measured by r is sufficiently large then the population density in

� will be close to its carrying capacity x̄ 3 on � except for a rela-

tively narrow strip near the boundary ∂� (See Fig. 2 ). To guarantee

the existence and uniqueness of the nontrivial positive solution, it

assumes r > λ1 ( �) throughout this study. 

3.2. Local stability and instability of human free model ( r ↘ λ1 ( �)) 

From Theorem 3.1 , 

lim 

r↘ λ1 (�) 
x 3 ( z ) = 0 

holds. By substituting human distribution x 3 = 0 into (3.1) , it

reaches ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂x 1 
∂t 

= d 1 �x 1 + x 1 

(
1 − x 1 − cx 2 

x 1 + αx 2 

)
, z ∈ �, t > 0 , 

∂x 2 
∂t 

= d 2 �x 2 + x 2 

(
−d + 

mx 1 
x 1 + αx 2 

)
, z ∈ �, t > 0 , 

∂x 1 
∂ n 

= 

∂x 2 
∂ n 

= 0 , z ∈ ∂�, t > 0 , 

x 1 (0 , z ) = x 0 1 ( z ) ≥ 0 , x 2 (0 , z ) = x 0 2 ( z ) ≥ 0 , z ∈ �. 

(3.7)

From the ecological point of view, the system (3.7) represents that

the wetland system is in the original ecological environment situa-

tion. Now, mathematically the local stability property of the system

(3.7) is studied. 
The positive constant equilibrium of the system (3.7) is the pos-

tive solution of the following nonlinear equations 

 

 

 

 

 

f 1 (x 1 , x 2 ) := x 1 

(
1 − x 1 − cx 2 

x 1 + αx 2 

)
= 0 , 

f 2 (x 1 , x 2 ) := x 2 

(
−d + 

mx 1 
x 1 + αx 2 

)
= 0 . 

(3.8)

y simple analysis for (3.8) , it has 

heorem 3.2 (Existence of positive equilibrium) . When 1 − α
c <

d 
m 

< 1 , the system (3.7) has a unique positive equilibrium e 1 :=
(u ∗

1 
, υ∗

1 
) with 

u 

∗
1 = 1 − c(m − d) 

mα
= 1 − c 

α

(
1 − d 

m 

)
, 

∗
1 = 

m (1 − u 

∗
1 ) u 

∗
1 

cd 
= 

1 

α

(
m 

d 
− 1 

)
u 

∗
1 

n addition, 0 < u ∗
1 

< 1 , υ∗
1 

> 0 ; u ∗
1 

≥ 1 and υ∗
1 

≤ 0 when d 
m 

≥ 1 . 

Now, with the linearized method of dynamic system and the

igenvalue theory of PDE, the local asymptotic stability of the pos-

tive constant steady state e 1 is discussed. 

Considering the linearizing system of (3.7) at e 1 

∂x 

∂t 
= L x (3.9)

here the linear operator L be defined by 

 = D 1 � + f̄ J (3.10)

ith f̄ J is the Jacobian matrix of f̄ = ( f 1 , f 2 ) 
T at e 1 . 

Let 

 = λ0 < λ1 < · · · < λn < · · ·
e the eigenvalues of the operator −� on � with Neumann BC.

he corresponding eigenfunctions are represented by φn (n ∈ N 0 ) .

hus, λn , φn (n ∈ N 0 ) satisfy 

 −�φ = λφ in �, 

∂φ

∂ n 

= 0 on ∂�. 
(3.11)

hen the function sequence { φn } ∞ 

n =0 
forms an orthonormal base of

 

2 ( �). It should be noticed that the eigenvector w.r.t. λ0 = 0 is

0 = const . The corresponding solution is trivial which cannot in-

uence the stability of the system. Therefore, it is concerned with

he following infinity dimensional ODE systems (see [16] for de-

ail): 

˙ 
 n = L n X n , n ∈ N 0 . (3.12)

here X n = 〈 x, φn 〉 = 

∫ 
� x (t, z ) φ( z ) d z , 

 n = −D 1 λn + f̄ J . (3.13)

ubstituted f̄ J with e 1 , it follows with 

 n = 

⎛ 

⎝ 

−m 

2 α + cd 2 − cm 

2 + d 1 λn αm 

2 

m 

2 α
−c 

d 2 

m 

2 

(m − d) 2 

mα
−λn d 2 m + md − d 2 

m 

⎞ 

⎠ . 

(3.14)

et Dt( e 1 ), Tr( e 1 ) denote the determinant and the trace of the ma-

rix L n respectively. Then 
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Dt (e 1 ) = 

m 

2 d α − cd 3 − md 2 α − m 

2 d c + 2 md 2 c 

m 

2 α

+ 

λn d 
2 cd 2 + λn m 

2 αd 2 − λn m 

2 cd 2 + λ2 
n m 

2 αd 1 d 2 + λn m 

2 d αd 1 − λn md 2 αd 1 
m 

2 α
, 

Tr (e 1 ) = − m 

2 αλn (d 1 + d 2 ) + m 

2 α + d 2 c − m 

2 c 

m 

2 α
. 

(3.15) 

he characteristic equation of the matrix L n is 

2 + μTr (e 1 ) + Dt (e 1 ) = 0 . 

rom Theorem 3.2 , when 1 − α
c 

< 

d 
m 

< 1 , there stands m > d . 

