Nonlinear
Analysis

Multiplicity of positive radial solutions for an elliptic system on an annulus

D.R. Dunninger *, Haiyan Wang
Department of Mathematics, Michigan State University, Wells Hall, East Lansing, MI 48824-1022, USA

Received 5 April 1998; accepted 15 October 1998

Keywords: Elliptic system; Positive radial solution; Multiplicity; Upper and lower solution

1. Introduction

Let $\Omega=\left\{x \in \mathbb{R}^{n}: R_{1}<|x|<R_{2}, R_{1}, R_{2}>0\right\}$ be an annulus with boundary $\partial \Omega$. In this paper we seek the existence of positive radial solutions of the elliptic system

$$
\begin{align*}
& \Delta u+\lambda k_{1}(|x|) f(u, v)=0 \quad \text { in } \Omega \\
& \Delta v+\lambda k_{2}(|x|) g(u, v)=0 \quad \text { in } \Omega \\
& \alpha_{1} u+\beta_{1} \frac{\partial u}{\partial n}=0, \quad \alpha_{2} v+\beta_{2} \frac{\partial v}{\partial n}=0 \quad \text { on }|x|=R_{1}, \tag{1}\\
& \gamma_{1} u+\delta_{1} \frac{\partial u}{\partial n}=0, \quad \gamma_{2} v+\delta_{2} \frac{\partial v}{\partial n}=0 \quad \text { on }|x|=R_{2}
\end{align*}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \geq 0$ and $\rho_{i} \equiv \gamma_{i} \beta_{i}+\alpha_{i} \gamma_{i}+\alpha_{i} \delta_{i}>0$ for $i=1,2$. By a positive solution of (1) is meant a solution $(u, v) \in C^{2}(\bar{\Omega}) \times C^{2}(\bar{\Omega})$ with $u \geq 0, v \geq 0$ in Ω. By virtue of the strong maximum principle and conditions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$ below, it follows that $u>0, v>0$ in Ω.

Motivated by some recent results in $[2,5]$ for scalar boundary value problems, we prove the following:

[^0]Theorem 1.1. Assume
$\left(\mathrm{A}_{1}\right): \lambda$ is a positive parameter.
$\left(\mathrm{A}_{2}\right): k_{1}, k_{2}:\left[R_{1}, R_{2}\right] \rightarrow[0, \infty)$ are continuous and do not vanish identically on any subinterval of $\left[R_{1}, R_{2}\right]$.
$\left(\mathrm{A}_{3}\right): f, g:[0, \infty) \times[0, \infty) \rightarrow(0, \infty)$ are continuous.
$\left(\mathrm{A}_{4}\right): f\left(u_{1}, v_{1}\right) \leq f\left(u_{2}, v_{2}\right), g\left(u_{1}, v_{1}\right) \leq g\left(u_{2}, v_{2}\right)$ for $0 \leq u_{1} \leq u_{2}, 0 \leq v_{1} \leq v_{2}$.
(A_{5}):

$$
f_{\infty} \equiv \lim _{(u, v) \rightarrow \infty} \frac{f(u, v)}{u+v}=\infty, \quad g_{\infty} \equiv \lim _{(u, v) \rightarrow \infty} \frac{g(u, v)}{u+v}=\infty .
$$

Then there exists a positive number λ^{*} such that (1) has at least two positive solutions for $0<\lambda<\lambda^{*}$, at least one positive solution for $\lambda=\lambda^{*}$ and no positive solution for $\lambda>\lambda^{*}$.

Remark. With some obvious modifications in the proofs that follow, Theorem 1.1 can be seen to hold for the weakly coupled elliptic system:

$$
\begin{array}{ll}
\Delta u+\lambda k_{1}(|x|) f(v)=0 & \text { in } R_{1}<|x|<R_{2} \\
\Delta v+\lambda k_{2}(|x|) g(u)=0 & \text { in } R_{1}<|x|<R_{2}, \tag{2}
\end{array}
$$

where

$$
\begin{aligned}
& f_{\infty}=\lim _{v \rightarrow \infty} \frac{f(v)}{v}=\infty, \\
& g_{\infty}=\lim _{u \rightarrow \infty} \frac{g(u)}{u}=\infty .
\end{aligned}
$$

Related results for system (1) can be found in [3,6], and for system (2) in [1] and the references therein.

