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1. Introduction

In Northern China, Beidaihe wetland is located in the junc-
tion of three big ecosystems that are forest, ocean and wetland.
Beidaihe wetland is one of the important channels for Far East
migratory birds. In September and October, there are about 400
species of birds which migrate to Beidaihe wetland park. At the
same time, as an international tourist city, Beidaihe attracts a
large number of tourists to travel from May to October. Due to the
increasing human activities, many living and breeding areas are
polluted, leading to the decrease of the bird population.

Boyciana is one of the most sensitive species in Beidaihe
wetland system. It is the first-grade state-protected animal in
China. Boyciana was widely distributed in Northeast Asia. In 1986,
the experts found that 2729 boyciana moved through Beidaihe
wetland region. However, in recent decades, the human’s activities
made boyciana’s predatory object quantity to reducing. The habitat
environment of boyciana was also destroyed. Many environmental
factors influence the spatiotemporal distribution of boyciana such
as hidden factor, water factor, vegetation factor and food factor are
directly or indirectly related to human activities [1].

Despite a rich literature on the spatiotemporal research of
ecosystem [2], the human’s interference in the ecological spa-
tiotemporal process is rarely studied. Thus, the goal of the
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theoretical ecology model is to study how the interactions be-
tween boyciana and their food-wetland fish with human social
behavior influence.

Mathematically, reaction-diffusion equation can be used to
model the spatiotemporal distribution and abundance of organisms
[3-6]. In recent decades, the role of the reaction-diffusion effect in
maintaining bio-diversity has received a great deal of attention in
the literature on ecology conservation [7]. Empirical evidence sug-
gests that the spatial scale can influence population interactions.
The major classes of spatial models are those that treat space as a
continuum and describe the distribution of populations in terms of
densities. A typical form of reaction-diffusion population model is

ox =DAX+xf(z,x)

at

where x(t, z) is the population densities vector at time t and space
point z, D is the diffusion constant matrix, A is the Laplace oper-
ator with respect to the spatial variable z, and f(z, x) is the growth
function vector. Such an ecological model was first considered by
Skellam [8], and the reaction-diffusion biological models were also
studied by Fisher [9] and Kolmogoroff [10].

For the predator-prey type reaction-diffusion biological mod-
els, in reference to the functional response models, the traditional
used function are Lotka-Volterra [11], Allee effect [12], Holloing
type [13], Bedding-DeAngelis [14], ratio-dependent [15] etc. All the
predator-prey models cannot be directly applied in the human
interference model (2.1). The developed system includes three
interaction species: boyciana, fish and human.
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In this purpose, the ratio-dependent reaction-diffusion system
model [15] is modified in which the incorporating one prey and
two competing predator species was considered. In [15], we
replace one competing predator species by human. Specially, the
human influence part is some degenerated Fisher population
model of elliptic type. Although the global attractor and persis-
tence of the parabolic equations system was discussed in [15] by
comparison principle theory. While the model (2.1) involves some
elliptic equation, the new methods are proposed on the persis-
tence property. The diffusion-driven instability or turing instability,
which has attracted the attention of some investigators, is also
discussed in this study by using the qualitative theory.

The aim of this work is to propose the qualitative analysis
about three species (boyciana, fish and human) interrelated spa-
tiotemporal ecological wetland model expressed in term of PDAEs.
And as an application, it illustrates the numerical simulation and
prediction to show the effective of the results.

The remaining part of this paper is organized as follows. In
Section 2, the PDAEs model is built on the ecological system.
In Section 3, by developed PDE energy estimation method, the
persistence property of the system (2.1) is examined. In addition,
the numerical simulations are carried out to show the effective of
the proposed results. In Section 4, under some reasonable assump-
tions, with the data collected from the wetland conservation, the
PDAEs parameter optimal model is carried to predict the boyciana
population in the future.

Notations: Ny is natural number set.  is a bounded plane
domain with the boundary 9€2. || - || denotes the Euclidean norm
for vectors. For a symmetric matrix M, M > ( < )0 means that it is
positive (negative) definite. I is the identity matrix. The superscript
T is used for the transpose. Matrices, if not explicitly stated, are
assumed to have compatible dimensions. For the convenience, the
following Hilbert space is defined:

Hy(2) £ {x: 2 x [0, +00) — R" and ||x|| < oo}

with inner product and L,-norm respectively defined by

1,2
o) 2 [ atydz. ) = { [ Iidz)
Q Q

2. Boyciana-fish-human model

In a protected environment, human, boyciana and fish are cho-
sen as the research objects. The spatiotemporal dynamics between
boyciana and fish with human activity affect is

8x1 Xy
W—d]AX]—l—X](]—Xl—m—h]X3>,Z€Q,t>0,
0X; mxq

— =dy A - _— Q

3t d2 X2+X2< d+X]+OtX2 h2X3),ZE .t >0,
0=Ax3+1x3(1 —X3),2 € 2,

8x1 . 8x2 - 3X3 .

ﬁ_a—n_a—n_O,ZeBQ,t>O,

x1(0,2) =x%(z) > 0,%,(0,2) =x3(z) > 0,z € Q.

(2.1)

Here, the state variables are xq = x1(t,2), X, = X, (t,2), X3 = X3(2),
Q is an idealized rectangular domain (See Fig. 1), z=[z1,2,] € Q
is the spatial coordinate, n is the outward unit normal vector
of the boundary 0€2, the coefficients ¢, «, m, d, hy, h, and r are
positive constants. The initial value x?(z),xg(z) are non-negative
smooth functions which are not identically zero.

-
The sea
Wetland area
The land @
Artificial protection boundary o2
0 }Zz

Fig. 1. The idealized spatial domain is a rectangular domain with the sea oriented
direction z; and coast line direction z,. The wetland conservation is closed with no
flux boundary conditions imposed.

