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The paper deals with the existence, multiplicity and nonexistence of positive radial solutions for the elliptic
system div(|∇ui|p−2∇ui)+λki(|x|)f i(u1, . . . , un) = 0, p > 1, R1 < |x| < R2, ui(x) = 0, on |x| = R1

and R2, i = 1, . . . , n, x ∈ R
N , where ki and f i, i = 1, . . . , n, are continuous and nonnegative functions.

Let u = (u1, . . . , un), ϕ(t) = |t|p−2t, f i
0 = lim‖u‖→0

fi(u)
ϕ(‖u‖) , f i

∞ = lim‖u‖→∞
fi(u)

ϕ(‖u‖) , i = 1, . . . , n,

f = (f1, . . . , fn), f0 =
Pn

i=1 f i
0 and f∞ =

Pn
i=1 f i

∞. We prove that either f0 = 0 and f∞ = ∞ (superlinear),
or f0 = ∞ and f∞ = 0 (sublinear), guarantee existence for all λ > 0. In addition, if f i(u) > 0 for ‖u‖ > 0,
i = 1, . . . , n, then either f0 = f∞ = 0, or f0 = f∞ = ∞, guarantee multiplicity for sufficiently large, or
small λ, respectively. On the other hand, either f0 and f∞ > 0, or f0 and f∞ < ∞ imply nonexistence
for sufficiently large, or small λ, respectively. Furthermore, all the results are valid for Dirichlet/Neumann
boundary conditions. We shall use fixed point theorems in a cone.
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1 Introduction

In this paper we consider the existence, multiplicity and nonexistence of positive radial solutions for the quasi-
linear elliptic system⎧⎪⎨⎪⎩

div
(|∇u1|p−2∇u1

)
+ λk1(|x|)f1(u1, . . . , un) = 0,

. . .

div
(|∇un|p−2∇un

)
+ λkn(|x|)fn(u1, . . . , un) = 0,

(1.1)

in the domain 0 < R1 < |x| < R2 < ∞, x ∈ R
N , N ≥ 2, with one of the following three sets of the boundary

conditions,

ui = 0 on |x| = R1 and |x| = R2, i = 1, . . . , n, (1.2a)

∂ui/∂r = 0 on |x| = R1 and ui = 0 on |x| = R2, i = 1, . . . , n, (1.2b)

ui = 0 on |x| = R1 and ∂ui/∂r = 0 on |x| = R2, i = 1, . . . , n, (1.2c)

where p > 1, r = |x| and ∂/∂r denotes differentiation in the radial direction.
When n = 1, (1.1) becomes the scalar quasilinear equation

div
(|∇u|p−2∇u

)
+ λk(|x|)f(u) = 0, in R1 < |x| < R2, x ∈ R

N , N ≥ 2. (1.3)

When p = 2, (1.3) further reduces to the classical semilinear elliptic equation

∆u + λk(|x|)f(u) = 0, in R1 < |x| < R2, x ∈ R
N , N ≥ 2. (1.4)
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It was proved in [3, 12, 17] that (1.4) with boundary conditions has a positive radial solution under the as-
sumption that f is superlinear, i.e., f0 = limu→0

f(u)
u = 0 and f∞ = limu→∞

f(u)
u = ∞, or f is sublinear,

i.e., f0 = limu→0
f(u)

u = ∞ and f∞ = limu→∞
f(u)

u = 0. Related multiplicity and nonexistence results can be
found in [1, 5, 7, 8, 14, 15, 18] and others.

In this paper, we shall show appropriate combinations of superlinearity and sublinearity of f at zero and
infinity for (1.1) guarantee the existence, multiplicity and nonexistence of positive radial solutions of (1.1). For
this purpose, we introduce the notation f0 and f∞, to characterize superlinearity and sublinearity for (1.1). They
are natural extensions of f0 and f∞ defined above for the scalar equation.

Ambrosetti, Brezis and Cerami [2], Brezis and Nirenberg [4] studied the combined effects of concave and
convex nonlinearities on the number of positive solutions of the Dirchlet boundary value problem for ∆u +
λup1 + up2 = 0 with 0 < p1 < 1 < p2 in general domains. Note that ∆u + λup1 + up2 = 0 is equivalent to

(1.4) by a simple change of variables, u = λ
1

p2−p1 v and µ = λ
p2−1

p2−p1 , which transforms ∆u + λup1 + up2 = 0
into ∆v + µ(vp1 + vp2) = 0. It was shown in [2] that, among others, there are two positive solutions to the
Dirchlet problem for λ ∈ (0, Λ), Λ > 0. It is important to observe that f0 = f∞ = ∞ if f = up1 + up2 for
0 < p1 < 1 < p2 < ∞. Thus Theorem 1.2 (d) is consistent with this result in [2]. Our results can be viewed
as a generalization of the related results in [2, 4] to the quasilinear linear elliptic system (1.1). In addition, we
consider the number of positive solutions of (1.1) under all possible appropriate combinations of f0 and f∞. Our
results also show that convexity and monotonicity conditions are not necessary for the existence and multiplicity
results at least for annular domains.

Our arguments are based on the fixed point index. Many authors have used the fixed point index for the
existence of positive solutions of differential equations, see e.g. [6, 9, 17, 18, 20]. Variational methods have been
frequently used for Hamiltonian systems and gradient systems. However, there is apparently no possibility of
using variational methods for the n-dimensional quasilinear elliptic system (1.1), and one has to use topological
methods.