In proving Theorem 1.1 we shall employ upper and lower solution methods together with the following fixed-point index results [4]:

Lemma 1.2. Let X be a Banach space and K a cone in X. For $r>0$, define $K_{r}=$ $\{x \in K:\|x\|<r\}$. Assume that $T: K_{r} \rightarrow K$ is a compact map such that $T x \neq x$ for $x \in \partial K_{r}$.
(i) If $\|x\| \leq\|T x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=0
$$

(ii) If $\|x\| \geq\|T x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=1
$$

Lemma 1.3. Let X be a Banach space, K a cone in X and Ω a bounded open set in X. Let $0 \in \Omega$ and $T: K \cap \bar{\Omega} \rightarrow K$ be condensing. Suppose that $T x \neq \mu x$, for all $x \in K \cap \partial \Omega$ and all $\mu \geq 1$. Then

$$
i(T, K \cap \Omega, K)=1
$$

The paper is organized as follows. In Section 2 we prove that (1) has a positive solution for λ sufficiently small, and no positive solution for λ sufficiently large. The proof of Theorem 1.1 is then given in Section 3.

2. Existence and nonexistence

For radial solutions $u=u(r), v=v(r)$, (1) is equivalent to

$$
\begin{align*}
& u^{\prime \prime}(r)+\frac{n-1}{r} u^{\prime}(r)+\lambda k_{1}(r) f(u(r), v(r))=0 \quad \text { in } R_{1}<r<R_{2}, \\
& v^{\prime \prime}(r)+\frac{n-1}{r} v^{\prime}(r)+\lambda k_{2}(r) g(u(r), v(r))=0 \quad \text { in } R_{1}<r<R_{2}, \tag{3}\\
& \alpha_{1} u\left(R_{1}\right)-\beta_{1} u^{\prime}\left(R_{1}\right)=0, \quad \alpha_{2} v\left(R_{1}\right)-\beta_{2} v^{\prime}\left(R_{1}\right)=0, \\
& \gamma_{1} u\left(R_{2}\right)+\delta_{1} u^{\prime}\left(R_{2}\right)=0, \quad \gamma_{2} v\left(R_{2}\right)+\delta_{2} v^{\prime}\left(R_{2}\right)=0 .
\end{align*}
$$

By applying the change of variables $s=-\int_{r}^{R_{2}}\left(1 / t^{n-1}\right) \mathrm{d} t$, followed by the change of variables $t=(m-s) / m$, where $m=-\int_{R_{1}}^{R_{2}}\left(1 / t^{n-1}\right) \mathrm{d} t$, (3) can be brought into the form

$$
\begin{gather*}
u^{\prime \prime}(t)+\lambda h_{1}(t) f(u(t), \quad v(t))=0, \quad 0<t<1 \\
v^{\prime \prime}(t)+\lambda h_{2}(t) g(u(t), \quad v(t))=0, \quad 0<t<1 \\
\alpha_{1} u(0)-\beta_{1} u^{\prime}(0)=0, \quad \alpha_{2} v(0)-\beta_{2} v^{\prime}(0)=0 \tag{4}\\
\gamma_{1} u(1)+\delta_{1} u^{\prime}(1)=0, \quad \gamma_{2} v(1)+\delta_{2} v^{\prime}(1)=0
\end{gather*}
$$

where

$$
\begin{aligned}
& h_{1}(t)=m^{2} r^{2(n-1)}(m(1-t)) k_{1}(r(m(1-t))), \\
& h_{2}(t)=m^{2} r^{2(n-1)}(m(1-t)) k_{2}(r(m(1-t))),
\end{aligned}
$$

and β_{i}, δ_{i} are relabels of $-\beta_{i} R_{1}^{1-n} / m,-\delta_{i} R_{2}^{1-n} / m$, respectively. It is easy to check that h_{1}, h_{2} satisfy $\left(A_{2}\right)$ on [0,1].

On the other hand, (4) is equivalent to the system of integral equations

$$
\begin{align*}
& u(t)=\lambda \int_{0}^{1} k_{1}(t, s) h_{1}(s) f(u(s), v(s)) \mathrm{d} s \\
& v(t)=\lambda \int_{0}^{1} k_{2}(t, s) h_{2}(s) f(u(s), v(s)) \mathrm{d} s \tag{5}
\end{align*}
$$

where $k_{i}(t, s), i=1,2$ is the Green's function

$$
k_{i}(t, s)=\frac{1}{\rho_{i}} \begin{cases}\left(\gamma_{i}+\delta_{i}-\gamma_{i} t\right)\left(\beta_{i}+\alpha_{i} s\right), & s \leq t \\ \left(\beta_{i}+\alpha_{i} t\right)\left(\gamma_{i}+\delta_{i}-\gamma_{i} s\right), & t \leq s\end{cases}
$$