2.1. Ecological description

The system (2.1) describes the population dynamics of
boyciana-fish system with humans interference, which is dis-
persed by diffusion in the habitat area Q2 (See Fig. 1).

x1(t,z),x,(t,z) represent the population densities of fish and
boyciana at time t > 0 and spatial position z € 2 respectively.
x3(z) stands for the human density. x%(z).xJ(z) are the initial
population distribution of fish and bird respectively. Obviously,
these two initial values are depended on the spatial the geo-
graphical position z. In this point of view, this is more realistic to
describe spatial population distribution than the ODEs system.

The Neumann boundary conditions

8X1 sz 8X3

on ~ on  dn =0.2¢00

mean that (2.1) is self-contained and has no population flux across
the boundary 92, so that 02 acts as a perfect barrier to dispersal.

The interaction between fish and boyciana is based on two
ratio-dependent functional response functions

CX1X2 mxqXp
X1+ 0Xy ' X1+ 0Xo
where c is the capturing rate (or catching efficiency) of the boy-
ciana, m is the conversion rate. Fish population follows the logistic
growth in the absence of boyciana and human. d is the death rate
of boyciana.

When the distribution of the individuals is not uniform and
depends on different spatial locations, the standard method to
describe the spatial effects is to introduce the diffusion terms.
Therefore, the diffusion coefficient matrix about the fish and the
boyciana is introduced, that is

d 0
(0 d2> AX (2.2)

where x =[x (t,2),x,(t,2)]T, A = ziz:]agi is the Laplace operator.
It is well known that the appearance of the spatial dispersal
makes the dynamics and behaviors of the boyciana-fish system
even more complicated.

Specifically, for a wetland ecosystem, the influence of human
can be regarded as an invasive species and not be affected by
other species. Therefore, mathematically, —h;x3 and —hyx3 are
added in the first two equations of (2.1) which represent the
human'’s interferences on fish and boyciana, respectively.

The third equation of (2.1) is derived from the well-known
Fisher equation

8X3 (t, Z)
at
where the nonlinear function rx3(1 — x3) is referred to as a logis-
tic nonlinearity. Since the local human population distribution can

= AXx3(t,z) +rx3(t,2)(1 —x3(t,2)), 2 Q2,t > 0. (2.3)
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reach a time independent dynamic balance in a short time. Thus
(2.3) degenerates to the following elliptic equation

0= Ax3(z) +1r3x3(2)(1 — x3(2)),Z € Q2. (2.4)
2.2. PDAEs description

By [16], the system (2.1) can be rewritten as the following ma-
trix form

E% =DAX + f(x) (2.5)
subject to the boundary conditions (BCs)

ax,(t,z

la(in):O,zeaﬂ,teﬁgc (2.6)
and the initial conditions (ICs)

x(0,2) =x2(2),2 € Q, Kk € V¢ (2.7)

where X = (X1, %2, x3)7, ¥pc = {1,2,3}, %c ={1,2} and

1 0 0 &0
E=[(0 1 0 ,D:diag(Dl,l),Dlz(O] d),
0 0 O 2

CX:
X1 (1 —x1 — 72— h1x3)
mx
X2 (—b + x1+alxz — h2X3)
rx3(1 —X3)

fx) =

The applications and mathematically research on PDAEs have at-
tracted increasing attention to academics [17-19]. In view of the
latest literature in reaction-diffusion system research, in most of
these system, the derivative coefficient matrix D is invertible. In
other words, they are the parabolic type nonlinear partial differen-
tial equations system (PDEs). Most of them can be analyzed with
the existing qualitative theory [20] directly.

However, from the above PDAEs system (2.5)-(2.7), the time
derivative coefficient matrix

1 0 O
E={0 1 O
0 0 O

is singular. Mathematically, it is a generalization of the classical
parabolic PDEs system with E as a unit matrix. Because some the-
oretical results [21,22] cannot be directly applied in this parabolic-
elliptic type, researches in the singular case are relatively scarce.
The identifiability and stability properties of some PDAEs have
been studied [16] with singular system theory.

On the other hand, in the field of control, this system is also
called singular distributed parameter system (SDPS). If the diffu-
sion term (2.2) is not include in this system, it changes to a singu-
lar system or generalized state-space system [23].

3. Local and global stability
In this section, the focus lies in the steady state solutions of

(2.1). Since the semi-linear elliptic part of (2.1) is independent of
time, the following parabolic subsystem is the main concern:

8X1 CX)

W —d]AX] +X1<1 — X1 — m —h1X3),ZG Q,t>0,
8X2 mx

W = dzsz +X2<*d+ m fh2X3),Z € Q,t > 0,
8x1 8X2

ﬁ_ H—O,Zeaﬁ,t>0,

x1(0,2) =x%(2) > 0,%(0,2) =x3(z) > 0.z € Q.

where x3 satisfies the elliptic boundary problem
0= Ax3(z) +1x3(2),Z € 2,

3.2
9x3(2) =0,z 0. G-2)
on

In comparison with the autonomous system in [14], as external
input variables, human influence functions hix3, hox3 are added
into the nonlinear parabolic subsystem (3.1). This leads to different
dynamic behavior with human population distribution x3(z).

In order to clearly present the human population distribu-
tion, the property of x3(z) is first considered in Section 3.1. In
Section 3.1, it also shows that the human spatial distribution x3(z)
is directly related to the intrinsic growth distribution parameter r.
In consequence, this lead us to investigate the persistence property
of (3.1) with parameter r in Sections 3.2-3.4.