If c ≤ α, one can obtain 

 

2 dα − m 

2 dc ≥ 0 , 2 md 2 c − cd 3 − md 2 α > 0 , 

hen the first part of Dt( e 1 ) satisfies 

m 

2 d α − cd 3 − md 2 α − m 

2 d c + 2 md 2 c 

m 

2 α
> 0 . 

n the same way, 

n m 

2 αd 2 − λn m 

2 cd 2 ≥ 0 

nd 

 

2 d αd 1 − λn md 2 αd 1 > 0 

mply 

λn d 
2 cd 2 + λn m 

2 αd 2 − λn m 

2 cd 2 + λ2 
n m 

2 αd 1 d 2 + λn m 

2 d αd 1 − λn md 2 αd 1 
m 

2 α
> 0 . 

hen Tr( e 1 ) < 0, Dt( e 1 ) > 0 hold for any λn , n ∈ N 0 . 
If c > α, by the monotonicity of eigenvalues { λn } ∞ 

n =1 , through

ome directly computing, when λ1 (d 1 + d 2 ) − c 
α

m −d 
m 

d 
m 

> 0 , there

tand Tr( e 1 ) < 0 and Dt( e 1 ) > 0. In summary, the following con-

lusion is reached 

heorem 3.3 (Local stability) . Under the condition 1 − α
c < 

d 
m 

< 1 , 

S1) When c ≤ α, the positive equilibrium e 1 is locally asymptoti-

ally stable for any diffusion coefficients d 1 , d 2 > 0. 

S2) When c > α, the positive equilibrium e 1 is locally asymptoti-

ally stable, if and only if 

1 (d 1 + d 2 ) − c 

α

m − d 

m 

d 

m 

> 0 

here λ1 is the first eigenvalue of S-L problem (3.11) . 

From a biological point of view, Theorem 3.3 implies that if

here is no human interference ( x 3 = 0 ), when the capturing rate

 is low with the high conversion rate m , boyciana population x 2 
nd their fish food x 1 can maintain the stable coexistence situa-

ion. In addition, the diffusion term λ1 (d 1 + d 2 ) in the inequality

hows that better diffusion effect helps maintain the balance of the

cosystem. The above described circumstances consistent with ex-

erience. 

Define the domains I, II and III in the ( c, α, m, d ) space respec-

ively by 

 = 

{
c ≤ α, 0 < 

d 

m 

< 1 

}
, (3.16) 

I = 

{
c > α, 1 − α

c 
< 

d 

m 

< 1 , 
c 

α

m − d 

m 

d 

m 

≤ λ1 (d 1 + d 2 ) 

}
, (3.17) 

II = 

{
c > α, 1 − α

c 
< 

d 

m 

< 1 , 
c 

α

m − d 

m 

d 

m 

> λ1 (d 1 + d 2 ) 

}
. (3.18) 

We assert that if ( c, α, m, d ) ∈ I, II, then the positive equilib-

ium e 1 of system (3.7) is locally asymptotically stable, else if ( c, α,

, d ) is in III then e 1 is unstable. The following is the numerical

llustration. 
For the numerical evaluation of the human free system (3.7) , fix

he system parameters as 

c = 1 . 0 0 0 , α = 0 . 50 0 0 , d = 0 . 90 0 0 , m = 1 . 0 0 0 . (3.19) 

y Theorem 3.3 , (3.19) fulfill the positive condition 

 − α

c 
< 

d 

m 

< 1 . 

he corresponding equilibrium is e 1 ≈ (0.80 0 0, 0.1778). 

Simulation results with d 1 = d 2 = 1 . 0 0 0 are exemplarily de-

icted in Fig. 3 . In Fig. 3 a, the spatiotemporal response surface of

sh x 1 ( t, z ) and boyciana x 2 ( t, z ) are depicted on the top part. And

lso, the time evolution of both species are studied on the bot-

om part. Fig. 3 b illustrates the spatial distribution curves of boy-

iana and fish at discrete time points. With these, the equilibrium

 1 shows the stable property. On the other hand, in Fig. 4 c and

, by decreasing the diffusion coefficients d 1 , d 2 to d 1 = d 2 = 0 . 01 ,

he numerical results are shown with unstable property. 

Obviously, due to Theorem 3.3 , if d 1 = d 2 = 1 then 

1 (d 1 + d 2 ) − c 

α

m − d 

m 

d 

m 

≈ 1 . 820 > 0 . 

 1 is locally stable. If d 1 = d 2 = 0 . 01 then 

1 (d 1 + d 2 ) − c 

α

m − d 

m 

d 

m 

≈ −0 . 160 < 0 . 

 1 is unstable. The simulation results correspond with the theoret-

cal conclusion. 

.3. Overdevelopment model ( r ↗ + ∞ ) 

From Theorem 3.1 , 

lim 

↗∞ 

x 3 ( z ) = 1 

olds. By substituting human distribution x 3 = 1 into (3.1) , one

ets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂x 1 
∂t 

= d 1 �x 1 + x 1 

(
1 − x 1 − cx 2 

x 1 + αx 2 
− h 1 

)
, z ∈ �, t > 0 , 

∂x 2 
∂t 

= d 2 �x 2 + x 2 

(
−d + 

mx 1 
x 1 + αx 2 

− h 2 

)
, z ∈ �, t > 0 , 

∂x 1 
∂ n 

= 

∂x 2 
∂ n 

= 0 , z ∈ ∂�, t > 0 , 

x 1 (0 , z ) = x 0 1 ( z ) ≥ 0 , x 2 (0 , z ) = x 0 2 ( z ) ≥ 0 , z ∈ �. 

(3.20) 

he system (3.20) represents the wetland system is in the overde-

elopment of resources situation. 