It is easy to check that for $i=1,2$

$$
\begin{aligned}
& k_{i}(t, s)>0 \quad \text { for all }(t, s) \in\left[\frac{1}{4}, \frac{3}{4}\right] \times\left[\frac{1}{4}, \frac{3}{4}\right] \\
& k_{i}(t, s) \geq \frac{1}{16} k_{i}(z, s) \quad \text { for all } t \in\left[\frac{1}{4}, \frac{3}{4}\right], s \in[0,1], z \in[0,1] .
\end{aligned}
$$

From now on we concentrate on (5). Indeed, any positive solution of (5) is a positive radial solution of (1).

Let

$$
\begin{aligned}
& A(u, v)(t)=\lambda \int_{0}^{1} k_{1}(t, s) h_{1}(s) f(u(s), v(s)) \mathrm{d} s \\
& B(u, v)(t)=\lambda \int_{0}^{1} k_{2}(t, s) h_{2}(s) g(u(s), v(s)) \mathrm{d} s \\
& T(u, v)(t)=(A(u, v)(t), B(u, v)(t))
\end{aligned}
$$

Then (5) is equivalent to the fixed-point equation

$$
T(u, v)=(u, v)
$$

in the usual Banach space $X=C[0,1] \times C[0,1]$ with $\|(u, v)\|=\|u\|+\|v\|$, where $\|u\|=\sup _{t \in[0,1]}|u(t)|$.

Let K be the cone defined by

$$
K=\left\{(u, v) \in X: u, v \geq 0, \min _{1 / 4 \leq t \leq 3 / 4}(u(t)+v(t)) \geq \frac{1}{16}(\|u\|+\|v\|)\right\}
$$

and let C be the cone defined by

$$
C=\{(u, v) \in X: u, v \geq 0\}
$$

Lemma 2.1. $T: X \rightarrow X$ is completely continuous and $T(C) \subset K$.
Proof. To prove $T(C) \subset K$, choose $(u, v) \in C$. Then for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$,

$$
A(u, v)(t) \geq \frac{\lambda}{16} \int_{0}^{1} k_{1}(z, s) h_{1}(s) f(u(s), v(s)) \mathrm{d} s=\frac{1}{16} A(u, v)(z)
$$

for all $z \in[0,1]$, and so

$$
\min _{t \in[1 / 4,3 / 4]} A(u, v)(t) \geq \frac{1}{16}\|A(u, v)\| .
$$

Similarly,

$$
\min _{t \in[1 / 4,3 / 4]} B(u, v)(t) \geq \frac{1}{16}\|B(u, v)\|,
$$

i.e., $T(u, v) \in K$; hence, $T(C) \subset K$. The complete continuity of T is obvious.

In the following we set:

$$
M=\max \left\{\max _{(t, s) \in[0,1] \times[0,1]} k_{1}(t, s), \max _{(t, s) \in[0,1] \times[0,1]} k_{2}(t, s)\right\}>0,
$$

$$
m=\min \left\{\min _{(t, s) \in[1 / 4,3 / 4] \times[1 / 4,3 / 4]} k_{1}(t, s), \min _{(t, s) \in[1 / 4,3 / 4] \times[1 / 4,3 / 4]} k_{2}(t, s)\right\}>0 .
$$

The main result of this section is the following:

Theorem 2.2. Suppose that either $f_{\infty}=\infty$ or $g_{\infty}=\infty$. Then for λ sufficiently small, (5) has at least one positive solution, whereas for λ sufficiently large, (5) has no positive solution.

Proof. If $q>0$, then it follows from $\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{A}_{3}\right)$ that

$$
\begin{aligned}
& \beta_{1}(q) \equiv M \max _{(u, v) \in K,\|(u, v)\|=q}\left(\int_{0}^{1} h_{1}(s) f(u(s), v(s)) \mathrm{d} s\right)>0, \\
& \beta_{2}(q) \equiv M \max _{(u, v) \in K,\|(u, v)\|=q}\left(\int_{0}^{1} h_{2}(s) g(u(s), v(s)) \mathrm{d} s\right)>0 .
\end{aligned}
$$

