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Abstract In recent years, thousands of commodity servers have been deployed in

Internet data centers to run large scale Internet applications or cloud computing

services. Given the sheer volume of data communications between servers and

millions of end users, it becomes a daunting task to continuously monitor the

availability, performance and security of data centers in real-time operational

environments. In this paper, we propose and evaluate a lightweight and informative

traffic metric, streaming frequency, for network monitoring in Internet data centers.

The power-series based metric that is extracted from the aggregated IP traffic

streams, not only carries temporal characteristics of data center servers, but also

helps uncover traffic patterns of these servers. We show the convergence and re-

constructability properties of this metric through theoretical proof and algorithm

analysis. Using real data-sets collected from multiple data centers of a large Internet

content provider, we demonstrate its applications in detecting unwanted traffic

towards data center servers. To the best of our knowledge, this paper is the first to

introduce a streaming metric with a unique reconstruction capability that could aid

data center operators in network management and security monitoring.
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1 Introduction

In recent years, thousands of servers have been deployed in Internet data centers to

support large scale online applications and cloud computing services. To ensure

high availability, security and performance, real-time monitoring of data center

servers becomes an important component of data center operations and manage-

ment. However, given the size of data centers and the vast amount of network

traffic, it is a daunting task to continuously monitor and analyze the behaviors of

thousands of servers from IP traffic streams in real-time. The challenge of scalable

data center monitoring calls for efficient metrics to summarize IP traffic streams.

The goal of this paper is to propose and evaluate lightweight and informative
metrics from IP traffic streams in data center networks. Lightweight metrics enable

fast processing and reporting of network traffic from high-speed links [1, 2], while

informative metrics provide appropriate thresholds for generating alerts, examining

historical observations for forensic analysis, and pinpointing the root causes for

operators to act upon. Many of the existing traffic metrics are either expensive or

non-actionable. For example, collecting the incoming and outgoing packet statistics

of each data center server over time requires a significant amount of computing as

well as memory and storage resources due to the sheer amount of traffic data and the

number of servers. In addition, real-time data center monitoring tools, e.g., MRTG

[3], generate a variety of traffic graphs and statistics in each time interval that are

often difficult for the operators to act upon without informative interpretation.

The massive data collected by traditional traffic measurement methods presents a

significant challenge in storage, processing, and analysis. Therefore, there is a

pressing need for simple yet effective metrics for data center monitoring. This paper

introduces streaming frequency (SF), a power-series based traffic metric, to

characterize temporal traffic patterns of data center servers and to differentiate these

servers with distinct patterns. Most existing metrics collected by network monitoring

tools focus on observations on the current time window, rather than providing long-

term temporal information. Through theoretical analysis, we demonstrate the

informative aspects of this metric by showing two important properties of this

metric: convergence and reconstructability. The streaming frequency metric has the

convergence property since the value is always bounded between 0 and a certain

thereshold, and the reconstructability property comes from the metric’s capability of

restoring the original traffic statistics. In general, the convergence property could help

define and evaluate appropriate thresholds in the monitoring tools [3, 4], while

reconstruction is very important for in-depth analysis as it provides historical traffic

patterns for trend analysis and change detections [5–7]. The simple streaming

frequency metric not only has unique convergence and reconstruction properties that

could aid data center operators in network management and security monitoring, but

also significantly reduces the amount of storage and time for storing and processing

traffic data compared with traditional traffic measurement methods.

The streaming frequency metric, carrying meaningful and actionable informa-

tion, is very useful for real time monitoring, such as detecting unwanted traffic and

troubleshooting network events. It also aids in understanding temporal traffic

patterns given its ability to restore the original data traffic for in-depth analysis.
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In this paper, we propose and implement the reconstruction algorithm, and evaluate

the metric using real network flow traces collected from three data centers in a large

Internet content provider [8]. In addition, we demonstrate the effectiveness of this

metric in detecting unwanted traffic towards data center networks with these data

sets. The recent attacks towards GMail [9] and other cloud services illustrate the

urgency and importance of protecting data center servers for ensuring the security

and high-availability of cloud computing.

