A note on positive periodic solutions of delayed differential equations

Zhi-Long Jin ${ }^{\text {a }}$, Haiyan Wang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, School of Information Engineering, Lanzhou Commercial College, Lanzhou Gansu 730020, China
${ }^{\mathrm{b}}$ Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069-7100, USA

A R T I C L E I N F O

Article history:

Received 15 November 2009
Received in revised form 18 January 2010
Accepted 25 January 2010

Keywords:

Positive periodic solution
Existence
Fixed index theorem

Abstract

We consider the existence of positive ω-periodic solutions for the periodic equation $x^{\prime}(t)=$ $a(t) \mathrm{e}^{x(t)} x(t)-\lambda b(t) f(x(t-\tau(t)))$, where $a, b \in C(\mathbb{R},[0, \infty))$ are ω-periodic, $\int_{0}^{\omega} a(t) \mathrm{d} t>$ $0, \int_{0}^{\omega} b(t) \mathrm{d} t>0, f \in C([0, \infty),[0, \infty))$, and $f(u)>0$ for $u>0, \tau(t)$ is a continuous ω-periodic function.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been considerable interest in the existence of positive periodic solutions of the following equation:

$$
\begin{equation*}
x^{\prime}(t)=a(t) g(x(t)) x(t)-\lambda b(t) f(x(t-\tau(t))) \tag{1.1}
\end{equation*}
$$

See, for example, [1-6]. (1.1) has been proposed as a model for a variety of biological processes. See, for example, the above references and $[7,8]$.

The existence results in the literature are largely based on the assumption that $g(x(t))$ is constant or bounded. It is interesting to know whether there is a positive solution to (1.1) when $g(x(t))$ is not necessarily bounded. In this short note, we take $g(x)=\mathrm{e}^{x}$ and consider the existence of an positive ω-periodic solution of the equation

$$
\begin{equation*}
x^{\prime}(t)=a(t) \mathrm{e}^{x(t)} x(t)-\lambda b(t) f(x(t-\tau(t))) \tag{1.2}
\end{equation*}
$$

where $\lambda>0$ is a positive parameter. We shall show that (1.2) has a positive ω-periodic solution when λ is sufficiently large. Apparently, our results can be extended to more general $g(x)$. Our arguments are based on a well-known fixed point theorem (Lemma 2.1).

Let $\mathbb{R}=(-\infty, \infty)$. We make the following assumptions:
(H1) $a, b \in C(\mathbb{R},[0, \infty))$ are ω-periodic functions, $\int_{0}^{\omega} a(t) \mathrm{d} t>0, \int_{0}^{\omega} b(t) \mathrm{d} t>0 . \tau \in C(\mathbb{R}, \mathbb{R})$ is an ω-periodic function. (H2) $f:[0, \infty) \rightarrow[0, \infty)$ is continuous. $f(u)>0$ for $u>0$.
Also, let $\sigma=\mathrm{e}^{-\int_{0}^{\omega} a(t) \mathrm{d} t}<1, m(L)=\min \left\{f(u): \frac{\sigma^{L}(1-\sigma)}{1-\sigma^{L}} L \leq u \leq L\right\}>0, L>0$.
Our main result is:
Theorem 1.1. Assume (H1)-(H2) hold and $\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}=0$. For each $L>0$, there exists a $\lambda_{0}=L \frac{1-\sigma^{e^{L}}}{m(L) \sigma^{e} \int_{0}^{\omega} b(s) d s}>0$ such that (1.2) has a positive ω-periodic solution u with $\sup _{t \in[0, \omega]} u(t) \leq L$ for $\lambda>\lambda_{0}$.

[^0]
2. Preliminaries

We consider the modified equation

$$
\begin{equation*}
x^{\prime}(t)=a(t) g_{L}(x(t)) x(t)-\lambda b(t) f(x(t-\tau(t))) \tag{2.3}
\end{equation*}
$$

where $g_{L}(u)=\mathrm{e}^{u}$ for $0 \leq u \leq L$ and $g_{L}(u)=\mathrm{e}^{L}$ for $u \geq L$. For each $L>0$, if we can find a positive ω-periodic solution u for (2.3) and $\sup _{t \in[0, \omega]} u(t) \leq L$, then u is also a positive ω-periodic solution to (1.2).