3.1. Studied on the human distribution subsystem

Consider the human distribution subsystem in (2.1)

{ 0= Ax3(z) +1x3(2)(1 —x3(2)).Z € 2,

0x3(2) =0,z 0. 63

on

The solution of (3.3) represents the spatial distribution of the hu-
man population which has direct influence on the populations
of boyciana and their food. With the existing results in elliptic
PDE theory [21,24], the solution of the system (3.3) could be not
unique. Specially, x3(z) depends not only on the choice of param-
eter r but also on the shape of the domain 2 [21]. The following
discusses the existence and uniqueness of the solution of (3.3) and
gives some ecological description on the positive solution.

First of all, it is obvious that the system (3.3) has a coupled
upper and lower constant solutions

X3(z) =1,%3(z) =0, ze Q.

The trivial solution X3(z) = 1 can be interpreted as human popula-
tion density reaches the wetland ecology system capacity limit. In
other words, the wetland area is facing the human’s over develop-
ment threat. On the other hand, the solution x3(z) = 0 means that
the wetland ecology system is in a human-free environment. How-
ever, under the realistic circumstance, human population density
has decreasing property along z; axis

(see Fig. 1) which is perpendicular to the coastline. Therefore,
what the study is interested in is the nontrivial solution of Neu-
mann problem (3.3).

Theorem 3.1 (Uniqueness of nontrivial positive solution). Let
M1(S2) be the first eigenvalue of the following eigenvalue problem
{ 0= Ax3(z) +1x3(2).Z2 € 2,

0%3(2) =0,zc 0. G4

on

If r > A1(2) holds, then (3.3) has a unique nontrivial positive solution
x5 (z) such that 0 < x5(z) <1 and

: p _ p < _
lim x2(2) =0, /Qx3(z)dz_ (r = Q)9 (3.5)

where \ represents the right limit, |2| is the measure of Q2. Addition-
ally, if 3Q € C! then

limxf =1, zeQ. (3.6)

r—oo
where Q' c Q is closed in Q.

Proof. Noticing that X3,x; are a couple of upper and lower solu-
tions of (3.3), by directly using the comparison principle [24], there
exists a nonconstant positive solution xg’ (z) satisfies 0 §x‘3’ <1.
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Human distribution x3(z)

1.5 2 25 3
Spatial z

0 05 1

Fig. 2. Human distribution curve with different parameter values r, Q = [0, 7 ].

For the uniqueness of the nontrivial positive solutions, [25, Sec-
tion 3.5.3] shows that (4.1) has the unique positive solution xg’(z)
if and only if

r>A1(R2)

where Aq(2) is the first eigenvalue of (3.4). This completes the
proof. O

By the above discussion, three nonnegative solutions of (3.3) are
obtained

X3=0,%3=1,x5(2).

These correspond to three different kinds of population distribu-
tion: human-free, population limit and normal non-uniform distri-
bution. The biological interpretation of Theorem 3.1 is that if the
wetland system has the humans carrying capacity 1 then over all
of © the total population would be |€2|. So the integral inequal-
ity (3.5) shows that the total population reduces with r approach
A1(R2). The limit equality (3.6) shows if the spatial scale of Q as
measured by r is sufficiently large then the population density in
€ will be close to its carrying capacity X3 on €2 except for a rela-
tively narrow strip near the boundary d<2 (See Fig. 2). To guarantee
the existence and uniqueness of the nontrivial positive solution, it
assumes r > A¢(2) throughout this study.

3.2. Local stability and instability of human free model (t\1(2))

From Theorem 3.1,

lim x3(z)=0
™A1 ()

holds. By substituting human distribution x3 =0 into (3.1), it
reaches

8x1 Xy

W —d]AX] +X]<l - X1 — m),le Q,t>0,

8X2 mxq
W—dzAX2+X2<—d+m>,ZGQ,t>O, (3.7)
8x1 8x2

o a—n_O,zeaQ,t>0,

x1(0,2) =x%(2) > 0,%,(0,2) =x3(z) >0,z e Q.

From the ecological point of view, the system (3.7) represents that
the wetland system is in the original ecological environment situa-
tion. Now, mathematically the local stability property of the system
(3.7) is studied.

The positive constant equilibrium of the system (3.7) is the pos-
itive solution of the following nonlinear equations

o _ B CXy _
fi(x1.%2) -—X1<1 X1 x71+ax2)_0’

X (3.8)
—xo—d e )
For(x1,%2) -—X2< d+ X +oexz> =0

By simple analysis for (3.8), it has

Theorem 3.2 (Existence of positive equilibrium). When 1-% <

% <1, the system (3.7) has a unique positive equilibrium e; :=
(u3, vy) with

u;ﬁ:l_cm—d):l_fo_d),

mo o m
m(—-uju; 1 /m
V= ———"— = —(=—1)u;
1 cd a(d )1
In addition, 0 < uj < 1,vy > 0; uj =1 and v} < 0 when % > 1.

Now, with the linearized method of dynamic system and the
eigenvalue theory of PDE, the local asymptotic stability of the pos-
itive constant steady state e; is discussed.