The contributions of this paper include

– proposing a new streaming frequency metric for real-time data center

monitoring;

– performing a theoretical analysis of the metric and proposing an algorithm to

reconstruct the traffic patterns from the streaming frequency;

– proposing a lightweight approximation for streaming frequency to reduce the

memory cost of the metric and giving a theoretical analysis of its accuracy;

– demonstrating the applications of the streaming frequency metric using real

data-sets collected from three data centers of a large Internet content provider.

The remainder of this paper is organized as follows: Sect. 2 describes the

background and formulates the research problem. Section 3 introduces the

streaming frequency metric, and Sect. 4 presents theoretical analysis. Section 5

implements the algorithm and discusses its computational complexity and memory

consumptions. Section 6 demonstrates the applications of the metric in data center

monitoring. Section 7 concludes this paper and outlines the future work.

2 Background and Problem Formulations

Data center networks have recently drawn much attention from research and

industry communities. Most of the prior work has focused on reducing the cost of

data centers and building scalable and robust data center architectures [10–15].

There has been little attempt to understand traffic characteristics and detect

anomalous behaviors in data center networks.

To support large scale Internet applications, such as information search and

online social networks, today’s data centers host hundreds, even thousands, of

servers that continuously communicate with a large number of distributed end users.

At the same time, the servers also receive unwanted traffic from attackers in the

forms of scanning, worms, viruses and the denial of service attacks. Benson et al.

[16], examined SNMP logs from data centers to study temporal and spatial

variations of the traffic load and packet loss at the aggregated link level. However,

studying network traffic at the individual server level is often desired for a deep

understanding of anomaly behaviors towards each data center server. In addition,

monitoring the servers over a long period of time is very important for forensic and

trending analysis. For example, sudden traffic increase or decrease of one server

could indicate interesting network or system events, e.g., congestions or attacks.

Cloud service providers (such as Amazon Web Services) monitor the inbound and

outbound Internet data transfer of cloud customers’ servers for billing purposes [17].
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This accounting-related monitoring application mostly collects aggregated mea-

surements on the total data received by and sent from the server; however, such

coarse-grained monitoring does not reveal the underlying traffic patterns and

network behaviors of these servers.

Monitoring data center traffic and detecting anomaly behavior from network data

streams is not a trivial task given the large number of servers, their traffic, and the

infinite duration of the monitoring period. A lot of existing techniques have been

developed to collect various network metrics; such as packets, bytes, IP addresses,

and ports from network flows or packet payloads. One shortcoming of these metrics

is that such statistics is non-actionable or non-informative. In addition, efficiently

storing and analyzing such information is also challenging. The database provides

efficient processing and query for these metrics, however, the growth of data

collections over time makes the database impractical. An alternative method is

typically to store metrics into files saved on disks; however, reading data files

through disk operations in real-time is time consuming.

In this paper we would like to answer the following research problem: given the
traffic streams from data center networks, how do we summarize the traffic with
meaningful and actionable metrics that will aid operators in network management
and security monitoring? Specifically, we are interested in developing simple and

lightweight metrics that could distinguish traffic patterns and reveal insight on the

behavior of data center servers. We evaluate the metrics with real network flow traces

collected from three major data centers a large Internet content provider [8]. Each

network flow includes the well-known 5-tuple information (i.e., the source IP

address, destination IP address, source port number, destination port number, and

protocol), statistics of packets and bytes in the flow, and the start and end timestamps.

The solutions towards this goal are very useful for a variety of applications, such as

performance monitoring and traffic engineering, since these metrics provide

actionable information for the operators to find the root cause and perform correlation

and forensic analysis. It is important to note that our proposed traffic metrics in this

paper not only could be applied in data center traffic, but also could be extended to

other types of network traffic such as Internet backbone traffic and enterprise network

traffic. One of our future works is to study the feasibility of applying the proposed

metrics on the traffic streams in backbone networks and enterprise networks.

3 Method

In this section, we first describe the traditional cumulative frequency and discuss its

limitations. Subsequently, we propose an informative metric called streaming

frequency to capture the underlying temporal traffic patterns.