The following well-known result of the fixed point index is crucial in our arguments.
Lemma 2.1 ([9-11]). Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}=\{u \in K:\|x\|<r\}$. Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous and such that $T x \neq x$ for $x \in \partial K_{r}=\{u \in K:\|x\|=r\}$.
(i) If $\|T x\| \geq\|x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=0
$$

(ii) If $\|T x\| \leq\|x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=1
$$

In order to apply Lemma 2.1 to (2.3), let X be the Banach space $\{u(t): u(t) \in C(\mathbb{R}, \mathbb{R}), u(t+\omega)=u(t)\}$ with $\|u\|=$ $\sup _{t \in[0, \omega]}|u(t)|, u \in X$.

Let K be a cone in X defined by

$$
K=\left\{u \in X: u(t) \geq \frac{\sigma^{\mathrm{e}^{L}}(1-\sigma)}{1-\sigma^{\mathrm{e}^{L}}}\|u\|, t \in[0, \omega]\right\}
$$

and denote Ω_{r} by

$$
\Omega_{r}=\{u \in K:\|u\|<r\}
$$

Note that $\partial \Omega_{r}=\{u \in K:\|u\|=r\}$.
Following Wang [5], let $T_{\lambda}: K \rightarrow X$ be a map defined by

$$
\begin{equation*}
T_{\lambda} u(t)=\lambda \int_{t}^{t+\omega} G_{L}(t, s) b(s) f(u(s-\tau(s))) \mathrm{d} s \tag{2.4}
\end{equation*}
$$

where

$$
G_{L}(t, s)=\frac{\mathrm{e}^{-\int_{t}^{s} a(\theta) g_{L}(u(\theta)) \mathrm{d} \theta}}{1-\mathrm{e}^{-\int_{0}^{\omega} a(\theta) g_{L}(u(\theta)) \mathrm{d} \theta}}
$$

Note that

$$
1 \leq g_{L}(u) \leq \mathrm{e}^{L}
$$

and

$$
\frac{\sigma^{\mathrm{e}^{L}}}{1-\sigma^{\mathrm{e}^{l}}} \leq G_{L}(t, s) \leq \frac{1}{1-\sigma}, \quad t \leq s \leq t+\omega
$$

Lemma 2.2. Assume $(\mathrm{H} 1)-(\mathrm{H} 2)$ hold. Then $T_{\lambda}(K) \subset K$ and $T_{\lambda}: K \rightarrow K$ is compact and continuous.
Proof. In view of the definition of K, for $u \in K$, we have

$$
\begin{aligned}
\left(T_{\lambda} u\right)(t+\omega) & =\lambda \int_{t+\omega}^{t+2 \omega} G_{L}(t+\omega, s) b(s) f(u(s-\tau(s))) \mathrm{d} s \\
& =\lambda \int_{t}^{t+\omega} G_{L}(t+\omega, \theta+\omega) b(\theta+\omega) f(u(\theta+\omega-\tau(\theta+\omega))) \mathrm{d} \theta \\
& =\lambda \int_{t}^{t+\omega} G_{L}(t, s) b(s) f(u(s-\tau(s))) \mathrm{d} s \\
& =\left(T_{\lambda} u\right)(t)
\end{aligned}
$$

It is easy to see that $\int_{t}^{t+\omega} b(s) f(u(s-\tau(s))) \mathrm{d} s$ is a constant because of the periodicity of $b(t) f(u(t-\tau(t)))$. One can show that, for $u \in K$ and $t \in[0, \omega]$,

$$
\begin{aligned}
T_{\lambda} u(t) & \geq \frac{\sigma^{\mathrm{e}^{L}}}{1-\sigma^{\mathrm{e}^{L}}} \lambda \int_{t}^{t+\omega} b(s) f(u(s-\tau(s))) \mathrm{d} s \\
& =\frac{\sigma^{\mathrm{e}^{L}}}{1-\sigma^{\mathrm{e}^{L}}} \lambda \int_{0}^{\omega} b(s) f(u(s-\tau(s))) \mathrm{d} s \\
& =\frac{\sigma^{\mathrm{e}^{L}}(1-\sigma)}{1-\sigma^{\mathrm{e}^{L}}} \frac{1}{1-\sigma} \lambda \int_{0}^{\omega} b(s) f(u(s-\tau(s))) \mathrm{d} s \\
& \geq \frac{\sigma^{\mathrm{e}^{L}}(1-\sigma)}{1-\sigma^{\mathrm{e}^{L}}}\left\|T_{\lambda} u\right\|
\end{aligned}
$$