Analogously, the positive constant equilibrium of (3.20) satisfies

 

 

 

 

 

x 1 

(
1 − x 1 − cx 2 

x 1 + αx 2 
− h 1 

)
= 0 , 

x 2 

(
−d + 

mx 1 
x 1 + αx 2 

− h 2 

)
= 0 . 

(3.21) 

y some simple analysis for (3.21) , it reaches 

heorem 3.4 (Existence of positive equilibrium) . When 1 − α
c (1 −

 1 ) < 

d+ h 2 
m 

< 1 , the system (3.20) has a unique positive equilibrium

 2 := (u ∗
2 
, υ∗

2 
) with 

 

∗
2 = 1 − h 1 − c(m − d − h 2 ) 

mα
= 1 − h 1 − c 

α

(
1 − d + h 2 

m 

)
, 

∗
2 = 

m (1 − h 1 − u 

∗
2 ) u 

∗
2 

c(d + h 2 ) 
= 

1 

α

(
m 

d + h 2 

− 1 

)
u 

∗
2 . 
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Fig. 3. Numerical results for the local stable property of e 1 with � = [0 , π ] . (a),(c): The spatiotemporal profiles (the top part) and the corresponding time evolution curves 

(the bottom part) of x 1 ( t, z ) and x 2 ( t, z ); (b),(d):Spatial response curve about x 1 ( t, z ) and x 2 ( t, z ) at differential discrete time points. 
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In addition, 0 < u ∗2 < 1 − h 1 , υ
∗
2 > 0 ; u ∗2 ≥ 1 and υ∗

2 ≤ 0 when
d+ h 2 

m 

≥ 1 . 

In a similar manner, the local asymptotically stability at e 2 can

be investigated by linearization method. The concerned infinity di-

mensional ODEs system matrix is 

L 

∗
n = 

⎛ 

⎝ 

− m 

2 α + cd 2 − cm 

2 + d 1 λn αm 

2 

m 

2 α
− h 1 −c 

d 2 

m 

2 

(m − d) 2 

mα
−λn d 2 m + md − d 2 

m 

− h 2 

⎞
⎠

(3.22)

Noticing that 

L 

∗
n = L n − λn diag (h 1 , h 2 ) , 

if the determinant and the trace of the matrix L 

∗
n are denoted as

Dt (u ∗2 ) , Tr (u ∗2 ) respectively, then { 

Dt (u ∗2 ) = Dt (u ∗1 ) − (a 11 λn h 1 + a 22 λn h 2 ) + h 1 h 2 λ
2 
n , 

Tr (u ∗2 ) = Tr (u ∗2 ) − (h 1 + h 2 ) λn . 
(3.23)

where a 11 , a 22 are the diagonal elements of Dt (u ∗1 ) . 
From Theorem 3.3 , 

a 11 < 0 , a 22 < 0 , 
f λ1 (d 1 + d 2 ) − c 
α

m −d 
m 

d 
m 

> 0 is provided. Thus by the nonnegativity

f λn , it reaches 

t (u 

∗
2 ) > 0 , Tr (u 

∗
2 ) < 0 . 

y summarizing, the following conclusion is reached 

heorem 3.5. Under the condition 1 − α
c (1 − h 1 ) < 

d+ h 2 
m 

< 1 , 

S3) When c ≤ α, the positive equilibrium e 2 is locally asymptoti-

ally stable for any diffusion coefficients d 1 , d 2 > 0 and interference

oefficients h 1 , h 2 > 0 . 

S4) When c > α, the positive equilibrium e 2 is locally asymptoti-

ally stable, if 

1 (d 1 + d 2 ) − c 

α

m − d 

m 

d 

m 

> 0 

s provided. Here λ1 is the first eigenvalue of S-L problem (3.11) . 

From Theorem 3.5 , the diffusion coefficients d 1 , d 2 also deter-

ine the stability of the equilibrium e 2 . In addition, the interfer-

nce coefficients h 1 , h 2 makes the equilibrium e 2 more smaller,

ven change to zeros. If 

 2 > 

mα

c 
h 1 , 

hen the positive condition 

 − α
(1 − h 1 ) < 

d + h 2 
< 1 
c m 
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Fig. 4. Numerical results for the local stable property of e 2 with � = [0 , π ] . (a),(c): The spatiotemporal profiles (the top part) and the corresponding time evolution curves 

(the bottom part) of x 1 ( t, z ) and x 2 ( t, z ); (b),(d):Spatial response curve about x 1 ( t, z ) and x 2 ( t, z ) at differential discrete time points. 
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 − α

c 
< 

d 

m 

< 1 . 

t is means that the steady state e 1 can become unstable with hu-

an influence. 

For the numerical illustration, considering Theorem 3.5 , follow-

ng from (3.19) , the system’s parameters are chosen as 

c = 1 . 0 0 0 , α = 0 . 50 0 0 , d = 0 . 90 0 0 , 

 = 1 . 0 0 0 , h 1 = 0 . 1 , h 2 = 0 . 01 . (3.24) 

here h 1 = 0 . 1 and h 2 = 0 . 01 are humans interference coefficients.

he other parameters of (3.56) are the same as (3.19) . By directly

omputing, one can see that the above parameters fulfill the posi-

ive condition 

 − α

c 
(1 − h 1 ) < 

d + h 2 

m 

< 1 . 

he equilibrium is e 2 ≈ (0.7200, 0.1424). 