3.1 Cumulative Frequency

The basic on-off temporal metric cumulative frequency (CF) of data center servers

captures the number of occurrences of a server in the aggregated IP traffic streams

from all the source IP addresses towards the same server as the destination over a
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certain time period. Suppose each data center server is associated with v, which is an

indication function to represent whether there is traffic towards the server at a certain

time interval. vi = 1 if there is traffic towards the server at time interval i. Otherwise

vi = 0. The cumulative frequency, c, of a server is c =
P

i=0
k vi, where k is the index

of the current interval. This cumulative frequency metric basically counts the number

of occurrences for each data center server, which is an important statistic. However,

it does not reveal any occurrence pattern of the server. For example, all of the

following three temporal patterns have a cumulative frequency of 5:

Temporal Pattern 1: 0 0 0 0 0 1 1 1 1 1

Temporal Pattern 2: 0 1 0 1 0 1 0 1 0 1

Temporal Pattern 3: 1 1 1 1 1 0 0 0 0 0

Clearly, they exhibit different occurrence patterns. Thus, given a cumulative

frequency of a server, it is difficult to restore or reconstruct when the server is observed

during the previous time periods. In other words, the cumulative frequency metric

lacks the information on when and in what pattern the server is observed. Such

information could be very useful, especially in network security monitoring and

forensic analysis.

Figure 1 illustrates the cumulative frequency of over 82,000 data center servers

during a 24 h time window, which is divided into 288 time intervals with each interval

being 5 min. The maximum cumulative frequency of a server is 288 if the server is

observed with traffic during each time interval. From this plot, we find that a number of

servers are not constantly observed, since their cumulative frequencies are less than 288.

However, cumulative frequency only keeps track of the aggregated occurrence numbers

of a server from the aggregated IP traffic streams and discards the information on

when the server is observed; it is difficult to infer the original traffic pattern for the server.

We introduce a new temporal frequency metric, namely, streaming frequency (SF),
which is able to not only restore the previous temporal patterns of the servers, but also

summarize the temporal observations of data center servers with a bounded number.
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Fig. 1 The cumulative frequency of data center servers over a 24 h time window
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3.2 Streaming Frequency

Unlike the cumulative frequency metric which simply counts the number of time

intervals during which a server is observed, the stream frequency (SF) assigns more

weight to the recent time intervals, and assigns less weight towards ‘‘old’’ units. This

new weight assignment is intuitive, since the current observation is more influenced

by recent observations than historical ones. For a server, its streaming frequency s at

the kth time interval is calculated with a power-series function as follows:

sk ¼ vk þ
1

a
sk�1; ð1Þ

where v is the indication function which represents the on-off temporal occurrence

of traffic towards the server. a is the decay parameter to reflect how fast the old

observations decay, so a C 1. In addition, we require a to be an integer for

reconstruction purposes.

Equation (1) can be further expanded into

sk ¼vk þ
1

a
sk�1

¼vk þ
1

a
vk�1 þ

1

a2
sk�2

¼vk þ
1

a
vk�1 þ

1

a2
vk�2 þ

1

a3
sk�3

¼vk þ
1

a
vk�1 þ

1

a2
vk�2 þ . . .þ 1

ak
v0

¼
Xk

j¼0

1

ak�j
vj

As we can see from the above equations, streaming frequency is represented by a

power series. In a special case where vi = 1 for i ¼ 0; 1; . . .; k; the streaming

frequency represents a geometric series. Streaming frequency has several interesting

properties that are desirable for network monitoring, including convergence and

reconstructability. We will demonstrate these properties through theoretical proof

and experiments in the next two sections. In the rest of this section, we discuss the

benefits of the convergence property.

First we revisit three earlier cases that have the same cumulative frequency of 5

but very different temporal patterns and we calculate their streaming frequencies.

Based on (1), the streaming frequency metrics of these three patterns with a = 2 are

1.9375, 1.3281, and 0.0605, respectively. This indicates that the streaming

frequency metric can distinguish these temporal patterns with very different values,

even though all of them have the same cumulative frequency. More importantly,

these streaming frequencies also carry interesting information that the cumulative

frequency does not carry. For example, the first value 1.9375, which is close to 2

(as we prove in Sect. 4 where the streaming frequency of a server when a = 2 is

bounded by 2) tells us that the server is observed in most of the recent time intervals,
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while the value 0.0605 indicates the server is observed at the very beginning of the

time period and does not appear in the latest time intervals.