We now turn to the general assumptions for this paper. Let ϕ(t) = |t|p−2t, p > 1, R = (−∞,∞), R+ =
[0,∞) and R

n
+ = R+ × . . . × R+︸ ︷︷ ︸

n

. Also, for u = (u1, . . . , un) ∈ R
n
+, let ‖u‖ =

∑n
i=1|ui|. We make the

assumptions:

(H1). f i : R
n
+ → R+ is continuous, i = 1, . . . , n.

(H2). ki : [R1, R2] → [0,∞) is continuous and ki �≡ 0 on any subinterval of [R1, R2], i = 1, . . . , n.

(H3). f i(u1, . . . , un) > 0 for u = (u1, . . . , un) ∈ R
n
+ and ‖u‖ > 0, i = 1, . . . , n.

In order to state our results, let

f(u) =
(
f1(u), . . . , fn(u)

)
=
(
f1(u1, . . . , un), . . . , fn(u1, . . . , un)

)
.

Then we introduce the notation

f i
0 = lim

‖u‖→0

f i(u)
ϕ(‖u‖) , f i

∞ = lim
‖u‖→∞

f i(u)
ϕ(‖u‖) , i = 1, . . . , n,

where u = (u1, . . . , un) ∈ R
n
+,

f0 =
n∑

i=1

f i
0, f∞ =

n∑
i=1

f i
∞. (1.5)

Our main results are:

Theorem 1.1 Assume (H1) and (H2) hold.
(a). If f0 = 0 and f∞ = ∞, then for all λ > 0 (1.1)–(1.2) has a positive radial solution.
(b). If f0 = ∞ and f∞ = 0, then for all λ > 0 (1.1)–(1.2) has a positive radial solution.

Theorem 1.2 Assume (H1)–(H3) hold.
(a). If f0 = 0 or f∞ = 0, then there exists a λ0 > 0 such that for all λ > λ0 (1.1)–(1.2) has a positive radial

solution.
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(b). If f0 = ∞ or f∞ = ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0 (1.1)–(1.2) has a positive
radial solution.

(c). If f0 = f∞ = 0, then there exists a λ0 > 0 such that for all λ > λ0 (1.1)–(1.2) has two positive radial
solutions.

(d). If f0 = f∞ = ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0 (1.1)–(1.2) has two positive
radial solutions.

(e). If f0 < ∞ and f∞ < ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0 (1.1)–(1.2) has no
positive radial solution.

(f). If f0 > 0 and f∞ > 0, then there exists a λ0 > 0 such that for all λ > λ0 (1.1)–(1.2) has no positive
radial solution.

When λ = 1, Theorem 1.1 was proved in [19]. For N = 1, (1.1) becomes a system of ordinary differential
equations. Theorems 1.1 and 1.2 for systems of ordinary differential equations were obtained in [20].

2 Preliminaries

A radial solution of (1.1)–(1.2) can be considered as a solution of the system⎧⎪⎨⎪⎩
(
rN−1ϕ(u′

1(r))
)′ + λrN−1k1(r)f1(u1, . . . , un) = 0,

. . .(
rN−1ϕ(u′

n(r))
)′ + λrN−1kn(r)fn(u1, . . . , un) = 0,

(2.1)

0 < R1 < r < R2 < ∞, with one of the following three sets of the boundary conditions,

ui(R1) = ui(R2) = 0, i = 1, . . . , n, (2.2a)

u′
i(R1) = ui(R2) = 0, i = 1, . . . , n, (2.2b)

ui(R1) = u′
i(R2) = 0, i = 1, . . . , n. (2.2c)

We shall treat classical solutions of (2.1)–(2.2), namely vector-valued functions u = (u1(r), . . . , un(r)) ∈
C1([R1, R2], Rn) with ϕ(u′

i) ∈ C1(R1, R2), i = 1, . . . , n, which satisfies (2.1) for r ∈ (R1, R2) and one of
(2.2). A solution u(r) = (u1(r), . . . , un(r)) is positive if ui(r) ≥ 0, i = 1, . . . , n, for all r ∈ (R1, R2) and there
is at least one nontrivial component of u. In fact, we shall show that such a nontrivial component of u is positive
on (R1, R2).

Applying the change of variables, r = (R2 − R1)t + R1, we can transform (2.1)–(2.2) into the form⎧⎪⎨⎪⎩
(q(t)ϕ(ζu′

1))
′ + λh1(t)f1(u) = 0,

. . .

(q(t)ϕ(ζu′
n))′ + λhn(t)fn(u) = 0,

(2.3)

0 < t < 1, with one of the following three sets of the boundary conditions,

u(0) = u(1) = 0, (2.4a)

u′(0) = u(1) = 0, (2.4b)

u(0) = u′(1) = 0, (2.4c)

where

u(t) = (u1(t), . . . , un(t)), q(t) = ((R2 − R1)t + R1)N−1, ζ =
1

R2 − R1

and

hi(t) = (R2 − R1)((R2 − R1)t + R1)N−1ki((R2 − R1)t + R1), i = 1, . . . , n.

It is clear that q(t) > 0 ∈ C[0, 1] and is nondecreasing for t ∈ [0, 1], and hi : [0, 1] → [0,∞) is continuous
and hi �≡ 0 on any subinterval of [0, 1], i = 1, . . . , n.