Considering the linearizing system of (3.7) at e,

%
at
where the linear operator .# be defined by

Z=DiA+f (3.10)
with f] is the Jacobian matrix of f = (f, fo)T at e;.
Let

0=)»0<)n1<~-~

<Ap<--

be the eigenvalues of the operator —A on 2 with Neumann BC.
The corresponding eigenfunctions are represented by ¢,(n € Np).
Thus, An, ¢n(n € Np) satisfy

—-A¢p =1 in Q,
3.11
8—¢ =0 on JdQ2. G
on

Then the function sequence {¢y}°, forms an orthonormal base of
H2(Q). It should be noticed that the eigenvector w.rt. Ao =0 is
¢o = const. The corresponding solution is trivial which cannot in-
fluence the stability of the system. Therefore, it is concerned with
the following infinity dimensional ODE systems (see [16] for de-
tail):

Xn = %Xn, 1 € N. (312)
where Xp = (x, ¢n) = [ X(t, 2)p(2)dz,
Lo =—Dihn + fy. (3.13)
Substituted fj with ey, it follows with
m2o + cd? — cm? + dy Aam? cﬁ
& = m2q m?2
(m—d)? _)\ndszrmd—d2
mo m
(3.14)

Let Dt(eq), Tr(e;) denote the determinant and the trace of the ma-
trix %, respectively. Then
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2dey — cd3 — md2ey — 2 2
Dt(e1)=mda cd® — md?a — m#dc + 2md?c

mia
+Andzcd2 + AnmPady — Agm?cdy + A2m?adydy 4+ Aym?dad; — Aymd?ad,

2 )\‘ d d 2 dq‘lza 2
Tr(el):—ma"(1+ h) + mPa + —m?c

m2a '
(3.15)
The characteristic equation of the matrix .%;, is
1?4+ uTr(e;) 4+ Dt(e;) = 0.
From Theorem 3.2, when 1 - ¢ < 4 <1, there stands m > d.
If ¢ < o, one can obtain
m?da —m?dc >0, 2md?c — cd® — md?a > 0,
then the first part of Dt(e;) satisfies
m?da — cd® — md?a — m?dc + 2md>c
o > 0.
In the same way,
Anm?ady — Apm?cdy > 0
and
m?dad; — Anmd?ad; > 0
imply
And?cdy + Anm?ady — dym?cdy + A2m?adidy + Aym?dad; — Aymd?ad, -0

mia
Then Tr(e;) < 0, Dt(e;) > 0 hold for any A,,n e Ng.
If ¢ > «, by the monotonicity of eigenvalues {A,}>°,. through
some directly computing, when A;(d; +dy) — ™44 - 0, there
stand Tr(e;) < 0 and Dt(eq) > 0. In summary, the following con-

clusion is reached

Theorem 3.3 (Local stability). Under the condition 1 - % < % <1,
S1) When ¢ < «, the positive equilibrium eq is locally asymptoti-
cally stable for any diffusion coefficients dy, dy > 0.
S2) When ¢ > «, the positive equilibrium eq is locally asymptoti-
cally stable, if and only if
cm—dd

Xl(d1 -|—d2)— ETE >0

where Aq is the first eigenvalue of S-L problem (3.11).

From a biological point of view, Theorem 3.3 implies that if
there is no human interference (x3 = 0), when the capturing rate
c is low with the high conversion rate m, boyciana population x;
and their fish food x; can maintain the stable coexistence situa-
tion. In addition, the diffusion term A;(d; +d,) in the inequality
shows that better diffusion effect helps maintain the balance of the
ecosystem. The above described circumstances consistent with ex-
perience.

Define the domains I, Il and III in the (¢, @, m, d) space respec-
tively by

l={c5a,0<d<1}, (3.16)
m

<X(di + dz)}, (3.17)

a d cm—dd
Il = 1-—<—<1,———— > A(dy+dy)}. (318
{C>0€7 C<m<,amm>1(1+2)}( )
We assert that if (c, «, m, d) € [, 1I, then the positive equilib-
rium e; of system (3.7) is locally asymptotically stable, else if (c, c,
m, d) is in III then e is unstable. The following is the numerical
illustration.

For the numerical evaluation of the human free system (3.7), fix
the system parameters as

¢=1.000, ¢ = 0.5000, d = 0.9000, m = 1.000. (3.19)

By Theorem 3.3, (3.19) fulfill the positive condition
d

1—g<—<1.
Cc m

The corresponding equilibrium is e; ~ (0.8000, 0.1778).
Simulation results with d; =d, = 1.000 are exemplarily de-
picted in Fig. 3. In Fig. 3a, the spatiotemporal response surface of
fish x;(t, z) and boyciana x,(t, z) are depicted on the top part. And
also, the time evolution of both species are studied on the bot-
tom part. Fig. 3b illustrates the spatial distribution curves of boy-
ciana and fish at discrete time points. With these, the equilibrium
e; shows the stable property. On the other hand, in Fig. 4c and
b, by decreasing the diffusion coefficients d;, d, to d; = d, = 0.01,
the numerical results are shown with unstable property.
Obviously, due to Theorem 3.3, if d; =d, =1 then

A (dy +dy) — émT_d% ~1.820 > 0.

e is locally stable. If d; = dy = 0.01 then

A (dy +dy) — émT_d% ~ —0.160 < 0.

e; is unstable. The simulation results correspond with the theoret-
ical conclusion.

3.3. Overdevelopment model (r / +o0)
From Theorem 3.1,
rl;rrol x3(z) =1

holds. By substituting human distribution x3 =1 into (3.1), one
gets

8x1 X3
W—d]AX]+X1<1—X1—m—h1),269,t>0,
8X2 mxq

LR A Q

9t dz X2—|—X2< d+x1+ax2 hz),le .t >0,
8X1 8)(2

ﬁ—ﬁ—o,zeaﬁ,t>0,

x1(0,2) =x%(z) > 0,%,(0,2) =x3(z) >0,z € Q.

(3.20)

The system (3.20) represents the wetland system is in the overde-
velopment of resources situation.
Analogously, the positive constant equilibrium of (3.20) satisfies

X1(1 —Xq _XCLX —h1) =0,
m)‘(“‘ 2 (3.21)
Xz(—d-ﬁ-i] —hz) =0.
X1+ Xy

By some simple analysis for (3.21), it reaches

Theorem 3.4 (Existence of positive equilibrium). When 1 — % (1 —

hy) < dfﬂhz < 1, the system (3.20) has a unique positive equilibrium
ey := (u3, vy) with

u;:1_h1_c(md}h):1_hl_C<1_d+h2)’
mo o m

c(d+hy) T a

., m(A-h—uHuy 1 m .
v; = (d+h2_])u2'
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x9(t, 2)

(c) Spatiotemporal profiles (d; = d2 = 0.01).(d) Spatial response curve (d; = da = 0.01).