Let $\beta(q) \equiv \max \left(\beta_{1}(q), \beta_{2}(q)\right)$. For any number $0<r_{1}$, let $\sigma_{1}=r_{1} / 2 \beta\left(r_{1}\right)$ and set

$$
K_{r_{1}}=\left\{(u, v) \in K:\|(u, v)\|<r_{1}\right\} .
$$

Then for $\lambda<\sigma_{1}$ and $(u, v) \in \partial K_{r_{1}}$, we have

$$
A(u, v)(t)<\sigma_{1} M \int_{0}^{1} h_{1}(s) f(u(s), v(s)) \mathrm{d} s \leq \sigma_{1} \beta\left(r_{1}\right)=r_{1} / 2 .
$$

In a similar way, $B(u, v)(t)<r_{1} / 2$, which implies

$$
\|T(u, v)\|<r_{1}=\|(u, v)\|
$$

for $(u, v) \in \partial K_{r_{1}}$. By Lemma 1.2,

$$
i\left(T, K_{r_{1}}, K\right)=1
$$

Now assume $f_{\infty}=\infty$. (The proof is similar if $g_{\infty}=\infty$.) Then there is an $H>0$ such that $f(u, v) \geq \eta(u+v)$ for $u+v \geq H$, where η is chosen so that

$$
\frac{\lambda m \eta}{16} \int_{1 / 4}^{3 / 4} h_{1}(s) \mathrm{d} s>1
$$

Let $r_{2} \geq 16 H$, and set

$$
K_{r_{2}}=\left\{(u, v) \in K:\|(u, v)\|<r_{2}\right\} .
$$

If $(u, v) \in \partial K_{r_{2}}$, then

$$
\min _{1 / 4 \leq t \leq 3 / 4}(u(t)+v(t)) \geq \frac{1}{16}\|(u, v)\| \geq H
$$

Hence, for any $t \in[1 / 4,3 / 4]$

$$
\begin{aligned}
A(u, v)(t) & \geq \lambda m \int_{1 / 4}^{3 / 4} h_{1}(s) f(u(s), v(s)) \mathrm{d} s \\
& \geq \lambda m \eta \int_{1 / 4}^{3 / 4} h_{1}(s)(u(s)+v(s)) \mathrm{d} s \\
& \geq \frac{\lambda m \eta}{16} \int_{1 / 4}^{3 / 4} h_{1}(s)\|(u, v)\| \mathrm{d} s \\
& >\|(u, v)\|
\end{aligned}
$$

and therefore,

$$
\|T(u, v)\| \geq A(u, v)(t)>\|(u, v)\|
$$

for $(u, v) \in \partial K_{r_{2}}$. Another application of Lemma 1.2 gives

$$
i\left(T, K_{r_{2}}, K\right)=0
$$

Since we can adjust r_{1}, r_{2} so that $r_{1}<r_{2}$, it follows from the additivity of the fixed point index that $i\left(T, K_{r_{2}} \backslash \bar{K}_{r_{1}}, K\right)=-1$. Thus, T has a fixed point in $K_{r_{2}} \backslash \bar{K}_{r_{1}}$ which is the desired positive solution of (5).

To prove the nonexistence part, we note that $f_{\infty}=\infty$ implies the existence of a constant $c>0$ such that $f(u, v) \geq c(u+v)$ for $u, v \geq 0$. Let $(u, v) \in X$ be a positive solution of (5). By Lemma 2.1, $(u, v) \in K$, and thus

$$
\min _{1 / 4 \leq t \leq 3 / 4}(u(t)+v(t)) \geq \frac{1}{16}(\|u\|+\|v\|) .
$$

For $t \in[1 / 4,3 / 4]$, we have

$$
\begin{aligned}
u(t) & \geq \lambda m c \int_{1 / 4}^{3 / 4} h_{1}(s)(u(s)+v(s)) \mathrm{d} s \\
& \geq \frac{\lambda m c}{16} \int_{1 / 4}^{3 / 4} h_{1}(y)(\|u\|+\|v\|) \mathrm{d} s \\
& >\|(u, v)\|
\end{aligned}
$$

for λ large enough, which is a contradiction.

3. Multiplicity

We first need the following a priori estimate.
Lemma 3.1. If either $f_{\infty}=\infty$ or $g_{\infty}=\infty$, then there is a constant $b_{I}>0$ such that $\|(u, v)\| \leq b_{I}$ for all positive solutions (u, v) of (5), where λ belongs to a compact subset I of $(0, \infty)$.