Thus $T_{\lambda}(K) \subset K$ and it is easy to show that $T_{\lambda}: K \rightarrow K$ is compact and continuous.
Lemma 2.3. Assume $(\mathrm{H} 1)-(\mathrm{H} 2)$ hold. Then a positive ω-periodic solution of (2.3) is equivalent to a fixed point of T_{λ} in K.
Proof. If $u \in K$ and $T_{\lambda} u=u$, then

$$
\begin{aligned}
u^{\prime}(t) & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\lambda \int_{t}^{t+\omega} G_{L}(t, s) b(s) f(u(s-\tau(s))) \mathrm{d} s\right) \\
& =\lambda G_{L}(t, t+\omega) b(t+\omega) f(u(t+\omega-\tau(t+\omega)))-\lambda G_{L}(t, t) b(t) f(u(t-\tau(t)))+a(t) g_{L}(u(t)) T_{\lambda} u(t) \\
& =\lambda\left[G_{L}(t, t+\omega)-G_{L}(t, t)\right] b(t) f(u(t-\tau(t)))+a(t) g_{L}(u(t)) T_{\lambda} u(t) \\
& =a(t) g_{L}(u(t)) u(t)-\lambda b(t) f(u(t-\tau(t)))
\end{aligned}
$$

Thus u is a positive ω-periodic solution of (2.3). On the other hand, if u is a positive ω-periodic solution of (2.3), then $\lambda b(t) f(u(t-\tau(t)))=a(t) g_{L}(u(t)) u(t)-u^{\prime}(t)$ and

$$
\begin{aligned}
T_{\lambda} u(t) & =\lambda \int_{t}^{t+\omega} G_{L}(t, s) b(s) f(u(s-\tau(s))) \mathrm{d} s \\
& =\int_{t}^{t+\omega} G_{L}(t, s)\left(a(s) g_{L}(u(s)) u(s)-u^{\prime}(s)\right) \mathrm{d} s \\
& =\int_{t}^{t+\omega} G_{L}(t, s) a(s) g_{L}(u(s)) u(s) \mathrm{d} s-\int_{t}^{t+\omega} G_{L}(t, s) u^{\prime}(s) \mathrm{d} s \\
& =\int_{t}^{t+\omega} G_{L}(t, s) a(s) g_{L}(u(s)) u(s) \mathrm{d} s-\left.G_{L}(t, s) u(s)\right|_{t} ^{t+\omega}-\int_{t}^{t+\omega} G_{L}(t, s) a(s) g_{L}(u(s)) u(s) \mathrm{d} s \\
& =u(t)
\end{aligned}
$$

Furthermore, in view of the proof of Lemma 2.2, we also have $u(t) \geq \frac{\sigma^{\mathrm{e}^{L}(1-\sigma)}}{1-\sigma^{\mathrm{e}^{L}}}\|u\|$ for $t \in[0, \omega]$. Thus u is a fixed point of T_{λ} in K.

Lemma 2.4. Assume (H1)-(H2) hold. If $u \in \partial \Omega_{L}$, then

$$
\left\|T_{\lambda} u\right\| \geq \lambda \frac{\sigma^{\mathrm{e}^{L}} \int_{0}^{\omega} b(s) \mathrm{d} s}{1-\sigma^{\mathrm{e}^{L}}} m(L)
$$

Proof. Since $f(u(t)) \geq m(L)$ for $t \in \mathbb{R}$, it is easy to see that

$$
\begin{aligned}
\left(T_{\lambda} u\right)(t) & \geq \frac{\sigma^{\mathrm{e}^{L}}}{1-\sigma^{\mathrm{e}^{L}}} \lambda \int_{0}^{\omega} b(s) f(u(s-\tau(s))) \mathrm{d} s \\
& \geq \frac{\sigma^{\mathrm{e}^{L}} \int_{0}^{\omega} b(s) \mathrm{d} s}{1-\sigma^{\mathrm{e}^{L}}} \lambda m(L)
\end{aligned}
$$

Lemma 2.5. Assume (H1)-(H2) hold and let $r>0$. If $u \in \partial \Omega_{r}$ and there exists an $\varepsilon>0$ such that $f(u(t)) \leq \varepsilon u(t)$ for $t \in[0, \omega]$, then

$$
\left\|T_{\lambda} u\right\| \leq \lambda \varepsilon\|u\| \frac{\int_{0}^{\omega} b(s) \mathrm{d} s}{1-\sigma}
$$