Figure 2a–f further illustrate the advantages of the streaming frequency metric

over the cumulative frequency metric through case studies. Figure 2a,b show the

traffic patterns of two data center servers, IP1 and IP2 during nearly 300 time units,

respectively. It is obvious that these two servers have similar numbers of occurrences

but different traffic patterns. As shown in Fig. 2c, d, the two servers have the same

cumulative frequency values at the 288 time unit, since they occur during the same

number of time units. However, these two servers have very different temporal

patterns, as IP1 has a continuous traffic pattern, while IP2 has a very random on-off

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300

F
lo

w
s

Time

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  50  100  150  200  250  300

F
lo

w
s

Time

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  50  100  150  200  250  300

C
um

ul
at

iv
e 

F
re

qu
en

cy

Time

(c)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  50  100  150  200  250  300

C
um

ul
at

iv
e 

F
re

qu
en

cy

Time

(d)

 0

 0.5

 1

 1.5

 2

 0  50  100  150  200  250  300

S
tr

ea
m

in
g 

F
re

qu
en

cy

Time

(e)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  50  100  150  200  250  300

S
tr

ea
m

in
g 

F
re

qu
en

cy

Time

(f)

Fig. 2 Case studies of two IP addresses with middle temporal frequency. a Temporal observations of
IP1, b Temporal observations of IP2, c Cumulative frequency of IP1, d Cumulative frequency of IP2,
e Streaming frequency of IP1, d Streaming frequency of IP2,
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pattern. Unlike the cumulative frequency metric, the streaming frequency metric

with a = 2 illustrated in Fig. 2e, f clearly separates these two scenarios. This

advantage is largely contributed by the convergence property of the streaming

frequency metric whose value is always bounded between 0 and a certain thereshold.

Several prior works have exploited frequency measures and streaming analysis to

study network traffic for anomaly detection. For example, Zhou et al. [18] applied

Discrete Fourier transform (DFT) to collect the frequency information for intrusion

detection in a simulated network. In addition, [19–21] have applied signal

processing, wavelet analysis, graph theory, and other techniques for network

anomaly detections. In parallel, data streaming techniques have recently been used

in a number of studies in the areas of real-time network monitoring [22–26]. In

contrast to these work, the objective of our work is to develop lightweight and

effective metrics based on a power-series that measures general traffic patterns.

In summary, we have introduced a power-series based traffic metric, namely

streaming frequency, to summarize the traffic patterns of data center servers.

Compared with the traditional cumulative frequency, which counts the number of

occurrences of a server, the streaming frequency metric carries the information on the

on-off temporal patterns of the servers. In the next section, we will demonstrate some

important properties of the streaming frequency metric through theoretical analysis.

4 Theoretical Analysis

In this section, we present the proof of the convergence and reconstructability

properties of the streaming frequency metric.

Theorem 1 (Property of Convergence). For any server with indication function

v, its streaming frequency that is defined recursively as sk ¼ vk þ 1
a sk�1; converges

to a
a�1

; when a[ 1 and a is an integer.

Proof Since we are interested in the on-off traffic pattern of a server, vi can only

be 0 or 1 for i ¼ 0; 1; . . .; k; we have

sk ¼
Xk

i¼0

1

ak�i
vi

� 1þ 1

a
þ 1

a2
þ . . .þ 1

ak

¼
1� 1

ak

1� 1
a

\
1

1� 1
a

¼ a
a� 1

If a = 2, the streaming frequency is bounded by [0,2). h
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Before we prove the reconstructability property, we need to prove the following

lemma. To simplify the proof, we introduce a function v0. Suppose the current time

interval is k, v0i = vk-i, that is v00 ¼ vk; v
0
1 ¼ vk�1; . . .; v0k ¼ v0: Now s ¼

P
i¼0 kv0i

1
ai : Now reconstructing the series vk; . . .; v0 for a given s becomes solving

the series v00; . . .; v0k and X ¼
Pp�1

q¼0 v0q
1
aq :