Simulation results in the ( z, t ) domain are exemplarily depicted

n Fig. 4 . Fig. 4 (a) and (b) illustrates the stable property of e 2 .

ig. 4 (c) and (d) is the unstable case. It is worth noting that in

ig. 4 (b) the steady densities of boyciana and fish are both decreas-

ng more than the previous human-free model in Fig. 3 (b). This

orresponds with the theoretical result. 
.4. Nontrivial human distribution model ( λ1 (�) < r < + ∞ ) 

From the ecological point of view, the above two subsections

escribe two ecological situations: human free and over develop-

ent ecological models. Now, for Beidaihe wetland system, hu-

an, boyciana and the wetland fish are coexistent in wetland en-

ironment. A more realistic situation is described by (2.1) with

he nontrivial human distribution function x 
p 
3 
( z ) . As described in

heorem 3.1 , x 
p 
3 
( z ) is the nonconstant spatial function. The steady

tate e 3 satisfies the nonlinear elliptic PDEs 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 = d 1 �x 1 + x 1 

(
1 − x 1 − cx 2 

x 1 + αx 2 
− h 1 x 3 

)
, z ∈ �, 

0 = d 2 �x 2 + x 2 

(
−d + 

mx 1 
x 1 + αx 2 

− h 2 x 3 

)
, z ∈ �, 

0 = �x 3 + rx 3 (1 − x 3 ) , z ∈ �, 

∂x 1 
∂ n 

= 

∂x 2 
∂ n 

= 

∂x 3 
∂ n 

= 0 , z ∈ ∂�. 

(3.25) 

here 

1 (�) < r < + ∞ . 

bviously, under this situation, a similar situation in front of the

quilibrium point can’t be expected. The linearized method cannot

e applied in this case. 



148 Y. Jiang et al. / Mathematical Biosciences 277 (2016) 141–152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N⎧⎪⎨
⎪⎩  

H

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 

I  

t⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

 

T

R

 

S

L

 

0  

a  

o  

a

x

 

o  

�  

t  

t  

p  

e  

i

h

T  

c

3

 

t  

i  

l

L  

t  

b

3.4.1. Invariant domain 

Proposition 3.6 ( [21] Comparison principle) . Consider scalar nonlin-

ear parabolic equation about x = x (t, z ) 

P x = f ( z , t, x ) , ( z , t) ∈ D (3.26)

where D = � × (0 , T ) ⊂ R 

n × R + is a bounded domain with smooth

boundary ∂�. Here 

−P x = 

∂x 

∂t 
−

n ∑ 

j,k =1 

a j,k 
∂ 2 x 

∂ z j ∂ z k 

is uniformly parabolic in D . Finally we assume that f is C 1 in x and

H ̈o lder continuous in z and t. Let x and y are C 2 functions of z in �,

C 1 functions of t on [0, T ], and consider the following three conditions:⎧ ⎪ ⎨ 

⎪ ⎩ 

P x − f ( z , t, x ) ≤ P y − f ( z , t, y ) , ( z , t) ∈ D, 

x ( z , 0) ≥ y ( z , 0) , z ∈ �, 

∂x 

∂ n 

+ βx ≥ ∂y 

∂ n 

+ βy, ( z , t) ∈ ∂� × (0 , T ) , 

(3.27)

Then x ( z , t) ≥ y ( z , t) for all ( z , t) ∈ D . 

Theorem 3.7. If 1 − α
c < 

d 
m 

< 1 , 1 − α
c (1 − h 1 ) < 

d+ h 2 
m 

< 1 , then for

all the nonnegative solution of (2.1) x (t, z ) , z ∈ �, the following in-

equalities stand 

lim sup 

t→∞ 

x 1 (t, z ) ≤ x̄ 1 := 1 , (3.28)

lim sup 

t→∞ 

x 2 (t, z ) ≤ x̄ 2 := 

1 

α

m − d 

d 
, (3.29)

lim inf 
t→∞ 

x 1 (t, z ) ≥ x 1 := 1 − h 1 − c 

α
, (3.30)

lim inf 
t→∞ 

x 2 (t, z ) ≥ x 2 := 

1 

α

m − (d + h 2 ) 

d + h 2 

(
1 − h 1 − c 

α

)
. (3.31)

Consequently, the domain given by 

A : = 

[ 
1 − h 1 − c 

α
, 1 

] 
×
[

1 

α

m − (d + h 2 ) 

d + h 2 

(
1 − h 1 − c 

α

)
, 

1 

α

(
m − d 

d 

)]
is a positively invariant region for global solution of system (2.1) . 

Proof. Let x 1 , x 2 be a solution of (2.1) . Then from the first equation

of (2.1) one can observe that x 1 satisfies ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∂x 1 
∂t 

≤ d 1 �x 1 + x 1 (1 − x 1 ) , z ∈ �, t > 0 , 

∂x 1 
∂ n 

= 0 , z ∈ ∂�, t > 0 , 

x 1 (0 , z ) = x 0 1 ( z ) ≥ 0 , z ∈ �. 

(3.32)

In view of the comparison principle Proposition 3.6 , one can get

that 

lim sup 

t→∞ 

x 1 (t, z ) ≤ 1 . 

Thus the second equation of (2.1) yields that x 2 satisfies ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∂x 2 
∂t 

≤ d 2 �x 2 + x 2 (−d + 

m 

1 + αx 2 
) , z ∈ �, t > 0 , 

∂x 2 
∂ n 

= 0 , z ∈ ∂�, t > 0 , 

x 2 (0 , z ) = x 0 2 ( z ) ≥ 0 , z ∈ �. 