For (2.3)–(2.4) we shall prove Theorems 2.1 and 2.2, which immediately imply that Theorems 1.1 and 1.2 are
true.
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Theorem 2.1 Assume (H1)–(H2) hold.
(a). If f0 = 0 and f∞ = ∞, then for all λ > 0 (2.3)–(2.4) has a positive solution.
(b). If f0 = ∞ and f∞ = 0, then for all λ > 0 (2.3)–(2.4) has a positive solution.

Theorem 2.2 Assume (H1)–(H3) hold.
(a). If f0 = 0 or f∞ = 0, then there exists a λ0 > 0 such that for all λ > λ0 (2.3)–(2.4) has a positive

solution.
(b). If f0 = f∞ = 0, then there exists a λ0 > 0 such that for all λ > λ0 (2.3)–(2.4) has two positive solutions.
(c). If f0 = ∞ or f∞ = ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0 (2.3)–(2.4) has a positive

solution.
(d). If f0 = f∞ = ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0 (2.3)–(2.4) has two positive

solutions.
(e). If f0 < ∞ and f∞ < ∞, then there exists a λ0 > 0 such that for all 0 < λ < λ0 (2.3)–(2.4) has no

positive solution.
(f). If f0 > 0 and f∞ > 0, then there exists a λ0 > 0 such that for all λ > λ0 (2.3)–(2.4) has no positive

solution.

We recall some concepts and conclusions on the fixed point index in a cone in [9, 10]. Let E be a Banach
space and K be a closed, nonempty subset of E. K is said to be a cone if (i) αu + βv ∈ K for all u, v ∈ K and
all α, β ≥ 0 and (ii) u,−u ∈ K imply u = 0. Assume Ω is a bounded open subset in E with the boundary ∂Ω,
and let T : K ∩ Ω → K is completely continuous such that Tx �= x for x ∈ ∂Ω ∩ K , then the fixed point index
i(T, K ∩Ω, K) is defined. If i(T, K ∩Ω, K) �= 0, then T has a fixed point in K ∩Ω. The following well-known
result of the fixed point index is crucial in our arguments.

Lemma 2.3 ([9, 10]). Let E be a Banach space and K a cone in E. For r > 0, define Kr = {u ∈ K :
‖x‖ < r}. Assume that T : Kr → K is completely continuous such that Tx �= x for x ∈ ∂Kr = {u ∈ K :
‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, then

i(T, Kr, K) = 0.

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, then

i(T, Kr, K) = 1.

In order to apply Lemma 2.3 to (2.3)–(2.4), let X be the Banach space C[0, 1] × . . . × C[0, 1]︸ ︷︷ ︸
n

and, for u =

(u1, . . . , un) ∈ X,

‖u‖ =
n∑

i=1

sup
t∈[0,1]

|ui(t)|.

For u ∈ X or R
n
+, ‖u‖ denotes the norm of u in X or R

n
+, respectively.

Define K a cone in X by

K =

(
u = (u1, . . . , un) ∈ X : ui(t) ≥ 0, t ∈ [0, 1], i = 1, . . . , n, and min

1
4≤t≤ 3

4

nX
i=1

ui(t) ≥ 1

4
‖u‖

)
.

Also, define, for r a positive number, Ωr by

Ωr = {u ∈ K : ‖u‖ < r}.
Note that ∂Ωr = {u ∈ K : ‖u‖ = r}.

Let Tλ : K → X be a map with components
(
T 1

λ , . . . , T n
λ

)
. We define T i

λ, i = 1, . . . , n, by

T i
λu(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ t

0

1
ζ
ϕ−1

(
1

q(s)
λ

∫ σi

s

hi(τ)f i(u(τ)) dτ

)
ds, 0 ≤ t ≤ σi,∫ 1

t

1
ζ
ϕ−1

(
1

q(s)
λ

∫ s

σi

hi(τ)f i(u(τ)) dτ

)
ds, σi ≤ t ≤ 1,

(2.5)
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where σi = 0 for (2.3)–(2.4b) and σi = 1 for (2.3)–(2.4c). For (2.3)–(2.4a) σi ∈ (0, 1) is a solution of the
equation

Θiu(t) = 0, 0 ≤ t ≤ 1, (2.6)

where the map Θi : K → C[0, 1] is defined by

Θiu(t) =
∫ t

0

1
ζ
ϕ−1

(
1

q(s)

∫ t

s

λhi(τ)f i(u(τ)) dτ

)
ds

−
∫ 1

t

1
ζ
ϕ−1

(
1

q(s)

∫ s

t

λhi(τ)f i(u(τ)) dτ

)
ds, 0 ≤ t ≤ 1.

(2.7)

By virtue of Lemma 2.4, the operator Tλ is well-defined.

Lemma 2.4 ([18, 20]) Assume (H1)–(H2) hold. Then, for any u ∈ K and i = 1, . . . , n, Θiu(t) = 0 has at
least one solution in (0, 1). In addition, if σ1

i < σ2
i ∈ (0, 1), i = 1, . . . , n, are two solutions of Θiu(t) = 0,

then hi(t)f i(u(t)) ≡ 0 for t ∈ [σ1
i , σ2

i

]
and any σi ∈

[
σ1

i , σ2
i

]
is also a solution of Θiu(t) = 0. Furthermore,

Ti
λu(t), i = 1, . . . , n, is independent of the choice of σi ∈

[
σ1

i , σ2
i

]
.