Lemma 1 If at a certain time interval p, v0p = j, then s 2 ½X þ j
ap ;X þ j

ap þ lpÞ
for every p ¼ 0; 1; . . .; k; and j 2 f0; 1g; where X ¼

Pp�1
i¼0 v0i

1
ai and lp ¼ 1

apþ1
1

1�1
a
:

Proof At any time interval p where p ¼ 0; 1; . . .; k; we have

s ¼
Xk

i¼0

v0i
1

ai

¼
Xp�1

i¼0

v0i
1

ai
þ
Xk

i¼p

v0i
1

ai

¼X þ
Xk

i¼p

v0i
1

ai
:

It is clear that if v0p = j, then s�X þ j
ap and

s ¼X þ j

ap
þ
Xk

i¼pþ1

v0i
1

ai

\X þ j

ap
þ 1

apþ1

X1

i¼0

1
1

ai

¼X þ j

ap
þ 1

apþ1

1

1� 1
a

¼X þ j

ap
þ lp:

Combining the two inequalities together, we have, if v0p = j, then s 2 ½X þ
j
ap ;X þ j

ap þ lpÞ for every p ¼ 0; . . .; k; and j 2 f0; 1g: h

Theorem 2 (Property of Reconstructability). Given the streaming frequency
s, we can uniquely decide the indication function v with no ambiguity.

Proof Note that v0p can only be 0 or 1. From Lemma 1, we have that if v0p = 0,

then s 2 ½X;X þ lpÞ for every p ¼ 0; . . .; k: If vp = 1, then s 2 ½X þ 1
ap ;X þ 1

ap þ
lpÞ; where X ¼

Pp�1
i¼0 v0i

1
ai ; and lp ¼ 1

apþ1
1

1�1
a
: Because a C 2, it follows that 1

ap � lp:

Thus X þ lp�X þ 1
ap ; which means that the two ranges [X, X ? lp) and ½X þ

1
ap ;X þ 1

ap þ lpÞ do not overlap. This implies that at each time interval p, where

234 J Netw Syst Manage (2012) 20:226–243

123



p ¼ 0; 1; . . .k; we can uniquely decide the v0p based on the range in which s -

X falls. Therefore, v can be decided uniquely. h

Theorem 2 shows that we can use the streaming frequency, s, to restore the

indication function v unambiguously. In the next section, we present the

reconstruction algorithm that takes streaming frequency as input and outputs the

sequence of v.

5 Implementation and Analysis of a Reconstruction Algorithm

In this section, we describe an algorithm to reconstruct the original on-off traffic

pattern of a server from the streaming frequency, and analyze its computational

complexity and memory requirement.

Algorithm 1 illustrates the reconstruction algorithm. It takes the incrementally

updated streaming frequency s of a data center server at the current time interval

k as input, and reconstructs the sequence of v as output that represents the original

on-off occurrence pattern of the data center server during the past k time intervals.

As we proved in the previous section, there exists one and only one vi; i ¼ 0; 1; . . .k;
given the streaming frequency s.

The time complexity of this algorithm is O(k) because the for loop (LINES

4–12) runs k times and each run takes O(1) time.

During our experiments of running the algorithm against the real data-sets, one

challenge lies in the limitation of significant digits in the popular programming

languages. For example, the number of significant digits for double floating point

numbers in C, and Java programming languages are 15. However, several existing

libraries, e.g., the java.math package, support arbitrary precision floating point

values for financial applications and cryptography.

Utilizing these packages, we are able to calculate s for any arbitrary k. In other

words, our algorithm could restore the traffic patterns over an arbitrary length of

time. On the other hand, the reconstruction comes with the cost of memory

consumptions of storing s with an arbitrary precision. Figure 3 illustrates the

relationship between the length of reconstruction history and memory assumptions

for the streaming frequency metric. Similar to capturing the original temporal

patterns in binary representations (cf. Sect. 3), a longer history of traffic

observations leads to more memory or storage, and the required space grows

linearly as the length of the time series. For example, we need nearly 16 bytes (128

bits) for the streaming frequency when k = 120, while 32 bytes (256 bits) are

required for k = 240. However, the binary representation of temporal patterns lacks

the properties of convergence and reconstruction. In addition, we could use a fixed

amount of memory space to represent the approximate value of streaming frequency

for data center servers with a bounded error, as proved in Theorem 3.