Fig. 3. Numerical results for the local stable property of e; with = [0, r]. (a),(c): The spatiotemporal profiles (the top part) and the corresponding time evolution curves
(the bottom part) of x;(t, z) and x,(t, z); (b),(d):Spatial response curve about x;(t, z) and x,(t, z) at differential discrete time points.

In addition, 0<uj<1-hy,v5>0; ub>1 and v; <0 when
d+hy 1
=1

In a similar manner, the local asymptotically stability at e, can
be investigated by linearization method. The concerned infinity di-
mensional ODEs system matrix is

m?a + cd? — cm? + dy Apnam? d?
- 3 —h 5
L= mex m
n (m—d)? 7)»nd2m+md—cl2 _h
mo m 2
(3.22)

Noticing that
Ly = 2y — Mdiag(hy, hy),

if the determinant and the trace of the matrix .%; are denoted as
Dt(us), Tr(us) respectively, then

Dt(u3) =Dt(u}) — (ayAnhy + apinha) + hihyA2, (323)
Tr(us) =Tr(u3) — (hy + hy)An. '

where ay, ay; are the diagonal elements of Dt(u7).
From Theorem 3.3,

ap < 0,a3 <0,

m—d
m

if )\.1 (d‘] + d2) —
of Ay, it reaches
Dt(u3) > 0, Tr(u3) < 0.

By summarizing, the following conclusion is reached

£ % > 0 is provided. Thus by the nonnegativity

Theorem 3.5. Under the condition 1 - %(1—hy) < % <1,

S3) When ¢ < «, the positive equilibrium e, is locally asymptoti-
cally stable for any diffusion coefficients dy, d, > 0 and interference
coefficients hq, hy > 0.

S4) When ¢ > «, the positive equilibrium e, is locally asymptoti-

cally stable, if

cm—dd
)\l(d1+d2)—aTa>0

is provided. Here Ay is the first eigenvalue of S-L problem (3.11).

From Theorem 3.5, the diffusion coefficients d;, d, also deter-
mine the stability of the equilibrium e,. In addition, the interfer-
ence coefficients hy, h, makes the equilibrium e, more smaller,
even change to zeros. If

mo
hz > 7h1,
C

then the positive condition
d+hy,

<1

1—%(1—h1)<
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(c) Spatiotemporal profiles (d1 = d2 = 0.01).(d) Spatial response curve (d1 = d2 = 0.01).

Fig. 4. Numerical results for the local stable property of e, with Q = [0, 7 ]. (a),(c): The spatiotemporal profiles (the top part) and the corresponding time evolution curves
(the bottom part) of x1(t, z) and x,(t, z); (b),(d):Spatial response curve about x;(t, z) and x,(t, z) at differential discrete time points.

implies
o d
1-—<—<1.
c m
It is means that the steady state e; can become unstable with hu-
man influence.

For the numerical illustration, considering Theorem 3.5, follow-
ing from (3.19), the system’s parameters are chosen as

¢ = 1.000, « = 0.5000, d = 0.9000,
m = 1.000, h; = 0.1, h, = 0.01.
where h; = 0.1 and h, = 0.01 are humans interference coefficients.
The other parameters of (3.56) are the same as (3.19). By directly

computing, one can see that the above parameters fulfill the posi-
tive condition

(3.24)

1—%(1—h1)< <1.

d+ hz
—
The equilibrium is e, ~ (0.7200, 0.1424).

Simulation results in the (z, t) domain are exemplarily depicted
in Fig. 4. Fig. 4(a) and (b) illustrates the stable property of e,.
Fig. 4(c) and (d) is the unstable case. It is worth noting that in
Fig. 4(b) the steady densities of boyciana and fish are both decreas-
ing more than the previous human-free model in Fig. 3(b). This
corresponds with the theoretical result.

3.4. Nontrivial human distribution model (A (2) <1 < 400)

From the ecological point of view, the above two subsections
describe two ecological situations: human free and over develop-
ment ecological models. Now, for Beidaihe wetland system, hu-
man, boyciana and the wetland fish are coexistent in wetland en-
vironment. A more realistic situation is described by (2.1) with
the nontrivial human distribution function xé’ (z). As described in
Theorem 3.1, xé’(z) is the nonconstant spatial function. The steady
state ey satisfies the nonlinear elliptic PDEs

CXy
0=dA 1-xy——————h Q
1 X1+X1< X1 Xt on 1X3),Z€ ,
mxq
0=dyAx; +x (—d+7—hx),z Q,
2842 TR X tax, PB)ES (3.25)

0=Ax3+1x3(1 —x3).Z € 2,
8x1 8)(2 8X3
9n ~ 9n ~ on
where

=0,z 0Q.

A () <1 < +o0.

Obviously, under this situation, a similar situation in front of the
equilibrium point can’t be expected. The linearized method cannot
be applied in this case.
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3.4.1. Invariant domain

Proposition 3.6 ([21]Comparison principle). Consider scalar nonlin-
ear parabolic equation about x = x(t, z)

Px = f(z,t,x),(z,t) € 2 (3.26)

where 2 = Q x (0,T) c R" x R, is a bounded domain with smooth
boundary 02. Here

P~ 0%x
—Px= & B Z ik szazk
Jk=1

is uniformly parabolic in 2. Finally we assume that f is C! in x and
Hélder continuous in z and t. Let x and y are C2 functions of z in %,
C" functions of t on [0, T], and consider the following three conditions:

Px — f(z.t,x) <Py — f(z.t,y), (z.t) € 2,
x(2,0) 2 y(z,0),z € Q,

ox ay

%ﬁ-ﬂXZ %+ﬂy, (z,t) e 902 x (0, T),

Then x(z,t) > y(z,t) for all (z,t) € 2.