The following lemma is a standard result due to the concavity of u(t) on [0, 1].
Lemma 2.5 Assume u ∈ C1[0, 1] with u(t) ≥ 0 for t ∈ [0, 1], and q > 0 is nondecreasing for t ∈ [0, 1]. If

q(t)ϕ(ζu′) is nonincreasing on [0, 1], then u(t) ≥ min{t, 1 − t} supt∈[0,1]|u(t)|, t ∈ [0, 1]. In particular,

min
1
4≤t≤ 3

4

u(t) ≥ 1
4

sup
t∈[0,1]

|u(t)|.

P r o o f. Note that ϕ−1 is increasing and q(t) is nondecreasing. Because q(t)ϕ(ζu′) is nonincreasing on [0, 1],
we find that u′(t) is nonincreasing. Hence, for 0 ≤ t0 < t < t1 ≤ 1,

u(t) − u(t0) =
∫ t

t0

u′(s) ds ≥ (t − t0)u′(t)

and

u(t1) − u(t) =
∫ t1

t

u′(s) ds ≤ (t1 − t)u′(t),

from which, we have

u(t) ≥ (t − t0)u(t1) + (t1 − t)u(t0)
t1 − t0

.

Considering the above inequality on [0, σ] and [σ, 1], we obtain

u(t) ≥ t ||u|| for t ∈ [0, σ],

u(t) ≥ (1 − t) ||u|| for t ∈ [σ, 1],

where σ ∈ [0, 1] such that u(σ) = ||u||. Hence, we have u(t) ≥ min{t, 1 − t}||u|| for t ∈ [0, 1]. �
We remark that, according to Lemma 2.5, any nontrivial component of nonnegative solutions of (2.3)–(2.4) is

positive on (0, 1).
Lemma 2.6 Assume (H1)–(H2) hold. Then Tλ(K) ⊂ K and Tλ : K → K is compact and continuous.

P r o o f. Lemma 2.5 implies that Tλ(K) ⊂ K. It is not hard to see that Tλ is compact and continuous (see
[20] for a proof). �

Now it is not difficult to show that u ∈ K is a solution of (2.3)–(2.4) if and only if u is a fixed point equation

Tλu = u in K.

Note that for t > 0, ϕ(t) = tp−1, p > 1 and ϕ−1(t) = t
1

p−1 . It is easy to verify the following lemma.
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Lemma 2.7 For all σ, x ∈ (0,∞), we have ϕ−1(σϕ(x)) = ϕ−1(σ)x.

For i = 1, . . . , n, let

γi(t) =
1
8

[ ∫ t

1
4

1
ζ
ϕ−1

(
1

q(s)

∫ t

s

hi(τ) dτ

)
ds +

∫ 3
4

t

1
ζ
ϕ−1

(
1

q(s)

∫ s

t

hi(τ) dτ

)
ds

]
,

where t ∈ [14 , 3
4

]
. It follows from (H2)that

Γ = min
{
γi(t) : 1

4 ≤ t ≤ 3
4 , i = 1, . . . , n

}
> 0.

Lemma 2.8 Assume (H1)–(H2) hold. Let u = (u1(t), . . . , un(t)) ∈ K and η > 0. If there exists a component
f i of f such that

f i(u(t)) ≥ ϕ

(
η

n∑
i=1

ui(t)

)
for t ∈ [14 , 3

4

]
then

‖Tλu‖ ≥ ϕ−1(λ)Γη ‖u‖.

P r o o f. Note, from the definition of Tλu, that T i
λu(σi) is the maximum value of T i

λu on [0,1]. If σi ∈
[
1
4 , 3

4

]
,

we consider

‖Tλu‖ ≥ sup
t∈[0,1]

|T i
λu(t)|

≥ 1
2

[ ∫ σi

1
4

1
ζ
ϕ−1

(
1

q(s)

∫ σi

s

λhi(τ)f i(u(τ)) dτ

)
ds

+
∫ 3

4

σi

1
ζ
ϕ−1

(
1

q(s)

∫ s

σi

λhi(τ)f i(u(τ)) dτ

)
ds

]
≥ 1

2

[∫ σi

1
4

1
ζ
ϕ−1

(
1

q(s)

∫ σi

s

λhi(τ)ϕ

(
η

n∑
i=1

ui(τ)

)
dτ

)
ds

+
∫ 3

4

σi

1
ζ
ϕ−1

(
1

q(s)

∫ s

σi

λhi(τ)ϕ

(
η

n∑
i=1

ui(τ)

)
dτ

)
ds

]
,

and so,

‖Tλu‖ ≥ 1
2

[ ∫ σi

1
4

1
ζ
ϕ−1

(
1

q(s)

∫ σi

s

ϕ
(
ϕ−1(λ)

)
hi(τ)ϕ

(
η

1
4
‖u‖
)

dτ

)
ds

+
∫ 3

4

σi

1
ζ
ϕ−1

(
1

q(s)

∫ s

σi

ϕ
(
ϕ−1(λ)

)
hi(τ)ϕ

(
η

1
4
‖u‖
)

dτ

)
ds

]
=

1
2

[ ∫ σi

1
4

1
ζ
ϕ−1

(
1

q(s)

∫ σi

s

hi(τ) dτ ϕ

(
ϕ−1(λ)η

1
4
‖u‖
))

ds

+
∫ 3

4

σi

1
ζ
ϕ−1

(
1

q(s)

∫ s

σi

hi(τ) dτ ϕ

(
ϕ−1(λ)η

1
4
‖u‖
))

ds

]
.