(3.33)
oticing that x̄ 2 = 

1 
α

m −d 
d 

satisfies 

 

 

 

 

 

∂ ̄x 2 
∂t 

= d 2 �x̄ 2 + x̄ 2 

(
−d + 

m 

1 + αx̄ 2 

)
, z ∈ �, t > 0 , 

∂ ̄x 2 
∂ n 

= 0 , z ∈ ∂�, t > 0 . 

(3.34)

ence the inequality (3.29) holds. 

In addition, from the first equation of (2.1) we can also get 
 

 

 

 

 

 

 

 

 

∂x 1 
∂t 

≥ d 1 �x 1 + x 1 

(
1 − c 

α
− h 1 − x 1 

)
, z ∈ �, t > 0 , 

∂x 1 
∂ n 

= 0 , z ∈ ∂�, t > 0 , 

x 1 (0 , z ) = x 0 1 ( z ) ≥ 0 , z ∈ �. 

(3.35)

t follows that the inequality (3.30) holds. From the second equa-

ion of (2.1) we have 
 

 

 

 

 

 

 

 

 

 

 

∂x 2 
∂t 

≥ d 2 �x 2 + x 2 

(
−d + 

m x 1 
x 1 + αx 2 

− h 2 

)
, z ∈ �, t > 0 , 

∂x 2 
∂ n 

= 0 , z ∈ ∂�, t > 0 , 

x 2 (0 , z ) = x 0 2 ( z ) ≥ 0 , z ∈ �. 

(3.36)

herefore, (3.31) holds. This completes the proof. �

emark 3.8. For the system (2.1) , the reaction function vector is 

f̄ (x ) = 

(
x 1 
(
1 − x 1 − cx 2 

x 1 + αx 2 
− h 1 x 

p 
3 
( z ) 
)

x 2 
(
−d + 

mx 1 
x 1 + αx 2 

− h 2 x 
p 
3 
( z ) 
) ). (3.37)

ince the Jacobian matrix of f̄ is 

 = 

( 

1 − cα
(

x 2 
x 1 + αx 2 

)2 − 2 x 1 − h 1 x 
p 
3 

−c 
(

x 1 
x 1 + αx 2 

)2 

mα
(

x 2 
x + αx 2 

)2 
m 

(
x 1 

x 1 + αx 2 

)2 − d − h 2 x 
p 
3 

) 

, 

(3.38)

f̄ is a mixed quasi-monotone function vector in R 

2 + = { (x 1 , x 2 ) | x 1 ≥
 , x 2 ≥ 0 } . Therefore the above theorem implies that x̄ := ( ̄x 1 , ̄x 2 )

nd x := ( x 1 , x 2 ) are a pair of coupled upper and lower solutions

f (2.1) . Consequently, by [20, Chapter 8 Theorem 3.3] , there exists

 solution x (t, z ) of (2.1) with 

 ≤ x (t, z ) ≤ x̄ . 

From the first two inequalities (3.28), (3.29) of the above the-

rem, we observe that if m < d , then lim t→∞ 

x 2 = 0 uniformly on

. Ecologically, the boyciana population will tends toward extinc-

ion. The last two inequalities (3.30), (3.31) give sufficient condi-

ions such that the positive solution of (3.20) has the persistence

roperty. That is, we provide some necessary conditions on param-

ters such that the boyciana and fish always coexist with humans

nfluence 

 1 < 1 − c 

α
, h 2 < m − d. 

his shows that it is reasonable to expect the persistence of boy-

iana and fish when there is a suitable weak humans influence. 

.4.2. Energy estimation 

In this subsection, the PDE energy estimation theory is ex-

ended to the PDAEs (2.1) . A developed Lyapunov energy function

s proposed to investigate the stability of the system (2.1) . The fol-

owing lemma will be needed. 

emma 3.9 (Poincare inequality [21] ) . Let x ∈ W 

2 
2 
(�) , then if μ1 is

he smallest positive eigenvalue of −� on � (with the appropriate

oundary conditions) the following Poincaré inequalities hold: 
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t  
∇x ‖ 

2 ≥ μ1 ‖ x − x̄ ‖ 

2 , ‖ �x ‖ 

2 ≥ μ1 ‖∇x ‖ 

2 i f 
dx 

d n 

= 0 on ∂�, 

(3.39) 

∇x ‖ 

2 ≥ μ1 ‖ x ‖ 

2 i f x = 0 on ∂�, (3.40)

here x̄ = 

1 
| �| 
∫ 
� xd z . 

heorem 3.10. Assume that x (t, z ) = (x 1 (t, z ) , x 2 (t, z ) , x 3 ( z )) 
T is a

ounded solution of (2.1) . Assume that spectral radius of the Jacobian

atrix (2.1) is ρ , μ1 is the smallest positive eigenvalue of −� on �,

 m 

= min { d 1 , d 2 } and 

= d m 

μ1 − (ρ + h M 

) > 0 . 

here h M 

= max { h 1 , h 2 } . Let x̆ = (x 1 (t, z ) , x 2 (t, z )) T , then 

(t) = 

∫ 
�

2 ∑ 

i =1 

∂ ̆x T 

∂z i 

∂ ̆x 

∂z i 
d z = 

∫ 
�

‖∇ ̆x ‖ 

2 d z ≤ c 1 exp (−δt) + c 2 , 

(3.41) 

 

�
‖ ̆x (t, z ) − x̆ M 

(t ) ‖ d z ≤ c 3 exp (−δt ) + c 4 (3.42)

old for positive constant c 1 , c 2 and c 3 , c 4 . Here, 

˘
 M 

(t) = 

1 

| �| 
∫ 
�

x̆ (t, z ) d z 

s the spatial average function. 