(3.27)

Theorem 3.7. If 1 - ¢ < & <1,1—%(1—hy) < %52 <1, then for
all the nonnegative solution of (2.1) x(t,z),z € 2, the following in-
equalities stand

limsupx;(t,z) <Xy :=1, (3.28)
t—o0
_ 1m-d

li =—— 2
ITLS;IPXz(t,Z) sXi= oo (3.29)
liminfx; (£,2) = %, := 1~ hy - g (3.30)
L. L 1m-— (d + hz) C

lltrgglfxz(t,z) > X, = &Thz(l —hy — &>. (3.31)

Consequently, the domain given by

p{::[1—h1—5,1]
(07

. lm_(d'i'hZ)(]fh 7£> 1(m-d
a d+hy o) d
is a positively invariant region for global solution of system (2.1).

Proof. Let xq, x, be a solution of (2.1). Then from the first equation
of (2.1) one can observe that x; satisfies

% fd]AXl-i-Xl(] —X1),ZE Q,t>0,
Mg zcheso0, (3:32)
on

x1(0,2) =x%(z) >0,z ¢ Q.

In view of the comparison principle Proposition 3.6, one can get
that

limsupxq(t,z) < 1.

t—o0

Thus the second equation of (2.1) yields that x, satisfies

0X; m

W < dzAXZ +X2(—d+ m),ze Q,t > 0,

% _gzeanrso0, (3:33)
on

x(0,2) =x3(2) > 0,2 Q.

Noticing that %, = 1 ™= satisfies
0X L
% = dzAXz —|—X2(—d—|— 1L_>,Z ceQ,t>0,
e +axy (3.34)
92 _0,zed.t>0.
on

Hence the inequality (3.29) holds.
In addition, from the first equation of (2.1) we can also get

0x c

T; Zd1AX1+X1<1 —a—lh —x1>,zeQ,t>0,

M _ g zeant-0, (3:33)
on

x1(0,2) =x%(2) >0,z Q.

It follows that the inequality (3.30) holds. From the second equa-
tion of (2.1) we have

3X2 mx,
W ZdzAXz +X2<—d+ m —hz),ZG Qt>0,

3.36
2 _gzeat>0, 3:30)
on

x(0,z) =x3(z) > 0,z € Q.
Therefore, (3.31) holds. This completes the proof. O

Remark 3.8. For the system (2.1), the reaction function vector is

Foo = ()n (1 —X1 = e hlxg’(z))).

X2 (—d + hzx‘;(z))

X1+0Xy

(3.37)

Since the Jacobian matrix of f is

L 1—ca(xlj;,<2)2—2><1—h1><‘3’ —C(x&ﬁm)
ma ()’ m(sitm) —d— )’

X1+0Xy
(3.38)

X4 0Xy

f is a mixed quasi-monotone function vector in R%r ={(x1.%)|x1 >
0, x5 > 0}. Therefore the above theorem implies that x := (X1,%Xy)
and x :=( x 1, X ») are a pair of coupled upper and lower solutions
of (2.1). Consequently, by [20, Chapter 8 Theorem 3.3], there exists
a solution x(t, z) of (2.1) with

x<x(t,z) <X

From the first two inequalities (3.28), (3.29) of the above the-
orem, we observe that if m < d, then lim;_, . X, = 0 uniformly on
Q. Ecologically, the boyciana population will tends toward extinc-
tion. The last two inequalities (3.30), (3.31) give sufficient condi-
tions such that the positive solution of (3.20) has the persistence
property. That is, we provide some necessary conditions on param-
eters such that the boyciana and fish always coexist with humans
influence

c
hi<1-—,h —d.
1< a,2<m

This shows that it is reasonable to expect the persistence of boy-
ciana and fish when there is a suitable weak humans influence.

3.4.2. Energy estimation

In this subsection, the PDE energy estimation theory is ex-
tended to the PDAEs (2.1). A developed Lyapunov energy function
is proposed to investigate the stability of the system (2.1). The fol-
lowing lemma will be needed.

Lemma 3.9 (Poincare inequality [21]). Let x € WZ2 (2), then if uq is
the smallest positive eigenvalue of —A on Q (with the appropriate
boundary conditions) the following Poincaré inequalities hold:
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_ .. dx
IVxI? = pallx = X2, | AX)12 = | VX|2 if gy = 0 on 9%,
(3.39)

VX[ = g [IX]|? if x =0 on 3<2, (3.40)

¥ — L
where X = 1o [q xdz.

Theorem 3.10. Assume that x(t,z) = (x;(t,z),x2(t,2),x3(2))T is a
bounded solution of (2.1). Assume that spectral radius of the Jacobian
matrix (2.1) is p, (1 is the smallest positive eigenvalue of —A on £,
dm = min{d;.d,} and

d =dmpq — (o +hy) > 0.

where hy = max{hy, hy}. Let X = (x1(t,z), x,(t,z))T , then

_ 9x" 0% o
E(t) = /ZTz,szdZ‘fQ”V"” dz < ¢; exp(=8t) + s,

(3.41)

/ I%(t, 2) — X (6) | dz < €3 exp(—8t) + ca (3.42)
Q
hold for positive constant ¢y, ¢, and c3, c4. Here,
1
% t):—/}?(t,z dz
is the spatial average function.