As we can see, although streaming frequency is an informative metric that can

distinguish traffic patterns and recover traffic history, the memory cost is

undesirable. In order to reduce the memory consumption and calculation, we limit

the number of digits representing the streaming frequency and show that this
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lightweight approximation can still achieve high accuracy. Specifically, the

following theorem proves that we could use several digits to approximate the

streaming frequency metric over an arbitrarily long time period with a bounded

error.

Theorem 3 (Approximation with a Bounded Error). If the number of digits that
represent the streaming frequency is limited by x digits, the calculated s value is no

more than 2
10x�1 apart from the precise value.

Proof. Since only x digits are used to represent the streaming frequency, all the

digits starting from the (x ? 1) - th digit will be dropped at each step when the

Algorithm 1 Server traffic pattern reconstruction algorithm

1: INPUT: s ¼
Pk

i¼0 vi
1

ak�i, which is calculated for the current time interval k and vi = j, where j [ {0, 1};

2: OUTPUT: a sequence of vi, i = 0, 1, ..., k;

3: s0 = s;

4: for i = 0 to k

5: li ¼ 1
aiþ1

1
1�1

a
;

6: if s0 [ [0, li)

7: vk-i = 0;

8: else if s0 2 ½ 1ai ;
1
ai þ liÞ

9: vk-i = 1;

10: end if

11: s0 ¼ s0 � vk�i
1
ai ;

12: end for
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streaming frequency is updated. Thus at each step, the introduced error is at most
1

10x�1 : For the subsequent step, the error introduced by the previous drop of digits is

decreased by half, which is 1
2

1
10x�1 and the newly introduced error is 1

10x�1 : Thus, if we

add all the errors up, the total error, �; is

� ¼ 1

10x�1
þ 1

2

1

10x�1
þ 1

22

1

10x�1
þ 1

23

1

10x�1
þ . . .

¼ 1

10x�1
ð1þ 1

2
þ 1

22
þ 1

23
þ . . .Þ

� 1

10x�1
� 1� ð1=2Þ1

1� 1=2

¼ 2

10x�1
:

That is, if we use only three digits to represent streaming frequency, the

calculated s is less than 0.02 apart from the precise streaming frequency no matter

how large k is. If four digits are used, the error is bounded by only 0.002. Figure 4

illustrates the streaming frequencies for two sample data center servers over time. In

both figures, the red solid lines represent the precise values with an arbitrary size of

memory, while the blue dotted lines denote the approximation values with only 3

digits. Figure 4 confirms that the approximations are very close to the original

values, thus we could indeed use a small amount of memory in our experiments and

real-time systems to represent the streaming frequency of data center servers over a

long time interval. Such observations hold for other servers as well.

In summary, the time complexity of the reconstruction algorithm is O(k) for

reconstruction of traffic pattern over a period of k time intervals. Furthermore, our

theoretical analysis and experiment results show that the approximation method

with a small number of digits could achieve a very high accurate estimation on the

original value. Therefore, we could use approximation methods in real-time systems

if the memory constraint exists.
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6 Applications

Lightweight and informative streaming frequency metrics have a variety of

applications in real-time data center network monitoring given their convergence

and reconstructability properties. In this section, we demonstrate the applications in

detecting unwanted traffic towards data center servers.

As the number of data center servers grows due to the rapid growth of cloud

computing, unwanted traffic towards these servers continues to increase in size and

diversity [27, 28]. The sheer volume of network traffic makes it challenging to

examine unwanted traffic directly from continuous traffic streams, thus streaming

frequency provides an efficient mechanism for identifying unwanted traffic given its

lightweight computation and unique convergence and reconstruction abilities.

As discussed in the previous sections, the streaming frequency of a given host

h is 1 B s B 2 if the host h is observed at the time unit t. Clearly, if s = 1, it

indicates that the host h is the first to be observed at the unit time, while if s& 2, it

indicates that the host h is consistently observed during all the previous time units.