Now, because of Lemma 2.7, we have

‖Tλu‖ ≥ ϕ−1(λ)η ‖u‖ 1
4

2

×
[ ∫ σi

1
4

1
ζ
ϕ−1

(
1

q(s)

∫ σi

s

hi(τ) dτ

)
ds +

∫ 3
4

σi

1
ζ
ϕ−1

(
1

q(s)

∫ s

σi

hi(τ) dτ

)
ds

]
≥ ϕ−1(λ)Γη ‖u‖.
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For σi > 3
4 , it is easy to see

‖T i
λu‖ ≥

∫ 3
4

1
4

1
ζ
ϕ−1

(
1

q(s)

∫ 3
4

s

λhi(τ)f i(u(τ)) dτ

)
ds.

On the other hand, we have

‖T i
λu‖ ≥

∫ 3
4

1
4

1
ζ
ϕ−1

(
1

q(s)

∫ s

1
4

λhi(τ)f i(u(τ)) dτ

)
ds if σi <

1
4
.

Also, similar arguments show that ‖Tλu‖ ≥ ϕ−1(λ)Γη ‖u‖ if σi > 3
4 or σi < 1

4 . �

For each i = 1, . . . , n, define a new function f̂ i(t) : R+ → R+ by

f̂ i(t) = max{f i(u) : u ∈ R
n
+ and ‖u‖ ≤ t}.

Note that f̂ i
0 = limt→0

f̂i(t)
ϕ(t) and f̂ i

∞ = limt→∞
f̂i(t)
ϕ(t) .

Lemma 2.9 ([20]) Assume (H1) holds. Then f̂ i
0 = f i

0 and f̂ i∞ = f i∞, i = 1, . . . , n.

Lemma 2.10 Assume (H1)–(H2) hold and let r > 0. If there exits an ε > 0 such that

f̂ i(r) ≤ ϕ(ε)ϕ(r), i = 1, . . . , n,

then

‖Tλu‖ ≤ ϕ−1(λ)εĈ ‖u‖ for u ∈ ∂Ωr,

where the constant Ĉ = 1
ζ

∑n
i=1 ϕ−1

(
1

q(0)

∫ 1

0
hi(τ) dτ

)
.

P r o o f. From the definition of Tλ, for u ∈ ∂Ωr, we have

‖Tλu‖ =
n∑

i=1

sup
t∈[0,1]

|T i
λu(t)|

≤ 1
ζ

n∑
i=1

ϕ−1

[
1

q(0)

∫ 1

0

λhi(τ)f i(u(τ)) dτ

]

≤ 1
ζ

n∑
i=1

ϕ−1

[
1

q(0)

∫ 1

0

hi(τ) dτ λf̂ i(r)
]

≤ 1
ζ

n∑
i=1

ϕ−1

[
1

q(0)

∫ 1

0

hi(τ) dτ λϕ(ε)ϕ(r)
]
.

Note that λ = ϕ
(
ϕ−1(λ)

)
. Then Lemma 2.7 implies that

‖Tλu‖ ≤ 1
ζ

n∑
i=1

ϕ−1

(
1

q(0)

∫ 1

0

hi(τ) dτ ϕ
(
ϕ−1(λ)εr

))

= ϕ−1(λ)εr
1
ζ

n∑
i=1

ϕ−1

(
1

q(0)

∫ 1

0

hi(τ) dτ

)
= ϕ−1(λ)εĈ ‖u‖. �

The following two lemmas are weak forms of Lemmas 2.8 and 2.10.

Lemma 2.11 Assume (H1)–(H3) hold. If u ∈ ∂Ωr, r > 0, then

‖Tλu‖ ≥ 4ϕ−1
(
λm̂r

)
Γ

where m̂r = min
{
f i(u) : u ∈ R

n
+ and 1

4r ≤ ‖u‖ ≤ r, i = 1, . . . , n.} > 0.
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P r o o f. Since λf i(u(t)) ≥ λm̂r = ϕ(ϕ−1(λm̂r)) for t ∈ [14 , 3
4

]
, i = 1, . . . , n, it is easy to see that this

lemma can be shown in a similar manner as in Lemma 2.8. �

Lemma 2.12 Assume (H1)–(H3) hold. If u ∈ ∂Ωr, r > 0, then

‖Tλu‖ ≤ ϕ−1(λ)ϕ−1
(
M̂r

)
Ĉ,

where M̂r = max{f i(u) : u ∈ R
n
+ and ‖u‖ ≤ r, i = 1, . . . , n} > 0 and Ĉ is the positive constant defined in

Lemma 2.10.

P r o o f. Since f i(u(t)) ≤ M̂r = ϕ
(
ϕ−1
(
M̂r

))
for t ∈ [0, 1], i = 1, . . . , n, it is easy to see that this lemma

can be shown in a similar manner as in Lemma 2.10. �

3 Proof of Theorem 2.1

Part (a). f0 = 0 implies that f i
0 = 0, i = 1, . . . , n. It follows from Lemma 2.9 that f̂ i

0 = 0, i = 1, . . . , n.