Proof. The energy integral (Lyapunov function)

E©) = [ IVRPdz= 5 /Z[@’;) (gg)z:|dz

(3.43)
is introduced. By computing the derivative of E(t), one get
dE(t) ax; 9%x; Bxi 92x;
/ Z [azl 52,9t T 92, 05,0 (344)

Noticing that X satisfies the system (2.1), it follows from above

o Z(%’; 31(D1Ax+f(x))>dl

where D; = diag(dy.dy), f=(fi. f>)T is the nonlinear reaction
vector function. Applying for divergence theorem taking into ac-
count the BCs, the above equation yields

(3.45)

T
E(t) - [ ARD; Axdz+/ Z 0% 3fciz —L+L. (3.46)
For the first integral I, the following estimation holds
h<—dw [ 18720z < ~dups [ || VRIdz (3.47)
Q Q

The second integral I, can be estimated as

8f, X1 %8)(2

L 2 2 8Xj
? _/QZZ 9z; \ 9x; 0z, + X, 0z

afj 8X3

B . 0fi af
L = QVx ﬁdez—i—/Q <8X3Vx1 -Vx3 + T Vx; - Vx3>dz

(3.49)

where 2 a is the Jacobi matrix f w.r.t. X. Thus
h<p [ IVRIPdzh [ | Vxildz by
Q Q

X/ ||Vx2||2dz+(h1+h2)/ [Vxs|2dz. (3.50)
Q Q

According to Lemma 3.9, (3.47) and (3.50) imply

SFEO = Cduts + 9+ E@ + (hy +ho) [ [Vl
(3.51)

Noticing that

Ax3(z) +1x3(2)(1 —x3(2)) =0,2€ Q

stands with the Neumann boundary conditions. Then

B = (it + -+ @) + 1+ he) [ 301 - x)dz
Q
(3.52)

From the assumption dmt1 > p + hy. with Gronwall inquality, we
obtain that

E(t) < (E(0) — q) exp(—3t) +q. (3.53)

where § =dmuy — (o +hy) > 0,
_r(hi+hy) [ x3(1—x3)dz
= 5 .

Therefore, (3.41) holds. By Lemma 3.9, (3.41) implies (3.42). This
completes the proof. O

Our proposed result generalized the energy estimation result on
common parabolic type PDEs. From above theorem, the value of
E(t) is asymptotically decreasing tends to a small value q if the fol-
lowing condition is provided

r(hy +hy) [ox2(1 —x3)dz
dmpy — (o + hy)

If we consider two special cases x3(z) =0 and x3(z) =1, then g =
0 and the system (2.1) is translated into PDEs system. Immediately,
we get the following corollary.

— 0.

Corollary 3.11. Under the conditions described in Theorem 3.10, If
X3(z) = 0 or 1, then for any bounded solutions of (2.1), the following
conclusions hold

axT % .
/ 237137}11—/ | VX||*dz < c; exp(=61t), (3.54)

[ 1% =R (®)dz < s exp(-510) (355)
Q

where ¢, ¢y are all independent positive constants; Xy (t) is the spa-
tial average functions of X(t) respectively. i.e. the state variable vector
X generated by the system (2.1) is exponentially stable and asymptot-
ically converge to their spatial average, respectively.

Ecologically, E(t) represents the spatial mobility integral of boy-
ciana and fish. It can be seen as the summation of oscillation am-
plitudes of two species in the domain. Theorem 3.10 shows that
in order to avoid the inference of human behaviors (for example:
human fishing, water pollution), boyciana and wetland fish must
carry on the unceasing migration. This means the wetland system
is in an unstable state. However, if we reduced the human distribu-
tion density (for example, set up human restrict area) and enhance
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Fig. 5. Numerical results for the steady state Q2 = [0, 7r]. (a),(c): The spatiotemporal profiles (the top part) and the corresponding time evolution curves (the bottom part) of
x1(t, z) and x,(t, z); (b),(d):Spatial response curve about x1(t, z) and x,(t, z) at differential discrete time points.

the spatial diffusion capacity (for example, avoid river pollution),
the wetland ecological system can tend to a stable state.

3.4.3. Illustrative example

As an effective demonstration of our previous theoretic analysis,
we simulate the steady state for the boyciana-fish-human system.
In order to show human’s interference on the stability of ecological
system, r is taken as the parameter variable of human population
distribution. Therefore, in (2.1), except for r, all the other parame-
ters are fixed by

dy =d; =0.01,c =1.000, « = 0.5000, (3.56)

d =0.3000, m = 1.000, h; = 0.01, h, = 0.3. (3.57)

As shown in Fig. 5, when r = 1.001, x4 and x, are numerically con-
verge to the desired steady state as t — oo. When r =100, xq,
X, can't maintain the steady state. These simulation results indi-
cate that r — +oo may lead to the turning instable property of the
PDAEs system (2.1).

4. Model fitting on real data

In this section, as application of our boyciana-fish—-human
model, the proposed PDAEs model is evaluated by model param-
eter fitting with the actual bird data set. First, the actual observa-
tion data is dealt with. Then, one dimension space PDAEs model
is built. And the PDEs fitting technique provided in [26] is used to
search for parameters to best fit the real data.

4.1. Treatment on actual boyciana and fish data

With the help of Qinhuangdao Bird Reserve and Banding Sta-
tion, this real data is collected from six different locations at differ-
ent times (from 2001 to 2014). Table 1 shows the discrete density
distribution of boyciana %,(t,z;)(i=1,..., 6) at six bird-watching
locations in normalization format. The findings are that the den-
sity value at Location 1 is higher than the other five locations.
It is worth noticing that this observatory is located in the forest
where few people enter and is far away from the coastline. This
confirms that boyciana depends on and prefers a region without
interference or less interference for building their nest. Now, since
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Fig. 6. Predicted vs. Actual data of boyciana density. The x-axis represents the spatial scale. The y-axis is density. From top to bottom, the first four predicted curves are in

years of 2001, 2005, 2010, 2014, respectively.