Proof. From the definition of T, for $u \in \partial \Omega_{r}$, we have

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & \leq \frac{1}{1-\sigma} \lambda \int_{0}^{\omega} b(s) f(u(s-\tau(s))) \mathrm{d} s \\
& \leq \frac{1}{1-\sigma} \lambda \int_{0}^{\omega} b(s) \varepsilon u(s-\tau(s)) \mathrm{d} s \\
& \leq \frac{1}{1-\sigma} \lambda \int_{0}^{\omega} b(s) \mathrm{d} s \varepsilon\|u\| \\
& =\frac{\int_{0}^{\omega} b(s) \mathrm{d} s}{1-\sigma} \lambda \varepsilon\|u\| .
\end{aligned}
$$

3. Proof of Theorem 1.1

Proof. Let $r_{1}=L$. By Lemma 2.4 we infer that there exists a $\lambda_{0}=L \frac{1-\sigma^{L}}{m(L) \sigma^{e^{L}} \int_{0}^{\omega} b(s) \mathrm{d} s}>0$ such that, for $u \in \partial \Omega_{r_{1}}$, $\lambda>\lambda_{0}$,

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & \geq \lambda \frac{\sigma^{\mathrm{e}^{L}} \int_{0}^{\omega} b(s) \mathrm{d} s}{1-\sigma^{\mathrm{e}^{L}}} m(L) \\
& >L \frac{1-\sigma^{\mathrm{e}^{L}}}{m(L) \sigma^{\mathrm{e}^{L}} \int_{0}^{\omega} b(s) \mathrm{d} s} \frac{\sigma^{\mathrm{e}^{L}} \int_{0}^{\omega} b(s) \mathrm{d} s}{1-\sigma^{\mathrm{e}^{L}}} m(L) \\
& =L=\|u\|
\end{aligned}
$$

Since $\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}=0$, we can choose $0<r_{2}<r_{1}$ such that $f(u) \leq \varepsilon u$ for $0 \leq u \leq r_{2}$, where the constant $\varepsilon>0$ satisfies

$$
\lambda \varepsilon \frac{\int_{0}^{\omega} b(s) \mathrm{d} s}{1-\sigma}<1
$$

Thus $f(u(t)) \leq \varepsilon u(t)$ for $u \in \partial \Omega_{r_{2}}$ and $t \in[0, \omega]$. We have by Lemma 2.5 that

$$
\left\|T_{\lambda} u\right\| \leq \lambda \varepsilon \frac{\int_{0}^{\omega} b(s) \mathrm{d} s}{1-\sigma}\|u\|<\|u\| \quad \text { for } u \in \partial \Omega_{r_{2}}
$$

It follows from Lemma 2.1 that

$$
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=0, \quad i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=1
$$

Thus $i\left(T_{\lambda}, \Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}, K\right)=-1$ and T_{λ} has a fixed point u in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$, which is a positive ω-periodic solution of (2.3) for $\lambda>\lambda_{0}$. Note that $\|u\| \leq L$; it is also a positive ω-periodic solution to (1.2).

Acknowledgements

We express our gratitude to the anonymous referees for a careful reading and helpful suggestions which led to an improvement of our original manuscript.

References

[1] S. Cheng, G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differential Equations 59 (2001) 1-8.
[2] D. Ye, M. Fan, H. Wang, Periodic solutions for scalar functional differential equations, Nonlinear Anal. 62 (2005) 1157-1181.
[3] Y. Li, X. Fan, L. Zhao, Positive periodic solutions of functional differential equations with impulses and a parameter, Comput. Math. Appl. 56 (2008) 2556-2560.
[4] A. Wan, D. Jiang, Existence of positive periodic solutions for functional differential equations, Kyushu J. Math. 56 (2002) 193-202.
[5] H. Wang, Positive periodic solutions of functional differential systems, J. Differential Equations 202 (2004) 354-366.
[6] J. Wu, Z. Wang, Positive periodic solutions of second-order nonlinear differential systems with two parameters, Comput. Math. Appl. 56 (2008) 43-54.
[7] W.S. Gurney, S.P. Blythe, R.N. Nisbet, Nicholson's blowflies revisited, Nature 287 (1980) 17-21.
[8] M. Wazewska-Czyzewska, A. Lasota, Mathematical problems of the dynamics of a system of red blood cells, Mat. Stosow. 6 (1976) 23-40 (in Polish).
[9] K Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[10] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988.
[11] M. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

[^0]: * Corresponding author.

 E-mail addresses: jinzhilong12345@sohu.com (Z.-L. Jin), wangh@asu.edu (H. Wang).