Therefore, we can choose r1 > 0 so that f̂ i(r1) ≤ ϕ(ε)ϕ(r1), i = 1, . . . , n, where the constant ε > 0 satisfies

ϕ−1(λ)εĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.10. We have by Lemma 2.10 that

‖Tλu‖ ≤ ϕ−1(λ)εĈ ‖u‖ < ‖u‖ for u ∈ ∂Ωr1 .

Now, since f∞ = ∞, there exists a component f i of f such that f i
∞ = ∞. Therefore, there is an Ĥ > 0 such that

f i(u) ≥ ϕ(η)ϕ(‖u‖)

for u = (u1, . . . , un) ∈ R
n
+ and ‖u‖ ≥ Ĥ , where η > 0 is chosen so that

ϕ−1(λ)Γη > 1.

Let r2 = max
{
2r1, 4Ĥ

}
. If u = (u1, . . . , un) ∈ ∂Ωr2 , then

min
1
4≤t≤ 3

4

n∑
i=1

ui(t) ≥ 1
4
‖u‖ =

1
4
r2 ≥ Ĥ,

which implies that

f i(u(t)) ≥ ϕ(η)ϕ

(
n∑

i=1

ui(t)

)
= ϕ

(
η

n∑
i=1

ui(t)

)
for t ∈ [ 14 , 3

4

]
.

It follows from Lemma 2.8 that

‖Tλu‖ ≥ ϕ−1(λ)Γη ‖u‖ > ‖u‖ for u ∈ ∂Ωr2 .

By Lemma 2.3,

i(Tλ, Ωr1 , K) = 1 and i(Tλ, Ωr2 , K) = 0.

It follows from the additivity of the fixed point index that

i
(
Tλ, Ωr2 \ Ωr1 , K

)
= −1.

Thus, i
(
Tλ, Ωr2 \ Ωr1 , K

) �= 0, which implies Tλ has a fixed point u ∈ Ωr2 \ Ωr1 by the existence property of
the fixed point index. The fixed point u ∈ Ωr2 \ Ωr1 is the desired positive solution of (2.3)–(2.4).
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Part (b). If f0 = ∞, there exists a component f i such that f i
0 = ∞. Therefore, there is an r1 > 0 such that

f i(u) ≥ ϕ(η)ϕ(‖u‖)
for u = (u1, . . . , un) ∈ R

n
+ and ‖u‖ ≤ r1, where η > 0 is chosen so that

ϕ−1(λ)Γη > 1.

If u = (u1, . . . , un) ∈ ∂Ωr1 , then

f i(u(t)) ≥ ϕ(η)ϕ

(
n∑

i=1

ui(t)

)
= ϕ

(
η

n∑
i=1

ui(t)

)
, for t ∈ [0, 1].

Lemma 2.8 implies that

‖Tλu‖ ≥ ϕ−1(λ)Γη ‖u‖ > ‖u‖ for u ∈ ∂Ωr1 .

We now determine Ωr2 . Notice that f∞ = 0 implies that f i
∞ = 0, i = 1, . . . , n. It follows from Lemma 2.9 that

f̂ i
∞ = 0, i = 1, . . . , n. Therefore there is an r2 > 2r1 such that

f̂ i(r2) ≤ ϕ(ε)ϕ(r2), i = 1, . . . , n,

where the constant ε > 0 satisfies

ϕ−1(λ)εĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.10. Thus, we have by Lemma 2.10 that

‖Tλu‖ ≤ ϕ−1(λ)εĈ‖u‖ < ‖u‖ for u ∈ ∂Ωr2 .

By Lemma 2.3,

i(Tλ, Ωr1 , K) = 0 and i(Tλ, Ωr2 , K) = 1.

It follows from the additivity of the fixed point index that i
(
Tλ, Ωr2 \ Ωr1 , K

)
= 1. Thus, Tλ has a fixed point

in Ωr2 \ Ωr1 , which is the desired positive solution of (2.3)–(2.4). �

4 Proof of Theorem 2.2

Part (a). Fix a number r1 > 0. Lemma 2.11 implies that there exists a λ0 > 0 such that

‖Tλu‖ > ‖u‖, for u ∈ ∂Ωr1 , λ > λ0.

If f0 = 0, then f i
0 = 0, i = 1, . . . , n. It follows from Lemma 2.9 that

f̂ i
0 = 0, i = 1, . . . , n.

Therefore, we can choose 0 < r2 < r1 so that

f̂ i(r2) ≤ ϕ(ε)ϕ(r2), i = 1, . . . , n,

where the constant ε > 0 satisfies

ϕ−1(λ)εĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.10. We have by Lemma 2.10 that

‖Tλu‖ ≤ ϕ−1(λ)εĈ ‖u‖ < ‖u‖ for u ∈ ∂Ωr2 .
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If f∞ = 0, then f i∞ = 0, i = 1, . . . , n. It follows from Lemma 2.9 that f̂ i∞ = 0, i = 1, . . . , n. Therefore there is
an r3 > 2r1 such that

f̂ i(r3) ≤ ϕ(ε)ϕ(r3), i = 1, . . . , n,

where the constant ε > 0 satisfies

ϕ−1(λ)εĈ < 1,

and Ĉ is the positive constant defined in Lemma 2.10. Thus, we have by Lemma 2.10 that

‖Tλu‖ ≤ ϕ−1(λ)εĈ‖u‖ < ‖u‖ for u ∈ ∂Ωr3 .