Table 1

Boyciana density distribution %, (t, z) in six observatories.
Time (year) 2001 2002 2014
z; (Loc.1) 0.001136 0.001047 0.000717
z; (Loc.2) 0.001324 0.001150 0.000981
73 (Loc.3) 0.000919 0.000802 0.000742
z4 (Loc.4) 0.000946  0.000909 0.000766
z5 (Loc.5) 0.001100 0.000966 0.000396
Zs (Loc.6) 0.000900  0.000866 0.000266

Table 2

Normalization fish density distribution X (t, z).
Time (year) 2001 2002 2014
z 0.1 0.09 0.03
) 0.12 0.12 0.07
73 0.14 0.14 0.07
Z4 0.16 0.15 0.10
Z5 0.18 0.18 0.12
Zs 0.2 0.19 0.14

these locations have different linear distances from the Beidaihe
coastline, accordingly we discrete the spatial axis z as six points
z1, ..., zg which correspond to the six bird observatories locations.

For the fish density distribution % (t,z), it should be noticed
that the "fish density” represents the fish food available quantity.
Considering the range of boyciana foraging activities is at about
0.5-5 km, assume that the distance from the boyciana’s habitat to
the coastline represents degree of different fish food catching. That
is the quantity of available fish food linearly negative dependent
on the distance to the coastline. Thus, in Table 2, the density dis-
tribution at zg position X (t, zg) is normalized created by the real
quantity of fish production of Qinhuangdao in the past 14 years
(from 2001 to 2014). And the other positions £, (t,z;)(i=1,...,6)
is linearly decreasing with respect to the coastline distance z.

4.2. Spatial assumption

The reasonable assumptions are made to reduce the spatial do-
main of the original model (2.1). From Section 4.1, it is clear that
the populations densities of boyciana and fish are assumed as sin-
gle space variables. Mathematically, the state variables vector sat-
isfies

x(t.z1,23) = x(t, z1).

Then the spatial domain €2 is longitudinal compression into a ‘pipe’
line

Q=(0,0).

Moreover, the wetland boundary 02 is changed into two points:
z=0,z=1 which are both closed without flux under Neumann
BC. For the convenience of writing, we define x(t, z) = x(t,z;) and
choose the spatial domain of system (2.1) as Q = (0, ) to simplify
calculation.

Under above assumptions, (2.1) becomes an 1D-spatial PDAEs
as following:

X 02x4 Xy

5 _dlﬁer](l - 7h1x3),ze 0,7).t >0,

Xy 0%x, mx,

W —dzﬁ +X2(—d+ m —h2X3>,ZE 0,m),t >0,
82

0= +ms(1-x).ze (0.7),

%:%: %:O,ZE{O,n},t>O,

x1(0,2) =x9(2),%(0,2) =x3(2),z € [0, ].
(41)
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In addition, the corresponding S-L problem of (4.1) has the eigen-
values and the eigenfunctions [27]:

n =n%, ¢u(2) = \/gcos(nz), n e No. (4.2)
Therefore, the first eigenvalue is © ([0, 7]) = 1.
4.3. Maximum-minimum norm optimization model fitting

In this subsection, the numerical PDAEs fitting method is inves-
tigated to predict the development of boyciana population. The fol-

lowing maximum-minimum norm optimization algorithm is built
to optimal the parameters.

2 14 6 ~
. | (t;. z1) — Xi (. z) |
min —
;;g I%i(t}, zi)|
s.t.
%—d AXy + X (l—x —Cxiz—hx (z))
5p = G1Ax X X rax, ,
0x, mx; (4.3)
T~ e~ o k).
wm | g
dz z=0, 9z z=0,7r

x1(0,2) =%1(0,2),x2(0,2) =%,(0, 2),
d-l,dz,C, m,ot,d,hl,hz,r > 0.

Here, the optimal parameters are d;, d, ¢, m, «, d, hy, hy and r.
For the initial density value of the above optimal problem, x4(0,
z) and x,(0, z) is taken from the actual data in 2001.
With the Neumann BC BBL; = 33%2 =0, we use the technique in
numerical analysis

_dx@) _ x(E) @)
dz E-z

Consequently, in the spatial direction, two sets of data are added
to each side of the observation data. The added data values are the
same as their adjacent values.

The numerical optimal program is designed with MATLAB soft-
ware. The initial input parameters is
di =d,=0001,d=03,c=1,m=1,
o =05h;=01,h,=03,r=1.

0

Combining with the boundary value in Tables 1 and 2, we get the
numerical optimization result:

dq = 0.1185,d, = 0.5773,d = 0.1343, ¢ = 0.8996,

m =0.5093, « = 0.5535, h; = 1.8102, h, = 0.0172, r = 6.0440.

Fig. 6 illustrates the predicted results for boyciana. The dashed
lines denote the actual observations for the density in different
year, while the starred lines illustrate the density predicted by our
PDAEs Model (4.3). Here, the average prediction accuracy is 95.17%.
It is effective from the statistical perspective.

Conclusion

In this work, the boyciana-fish reaction-diffusion system cou-
pled with elliptic human distribution equation is considered. It is
a generalization of the classical parabolic PDEs system. Because
some theoretical results cannot be directly applied in the singular
derivative coefficient matrix E situation, the novel energy estima-

tion method is provided to investigate the global stability of PDAEs
model. The maximum-minimum norm optimization model is built
to optimize the parameters of PDAEs (2.1). The numerical results
show the effectiveness of the development model.
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