On the other hand, any other value (i.e., 1 \ s \ 2), suggests that the host is not

always observed over time and thus, it is very interesting to examine its detailed

temporal patterns over the time.

To further understand the correlation of the streaming frequency and the

temporal traffic patterns, we compute the mean and standard deviation of the

streaming frequency for all data center servers. The mean of the streaming

frequency for the host h is computed as

lðhÞ ¼ 1

t

Xt

i¼1

si;

while the standard deviations of the streaming frequency is calculated as

rðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

Xt

i¼1

ðsi � lðhÞÞ2
s

:

Figure 5 illustrates a scatter plot of the mean and standard deviation for the hosts

in three data centers with 1 \ s \ 2 and the same cumulative frequency of 144. This

graph shows two well isolated groups among these hosts, which motivates us to

apply simple clustering algorithms for dividing them into separate clusters for

further analysis. Through k-means clustering algorithms [29] with k = 2, we further

find the centroids of these two clusters: c1 (1.529, 0.090) and c2 (1.960, 0.027). The

in-depth analysis shows that the top-left cluster are inactive servers or unused IP

addresses that are the targets of random scanning and exploit behaviors from outside

attackers, since most of the traffic is towards ports that are associated with well

known vulnerabilities. The bottom-right cluster are normal active data center

servers, and most of the traffic is towards legitimate services. Note that some of the

traffic towards active servers could also be unwanted traffic from malicious sources

exploiting active servers. Although the capability of differentiating active and

inactive servers in data centers is not new, the unique benefits of streaming
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frequency lie in its low cost in metric computation and storage over continuous

traffic streams.

To uncover this anomalous traffic, network operators could analyze all the traffic

towards active servers and find unusual ports or access patterns. Based on these

empirical observations, we calculate its distances1 to the centroid d1 = |s - lc1|,

and d2 = |s - lc2| for each new host h, and use the following rule to classify the

hosts observed from the aggregated data center traffic streams:

type of server ¼ inactive; if d1� d2;
active; if d1 [ d2;

�

ð2Þ

Prior works [30–32] suggested that hosts that talk to inactive servers are

suspicious, as the majority of such data communications is due to prevalent random

scanning and malicious activities [33, 34]. Using additional traffic features such as

the number of packets and bytes, we find that hosts talking with inactive servers

only send a single packet to these servers on destination ports associated with well-

known vulnerabilities, which confirms the conjectures in previous studies. More

importantly, [31, 32] have also found that the attackers that communicate with

inactive servers are also interested in scanning active servers as they randomly

select potential targets or victims during the initial exploit phases. If these active

servers are compromised, the normal Internet applications or cloud computing

services could be disrupted. Therefore, it is very intuitive and important to further

study all the data traffic sent from the anomalous sources that talk with those

inactive servers. Such a recursive detection technique is simple yet effective to

detect unwanted traffic towards data center servers.
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Fig. 5 The clustering of the mean and standard deviation of streaming frequencies for the hosts with
1 \ s \ 2 and the same cumulative frequency

1 We do not include the variance in calculating the distance, since calculating the variance requires

reconstructions at each time unit.
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After identifying inactive servers, we then locate suspicious sources that talk with

them and study all network traffic from such sources towards active and inactive

servers respectively. The analysis of anomalous behavior could augment intrusion

detection solutions deployed in Internet data centers by detecting stealthy or low-

volume behavior, such as port 22 activity after scanning traffic. In other words, the

deployment of this proposed method could protect servers with popular services and

ensure the normal operations of Internet data centers. Figures 6a, b illustrate the

difference of traffic volumes towards active and inactive servers from the same

anomalous sources, respectively. In both plots, the x axis represents the number of

servers exploited by each source, while the y axis represents the total number of

network flows towards these servers from each source. As shown in Fig. 6a, b, each

anomalous source tends to communicate with active servers with more than one

network flow, while each source tends to communicate with the majority of inactive

servers with just one network flow. The additional flows toward the active servers

are mostly follow-up activities of these anomalous sources, after the active servers

become the potential targets for further activities. Although streaming frequency

does not identify specific exploit patterns, its capability of differentiating active and

inactive servers provides valuable and critical input in detecting suspicious activities

from anomalous sources. In other words, identifying inactive servers is a first and

important step in detecting and reducing unwanted traffic in Internet data centers.