roof. The energy integral (Lyapunov function) 

(t) = 

1 

2 

∫ 
�

‖∇ ̆x ‖ 

2 d z = 

1 

2 

∫ 
�

2 ∑ 

i =1 

[ (
∂ x i 
∂z 1 

)2 

+ 

(
∂ x i 
∂z 2 

)2 
] 

d z 

(3.43) 

s introduced. By computing the derivative of E ( t ), one get 

d E(t) 

d t 
= 

∫ 
�

2 ∑ 

i =1 

[
∂ x i 
∂z 1 

∂ 2 x i 
∂ z 1 ∂ t 

+ 

∂ x i 
∂z 2 

∂ 2 x i 
∂ z 2 ∂ t 

]
d z (3.44) 

oticing that x̆ satisfies the system (2.1) , it follows from above 

d E(t) 

d t 
= 

∫ 
�

2 ∑ 

i =1 

(
∂ ̆x T 

∂z i 

∂ 

∂z i 
(D 1 �x + f̄ (x )) 

)
d z (3.45) 

here D 1 = diag (d 1 , d 2 ) , f̄ = ( f 1 , f 2 ) 
T is the nonlinear reaction

ector function. Applying for divergence theorem taking into ac-

ount the BCs, the above equation yields 

d 

d t 
E(t) = −

∫ 
�

�x̆ T D 1 �x̆ d z + 

∫ 
�

2 ∑ 

i =1 

∂ ̆x T 

∂z i 

∂ f̄ 

∂z i 
d z = I 1 + I 2 . (3.46) 

or the first integral I 1 , the following estimation holds 

 1 ≤ −d m 

∫ 
�

‖ �x̆ ‖ 

2 d z ≤ −d m 

μ1 

∫ 
�

‖∇ ̆x ‖ 

2 d z . (3.47)

he second integral I 2 can be estimated as 

 2 = 

∫ 
�

2 ∑ 

j=1 

2 ∑ 

i =1 

{
∂ x j 
∂z i 

(
∂ f j 
∂x 1 

∂ x 1 
∂z i 

+ 

∂ f j 
∂x 2 

∂ x 2 
∂z i 

+ 

∂ f j 
∂x 3 

∂ x 3 
∂z i 

)}
d z (3.48) 

r 

 2 = 

∫ 
�

∇ ̆x T 
∂ f̄ 

∂ ̆x 
∇ ̆x d z + 

∫ 
�

(
∂ f 1 
∂x 3 

∇ x 1 · ∇ x 3 + 

∂ f 2 
∂x 3 

∇ x 2 · ∇ x 3 

)
d z 

(3.49) 
here ∂ ̄f 
∂ ̆x 

is the Jacobi matrix f̄ w.r.t. x̆ . Thus 

 2 ≤ ρ

∫ 
�

‖∇ ̆x ‖ 

2 d z + h 1 

∫ 
�

‖∇x 1 ‖ 

2 d z + h 2 

×
∫ 
�

‖∇x 2 ‖ 

2 d z + (h 1 + h 2 ) 

∫ 
�

‖∇x 3 ‖ 

2 d z . (3.50) 

ccording to Lemma 3.9 , (3.47) and (3.50) imply 

d 

d t 
E(t) ≤ (−d m 

μ1 + ρ + h M 

) E(t) + (h 1 + h 2 ) 

∫ 
�

‖∇x 3 ‖ 

2 d z . 

(3.51) 

oticing that 

x 3 ( z ) + rx 3 ( z )(1 − x 3 ( z )) = 0 , z ∈ �

tands with the Neumann boundary conditions. Then 

d 

d t 
E(t) ≤ (−d m 

μ1 + ρ + h M 

) E(t) + r(h 1 + h 2 ) 

∫ 
�

x 2 3 (1 − x 3 ) d z . 

(3.52) 

rom the assumption d m 

μ1 > ρ + h M 

, with Gronwall inquality, we

btain that 

(t) ≤ (E(0) − q ) exp (−δt) + q, (3.53)

here δ = d m 

μ1 − (ρ + h M 

) > 0 , 

 = 

r(h 1 + h 2 ) 
∫ 
� x 2 3 (1 − x 3 ) d z 

δ
. 

herefore, (3.41) holds. By Lemma 3.9 , (3.41) implies (3.42) . This

ompletes the proof. �

Our proposed result generalized the energy estimation result on

ommon parabolic type PDEs. From above theorem, the value of

 ( t ) is asymptotically decreasing tends to a small value q if the fol-

owing condition is provided 

r(h 1 + h 2 ) 
∫ 
� x 2 3 (1 − x 3 ) d z 

d m 

μ1 − (ρ + h M 

) 
→ 0 . 

f we consider two special cases x 3 ( z ) ≡ 0 and x 3 ( z ) ≡ 1 , then q =
 and the system (2.1) is translated into PDEs system. Immediately,

e get the following corollary. 

orollary 3.11. Under the conditions described in Theorem 3.10 , If

 3 ( z ) ≡ 0 or 1, then for any bounded solutions of (2.1) , the following

onclusions hold 

 

�

2 ∑ 

i =1 

∂ ̆x T 

∂z i 

∂ ̆x 

∂z i 
d z = 

∫ 
�

‖∇ ̆x ‖ 

2 d z ≤ c 1 exp (−δ1 t) , (3.54)

 

�
‖ ̆x − x̆ M 

(t) ‖ d z ≤ c 2 exp (−δ1 t) (3.55)

here c 1 , c 2 are all independent positive constants; x̆ M 

(t) is the spa-

ial average functions of x̆ (t) respectively. i.e. the state variable vector

˘ generated by the system (2.1) is exponentially stable and asymptot-

cally converge to their spatial average, respectively. 