It follows from Lemma 2.3 that

i(Tλ, Ωr1 , K) = 0, i(Tλ, Ωr2 , K) = 1 and i(Tλ, Ωr3 , K) = 1.

Thus i
(
Tλ, Ωr1 \ Ωr2 , K

)
= −1 and i

(
Tλ, Ωr3 \ Ωr1 , K

)
= 1. Hence, Tλ has a fixed point in Ωr1 \ Ωr2 or

Ωr3 \ Ωr1 according to f0 = 0 or f∞ = 0, respectively. Consequently, (2.3)–(2.4) has a positive solution for
λ > λ0.

Part (b). Fix a number r1 > 0. Lemma 2.12 implies that there exists a λ0 > 0 such that

‖Tλu‖ < ‖u‖, for u ∈ ∂Ωr1 , 0 < λ < λ0.

If f0 = ∞, there exists a component f i of f such that f i
0 = ∞. Therefore, there is a positive number r2 < r1

such that

f i(u) ≥ ϕ(η)ϕ(‖u‖)
for u = (u1, . . . , un) ∈ R

n
+ and ‖u‖ ≤ r2, where η > 0 is chosen so that

ϕ−1(λ)Γη > 1.

Then

f i(u(t)) ≥ ϕ(η)ϕ

(
n∑

i=1

ui(t)

)
= ϕ

(
η

n∑
i=1

ui(t)

)
,

for u = (u1, . . . , un) ∈ ∂Ωr2 , t ∈ [0, 1]. Lemma 2.8 implies that

‖Tλu‖ ≥ ϕ−1(λ)Γη ‖u‖ > ‖u‖ for u ∈ ∂Ωr2 .

If f∞ = ∞, there exists a component f i of f such that f i
∞ = ∞. Therefore, there is an Ĥ > 0 such that

f i(u) ≥ ϕ(η)ϕ(‖u‖)

for u = (u1, . . . , un) ∈ R
n
+ and ‖u‖ ≥ Ĥ , where η > 0 is chosen so that

ϕ−1(λ)Γη > 1.

Let r3 = max
{
2r1, 4Ĥ

}
. If u = (u1, . . . , un) ∈ ∂Ωr3 , then

min
1
4≤t≤ 3

4

n∑
i=1

ui(t) ≥ 1
4
‖u‖ =

1
4

r3 ≥ Ĥ,

which implies that

f i(u(t)) ≥ ϕ(η)ϕ

(
n∑

i=1

ui(t)

)
= ϕ

(
η

n∑
i=1

ui(t)

)
for t ∈ [ 14 , 3

4

]
.
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It follows from Lemma 2.8 that

‖Tλu‖ ≥ ϕ−1(λ)Γη ‖u‖ > ‖u‖ for u ∈ ∂Ωr3 .

It follows from Lemma 2.3 that

i(Tλ, Ωr1 , K) = 1, i(Tλ, Ωr2 , K) = 0 and i(Tλ, Ωr3 , K) = 0,

and hence, i
(
Tλ, Ωr1 \Ωr2 , K

)
= 1 and i

(
Tλ, Ωr3 \Ωr1 , K

)
= −1. Thus, Tλ has a fixed point in Ωr1 \Ωr2 or

Ωr3 \ Ωr1 according to f0 = ∞ or f∞ = ∞, respectively. Consequently, (2.3)–(2.4) has a positive solution for
0 < λ < λ0.

Part (c). Fix two numbers 0 < r3 < r4. Lemma 2.11 implies that there exists a λ0 > 0 such that we have, for
λ > λ0,

‖Tλu‖ > ‖u‖, for u ∈ ∂Ωri (i = 3, 4).

Since f0 = 0 and f∞ = 0, it follows from the proof of Theorem 2.2 (a) that we can choose 0 < r1 < r3/2 and
r2 > 2r4 such that

‖Tλu‖ < ‖u‖, for u ∈ ∂Ωri (i = 1, 2).

It follows from Lemma 2.3 that

i(Tλ, Ωr1 , K) = 1, i(Tλ, Ωr2 , K) = 1,

and

i(Tλ, Ωr3 , K) = 0, i(Tλ, Ωr4 , K) = 0

and hence, i
(
Tλ, Ωr3 \ Ωr1 , K

)
= −1 and i

(
Tλ, Ωr2 \ Ωr4 , K

)
= 1. Thus, Tλ has two fixed points u1(t) and

u2(t) such that u1(t) ∈ Ωr3 \ Ωr1 and u2(t) ∈ Ωr2 \ Ωr4 , which are the desired distinct positive solutions of
(2.3)–(2.4) for λ > λ0 satisfying

r1 < ‖u1‖ < r3 < r4 < ‖u2‖ < r2.

Part (d). Fix two numbers 0 < r3 < r4. Lemma 2.12 implies that there exists a λ0 > 0 such that we have, for
0 < λ < λ0,

‖Tλu‖ < ‖u‖, for u ∈ ∂Ωri (i = 3, 4).

Since f0 = ∞ and f∞ = ∞, it follows from the proof of Theorem 2.2 (b) that we can choose 0 < r1 < r3/2 and
r2 > 2r4 such that

‖Tλu‖ > ‖u‖, for u ∈ ∂Ωri (i = 1, 2).