Due to the difficulty of establishing the ground truth on the attacks in the real

traffic datasets, we rely on the simulated scanning, worm propagation and DDoS

behaviors to study the false positive rate and false negative rate. We use known

unwanted traffic from 3728 anomalous events identified in our previous studies [35,

36] and combine them with real data center traffic. To generate the synthetic traffic

with consistent data center IP addresses, we replace the destination addresses of

unwanted traffic with random IP addresses in data center networks. Subsequently,

we apply streaming frequency to identify inactive servers and find suspicious

sources that send the unwanted traffic. Our simulation results show that our

proposed method is able to discover over 95% of anomalous behaviors, i.e., a false
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negative rate of less than 5%. The major reason for false negatives is that the

sources of unwanted traffic target mostly active data centers server without

communicating with inactive servers.

We also study the distributions of legitimate Internet services and unwanted

traffic by examining the destination ports in network traffic flows. Table 1 lists the

top 10 destination ports and transport protocols towards the active and inactive

servers during one 5 min observation time window. For active servers, the

destination ports towards them are widely used Internet services, e.g., HTTP,

SMTP, POP3, DNS. On the other hand, the destination ports towards inactive

servers are mostly those associated with well-known vulnerabilities, e.g., 1434 and

1026-1027, ports for direct accesses, e.g., SSH as well as unknown ports. The traffic

towards unknown ports is likely from the aggressive attackers who attempt to

exploit all service ports. These findings suggest that the proposed method can

identify emerging unwanted traffic. Although packet payload is not available for in-

depth investigation, the observations on application ports provide significant

evidences of traffic variations towards active and inactive servers.

In addition, we also correlate unwanted traffic across data centers. Such

correlation is very important, since it could reveal more insight on unwanted traffic

patterns, and help detect the behaviors that are difficult to discover from single

vantage points. The focuses of the correlations are on the anomalous sources and the

destination ports. For the anomalous sources, we study whether there exists

aggressive attackers that are exploiting targets across data centers. For the

destination ports, we are interested in the similarity and dissimilarity of the port

distribution of unwanted traffic across data centers. By correlating the source IP

addresses of the anomalous traffic, we find that there are indeed many aggressive

attackers that exploit various servers across data centers. The traffic from these

sources could be blocked through an access control list deployed on the firewalls.

For the destination port distribution across data centers, we find that the

observations on the port distribution towards inactive servers in Table 1 hold for

Table 1 Top 10 destination ports towards active and inactive servers

Towards active servers Towards inactive servers

Rank Port/protocol Services Rank Port/protocol Services

1 80/TCP HTTP 1 22/TCP SSH

2 25/TCP SMTP 2 21/TCP FTP

3 5510/TCP VoIP 3 7212/TCP Unknown

4 5505/TCP Messenger 4 8000/TCP Unknown

5 443/TCP HTTP over SSL 5 25/TCP SMTP

6 995/TCP POP3 over SSL 6 1026/UDP Windows messenger

7 110/TCP POP3 7 1027/UDP Windows messenger

8 143/TCP IMAP 8 1434/UDP Microsoft SQL server

9 53/UDP DNS 9 80/TCP HTTP

10 465/TCP SMTP over SSL 10 4899/TCP Remote adminstration
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all three data centers. During the early phases of a worm outbreak, the correlation

analysis of unwanted traffic across data centers could provide early warning to

network operators.

7 Conclusions and Future Work

This paper proposes an informative and actionable traffic metric for monitoring the

temporal frequency and traffic patterns of data center servers. Through theoretical

analysis and algorithm implementations, we demonstrate the characteristics of

convergence and reconstructability of these metrics. More importantly, this simple

yet effective metric provides insights of the temporal patterns of data centers due to

these characteristics. Using real data-sets collected from data centers of a large

Internet content provider, we demonstrate the applications of this metric on

detecting unwanted traffic towards data centers servers. As part of our on-going

research, we are currently exploring the applications of streaming metrics on

additional traffic features such as traffic volume or application ports for multi-

dimensional traffic analysis.
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