Ecologically, E ( t ) represents the spatial mobility integral of boy-

iana and fish. It can be seen as the summation of oscillation am-

litudes of two species in the domain. Theorem 3.10 shows that

n order to avoid the inference of human behaviors (for example:

uman fishing, water pollution), boyciana and wetland fish must

arry on the unceasing migration. This means the wetland system

s in an unstable state. However, if we reduced the human distribu-

ion density (for example, set up human restrict area) and enhance
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Fig. 5. Numerical results for the steady state � = [0 , π ] . (a),(c): The spatiotemporal profiles (the top part) and the corresponding time evolution curves (the bottom part) of 

x 1 ( t, z ) and x 2 ( t, z ); (b),(d):Spatial response curve about x 1 ( t, z ) and x 2 ( t, z ) at differential discrete time points. 
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the spatial diffusion capacity (for example, avoid river pollution),

the wetland ecological system can tend to a stable state. 

3.4.3. Illustrative example 

As an effective demonstration of our previous theoretic analysis,

we simulate the steady state for the boyciana–fish–human system.

In order to show human’s interference on the stability of ecological

system, r is taken as the parameter variable of human population

distribution. Therefore, in (2.1) , except for r , all the other parame-

ters are fixed by 

d 1 = d 2 = 0 . 01 , c = 1 . 0 0 0 , α = 0 . 50 0 0 , (3.56)

d = 0 . 30 0 0 , m = 1 . 0 0 0 , h 1 = 0 . 01 , h 2 = 0 . 3 . (3.57)

As shown in Fig. 5 , when r = 1 . 001 , x 1 and x 2 are numerically con-

verge to the desired steady state as t → ∞ . When r = 100 , x 1 ,

x 2 can’t maintain the steady state. These simulation results indi-

cate that r → + ∞ may lead to the turning instable property of the

PDAEs system (2.1) . 
. Model fitting on real data 

In this section, as application of our boyciana–fish–human

odel, the proposed PDAEs model is evaluated by model param-

ter fitting with the actual bird data set. First, the actual observa-

ion data is dealt with. Then, one dimension space PDAEs model

s built. And the PDEs fitting technique provided in [26] is used to

earch for parameters to best fit the real data. 

.1. Treatment on actual boyciana and fish data 

With the help of Qinhuangdao Bird Reserve and Banding Sta-

ion, this real data is collected from six different locations at differ-

nt times (from 2001 to 2014). Table 1 shows the discrete density

istribution of boyciana ˜ x 2 (t, z i )(i = 1 , . . . , 6) at six bird-watching

ocations in normalization format. The findings are that the den-

ity value at Location 1 is higher than the other five locations.

t is worth noticing that this observatory is located in the forest

here few people enter and is far away from the coastline. This

onfirms that boyciana depends on and prefers a region without

nterference or less interference for building their nest. Now, since
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Fig. 6. Predicted vs. Actual data of boyciana density. The x -axis represents the spatial scale. The y -axis is density. From top to bottom, the first four predicted curves are in 

years of 2001, 2005, 2010, 2014, respectively. 

Table 1 

Boyciana density distribution ˜ x 2 (t, z) in six observatories. 

Time (year) 2001 2002 ��� 2014 

z 1 (Loc.1) 0.001136 0.001047 ��� 0.0 0 0717 

z 2 (Loc.2) 0.001324 0.001150 ��� 0.0 0 0981 

z 3 (Loc.3) 0.0 0 0919 0.0 0 0802 ��� 0.0 0 0742 

z 4 (Loc.4) 0.0 0 0946 0.0 0 0909 ��� 0.0 0 0766 

z 5 (Loc.5) 0.0 0110 0 0.0 0 0966 ��� 0.0 0 0396 

z 6 (Loc.6) 0.0 0 090 0 0.0 0 0866 ��� 0.0 0 0266 

t  

c  

z

 

t  

C  

0  

t  

i  

o  

t  

q  

(  

i

4

 

m  

t  

g  

i

x

Table 2 

Normalization fish density distribution ˜ x 1 (t, z) . 

Time (year) 2001 2002 ��� 2014 

z 1 0.1 0.09 ��� 0.03 

z 2 0.12 0.12 ��� 0.07 

z 3 0.14 0.14 ��� 0.07 

z 4 0.16 0.15 ��� 0.10 

z 5 0.18 0.18 ��� 0.12 

z 6 0.2 0.19 ��� 0.14 

T  

l

�

M  

z  

B  

c  

c

 

a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
hese locations have different linear distances from the Beidaihe

oastline, accordingly we discrete the spatial axis z as six points

 1 , . . . , z 6 which correspond to the six bird observatories locations. 

For the fish density distribution ˜ x 1 (t, z) , it should be noticed

hat the ”fish density” represents the fish food available quantity.

onsidering the range of boyciana foraging activities is at about

.5–5 km, assume that the distance from the boyciana’s habitat to

he coastline represents degree of different fish food catching. That

s the quantity of available fish food linearly negative dependent

n the distance to the coastline. Thus, in Table 2 , the density dis-

ribution at z 6 position ˜ x 1 (t, z 6 ) is normalized created by the real

uantity of fish production of Qinhuangdao in the past 14 years

from 2001 to 2014). And the other positions ˜ x 1 (t, z i )(i = 1 , . . . , 6)

s linearly decreasing with respect to the coastline distance z . 