It follows from Lemma 2.3 that

i(Tλ, Ωr1 , K) = 0, i(Tλ, Ωr2 , K) = 0,

and

i(Tλ, Ωr3 , K) = 1, i(Tλ, Ωr4 , K) = 1

and hence, i
(
Tλ, Ωr3 \ Ωr1 , K

)
= 1 and i

(
Tλ, Ωr2 \ Ωr4 , K

)
= −1. Thus, Tλ has two fixed points u1(t) and

u2(t) such that u1(t) ∈ Ωr3 \ Ωr1 and u2(t) ∈ Ωr2 \ Ωr4 , which are the desired distinct positive solutions of
(2.3)–(2.4) for λ < λ0 satisfying

r1 < ‖u1‖ < r3 < r4 < ‖u2‖ < r2.
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Part (e). Since f0 < ∞ and f∞ < ∞, then f i
0 < ∞ and f i∞ < ∞, i = 1, . . . , n. Therefore, for each

i = 1, . . . , n, there exist positive numbers εi
1, εi

2, ri
1 and ri

2 such that ri
1 < ri

2,

f i(u) ≤ εi
1ϕ(‖u‖) for u ∈ R

n
+, ‖u‖ ≤ ri

1,

and

f i(u) ≤ εi
2ϕ(‖u‖) for u ∈ R

n
+, ‖u‖ ≥ ri

2.

Let

εi = max
{

εi
1, ε

i
2, max

{
f i(u)

ϕ(‖u‖) : u ∈ R
n
+, ri

1 ≤ ‖u‖ ≤ ri
2

}}
> 0 and ε = max

i=1,...,n
{εi} > 0.

Thus, we have

f i(u) ≤ εϕ(‖u‖) for u ∈ R
n
+, i = 1, . . . , n.

Assume v(t) is a positive solution of (2.3)–(2.4). We will show that this leads to a contradiction for 0 < λ < λ0,
where

λ0 = ϕ

⎛⎝ 1
1
ζ

∑n
i=1 ϕ−1

(
ε

q(0)

∫ 1

0 hi(τ) dτ
)
⎞⎠ .

In fact, for 0 < λ < λ0, since Tλv(t) = v(t) for t ∈ [0, 1], we find

‖v‖ = ‖Tλv‖

≤ 1
ζ

n∑
i=1

ϕ−1

(
1

q(0)

∫ 1

0

hi(τ)ε dτ λϕ(‖v‖)
)

=
1
ζ

n∑
i=1

ϕ−1

(
1

q(0)

∫ 1

0

hi(τ)ε dτ ϕ
(
ϕ−1(λ)‖v‖))

= ϕ−1(λ)
1
ζ

n∑
i=1

ϕ−1

(
ε

q(0)

∫ 1

0

hi(τ) dτ

)
‖v‖

< ‖v‖,

which is a contradiction.

Part (f). Since f0 > 0 and f∞ > 0, there exist two components f i and f j of f such that f i
0 > 0 and f j

∞ > 0.
Therefore, there exist positive numbers η1, η2, r1 and r2 such that r1 < r2,

f i(u) ≥ η1ϕ(‖u‖) for u ∈ R
n
+, ‖u‖ ≤ r1,

and

f j(u) ≥ η2ϕ(‖u‖) for u ∈ R
n
+, ‖u‖ ≥ r2.

Let

η3 = min
{

η1, η2, min
{

f j(u)
ϕ(‖u‖) : u ∈ R

n
+,

1
4

r1 ≤ ‖u‖ ≤ r2

}}
> 0.

Thus, we have

f i(u) ≥ η3ϕ(‖u‖) for u ∈ R
n
+, ‖u‖ ≤ r1,

and

f j(u) ≥ η3ϕ(‖u‖) for u ∈ R
n
+, ‖u‖ ≥ 1

4
r1.
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Since η3ϕ(‖u‖) = ϕ
(
ϕ−1(η3)

)
ϕ(‖u‖), it follows that

f i(u) ≥ ϕ
(
ϕ−1(η3)‖u‖

)
for u ∈ R

n
+, ‖u‖ ≤ r1, (4.1)

and

f j(u) ≥ ϕ
(
ϕ−1(η3)‖u‖

)
for u ∈ R

n
+, ‖u‖ ≥ 1

4
r1. (4.2)

Assume v(t) = (v1, . . . , vn) is a positive solution of (2.3)–(2.4). We will show that this leads to a contradic-
tion for λ > λ0 = ϕ

(
1

Γϕ−1(η3)

)
. In fact, if ‖v‖ ≤ r1, (4.1) implies that

f i(v(t)) ≥ ϕ

(
ϕ−1(η3)

n∑
i=1

vi(t)

)
, for t ∈ [0, 1].

On the other hand, if ‖v‖ > r1, then

min
1
4≤t≤ 3

4

n∑
i=1

vi(t) ≥ 1
4
‖v‖ >

1
4
r1,

which, together with (4.2), implies that

f j(v(t)) ≥ ϕ

(
ϕ−1(η3)

n∑
i=1

vi(t)

)
, for t ∈ [ 14 , 3

4

]
.

Since Tλv(t) = v(t) for t ∈ [0, 1], it follows from Lemma 2.8 that, for λ > λ0,

‖v‖ = ‖Tλv‖ ≥ ϕ−1(λ)Γϕ−1(η3) ‖v‖ > ‖v‖,

which is a contradiction. �
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