.2. Spatial assumption 

The reasonable assumptions are made to reduce the spatial do-

ain of the original model (2.1) . From Section 4.1 , it is clear that

he populations densities of boyciana and fish are assumed as sin-

le space variables. Mathematically, the state variables vector sat-

sfies 

 (t, z 1 , z 2 ) = x (t, z 1 ) . 
hen the spatial domain � is longitudinal compression into a ‘pipe’

ine 

= (0 , l) . 

oreover, the wetland boundary ∂� is changed into two points:

 = 0 , z = l which are both closed without flux under Neumann

C. For the convenience of writing, we define x (t, z) = x (t, z 1 ) and

hoose the spatial domain of system (2.1) as � = (0 , π) to simplify

alculation. 

Under above assumptions, (2.1) becomes an 1D-spatial PDAEs

s following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂x 1 
∂t 

= d 1 
∂ 2 x 1 
∂z 2 

+ x 1 

(
1 − x 1 − cx 2 

x 1 + αx 2 
− h 1 x 3 

)
, z ∈ (0 , π) , t > 0 , 

∂x 2 
∂t 

= d 2 
∂ 2 x 2 
∂z 2 

+ x 2 

(
−d + 

mx 1 
x 1 + αx 2 

− h 2 x 3 

)
, z ∈ (0 , π) , t > 0 , 

0 = 

∂ 2 x 3 
∂z 2 

+ rx 3 (1 − x 3 ) , z ∈ (0 , π) , 

∂x 1 
∂z 

= 

∂x 2 
∂z 

= 

∂x 3 
∂z 

= 0 , z ∈ { 0 , π} , t > 0 , 

x 1 (0 , z) = x 0 1 (z) , x 2 (0 , z) = x 0 2 (z) , z ∈ [0 , π ] . 

(4.1) 
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In addition, the corresponding S-L problem of (4.1) has the eigen-

values and the eigenfunctions [27] : 

μn = n 2 , φn (z) = 

√ 

2 

π
cos (nz) , n ∈ N 0 . (4.2)

Therefore, the first eigenvalue is μ1 ([0 , π ]) = 1 . 

4.3. Maximum–minimum norm optimization model fitting 

In this subsection, the numerical PDAEs fitting method is inves-

tigated to predict the development of boyciana population. The fol-

lowing maximum–minimum norm optimization algorithm is built

to optimal the parameters. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

min 

2 ∑ 

i =1 

14 ∑ 

j=1 

6 ∑ 

k =1 

| x i (t j , z k ) − ˜ x i (t j , z k ) | 
| ̃  x i (t j , z k ) | 

s.t. 

∂x 1 
∂t 

= d 1 �x 1 + x 1 

(
1 − x 1 − cx 2 

x 1 + αx 2 
− h 1 x 3 (z) 

)
, 

∂x 2 
∂t 

= d 2 �x 2 + x 2 

(
−d + 

mx 1 
x 1 + αx 2 

− h 2 x 3 (z) 
)
, 

∂x 1 
∂z 

∣∣∣∣
z=0 ,π

= 

∂x 2 
∂z 

∣∣∣∣
z=0 ,π

= 0 , 

x 1 (0 , z) = 

˜ x 1 (0 , z) , x 2 (0 , z) = 

˜ x 2 (0 , z) , 

d 1 , d 2 , c, m, α, d, h 1 , h 2 , r > 0 . 

(4.3)

Here, the optimal parameters are d 1 , d 2 , c, m, α, d, h 1 , h 2 and r . 

For the initial density value of the above optimal problem, x 1 (0,

z ) and x 2 (0, z ) is taken from the actual data in 2001. 

With the Neumann BC 

∂x 1 
∂z 

= 

∂x 2 
∂z 

= 0 , we use the technique in

numerical analysis 

0 = 

d x (z) 

d z 
≈ x (ξ ) − x (z) 

ξ − z 
. 

Consequently, in the spatial direction, two sets of data are added

to each side of the observation data. The added data values are the

same as their adjacent values. 

The numerical optimal program is designed with MATLAB soft-

ware. The initial input parameters is 

d 1 = d 2 = 0 . 001 , d = 0 . 3 , c = 1 , m = 1 , 

α = 0 . 5 , h 1 = 0 . 1 , h 2 = 0 . 3 , r = 1 . 

Combining with the boundary value in Tables 1 and 2 , we get the

numerical optimization result: 

d 1 = 0 . 1185 , d 2 = 0 . 5773 , d = 0 . 1343 , c = 0 . 8996 , 

m = 0 . 5093 , α = 0 . 5535 , h 1 = 1 . 8102 , h 2 = 0 . 0172 , r = 6 . 0440 . 

Fig. 6 illustrates the predicted results for boyciana. The dashed

lines denote the actual observations for the density in different

year, while the starred lines illustrate the density predicted by our

PDAEs Model (4.3) . Here, the average prediction accuracy is 95.17%.

It is effective from the statistical perspective. 

Conclusion 

In this work, the boyciana–fish reaction-diffusion system cou-

pled with elliptic human distribution equation is considered. It is

a generalization of the classical parabolic PDEs system. Because

some theoretical results cannot be directly applied in the singular

derivative coefficient matrix E situation, the novel energy estima-
ion method is provided to investigate the global stability of PDAEs

odel. The maximum–minimum norm optimization model is built

o optimize the parameters of PDAEs (2.1) . The numerical results

how the effectiveness of the development model. 
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