Proof. Suppose there is a sequence $\left\{\left(u_{n}, v_{n}\right)\right\}$ of positive solutions of (5), with corresponding λ_{n} belonging to a compact subset of $(0, \infty)$, such that $\lim _{n \rightarrow \infty}\left\|\left(u_{n}, v_{n}\right)\right\|=\infty$. By Lemma 2.1, $\left(u_{n}, v_{n}\right) \in K$, and so

$$
\min _{1 / 4 \leq t \leq 3 / 4}\left(u_{n}(t)+v_{n}(t)\right) \geq \frac{1}{16}\left(\left\|u_{n}\right\|+\left\|v_{n}\right\|\right) .
$$

Without loss of generality assume $f_{\infty}=\infty$. As before, there is an $H>0$ such that $f(u, v) \geq \eta(u+v)$ for all $u+v \geq H$, where η is chosen so that

$$
\frac{\lambda_{n} m \eta}{16} \int_{1 / 4}^{3 / 4} h_{1}(s) \mathrm{d} s>1
$$

Choosing n large enough so that $\frac{1}{16}\left(\left\|u_{n}\right\|+\left\|v_{n}\right\|\right) \geq H$, and taking $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$, we have

$$
\begin{aligned}
\left\|u_{n}\right\| & \geq u_{n}(t), \\
& \geq \lambda_{n} m \eta \int_{1 / 4}^{3 / 4} h_{1}(s)\left(u_{n}(s)+v_{n}(s)\right) \mathrm{d} s \\
& \geq \frac{\lambda_{n} m \eta}{16} \int_{1 / 4}^{3 / 4} h_{1}(s)\left(\left\|u_{n}\right\|+\left\|v_{n}\right\|\right) \mathrm{d} s \\
& >\left\|u_{n}\right\|+\left\|v_{n}\right\|
\end{aligned}
$$

which is a contradiction.
In the following, we shall write $\left(u_{1}, v_{1}\right) \leq\left(u_{2}, v_{2}\right)$ if $u_{1}(t) \leq u_{2}(t), v_{1}(t) \leq v_{2}(t)$ holds for all $t \in[0,1]$.

We say that the pair $(\bar{u}, \bar{v}) \in C[0,1] \times C[0,1]$ is an upper solution of the system (5) if $(\bar{u}, \bar{v}) \geq(0,0)$ and

$$
\begin{align*}
& \bar{u}(t) \geq \lambda \int_{0}^{1} k_{1}(t, s) h_{1}(s) f(\bar{u}(s), \bar{v}(s)) \mathrm{d} s, \\
& \bar{v}(t) \geq \lambda \int_{0}^{1} k_{2}(t, s) h_{2}(s) f(\bar{u}(s), \bar{v}(s)) \mathrm{d} s . \tag{6}
\end{align*}
$$

A lower solution $(\underline{u}, \underline{v}) \geq(0,0)$ is defined similarly by reversing the inequalities in (6).
Lemma 3.2. If there exists an upper solution (\bar{u}, \bar{v}) of (5), then there is a positive solution (u, v) of (5) with

$$
(0,0) \leq(u, v) \leq(\bar{u}, \bar{v})
$$

Proof. By taking into account the monotonicity conditions $\left(\mathrm{A}_{4}\right)$, and noting that $(0,0)$ is a lower solution of (5), it follows that the usual monotone iteration scheme applies.

Now let Γ denote the set of $\lambda>0$ such that a positive solution of (5) exists, and set $\lambda^{*}=\sup \Gamma$. By Theorem 2.2, Γ is nonempty and bounded, and thus $0<\lambda^{*}<\infty$. We
claim that $\lambda^{*} \in \Gamma$. To see this, let $\lambda_{n} \rightarrow \lambda^{*}$, where $\lambda_{n} \in \Gamma$. Since the λ_{n} are bounded, Lemma 3.1 implies that the corresponding solutions (u_{n}, v_{n}) are bounded. By the compactness of the integral operators A and B, it easily follows that $\lambda^{*} \in \Gamma$. Let (u^{*}, v^{*}) be a positive solution of (5) corresponding to λ^{*}.

Lemma 3.3. Let $0<\lambda<\lambda^{*}$. Then there exists $\varepsilon^{*}>0$ such that $\left(u^{*}+\varepsilon, v^{*}+\varepsilon\right)$, $0 \leq \varepsilon \leq \varepsilon^{*}$ is an upper solution of (5).

Proof. Since $\left(u^{*}, v^{*}\right) \geq(0,0)$, there is a constant c such that $f\left(u^{*}(t), v^{*}(t)\right) \geq c>0$, $g\left(u^{*}(t), v^{*}(t)\right) \geq c>0$ for all $t \in[0,1]$. By uniform continuity, there is an ε^{*} such that

$$
\begin{aligned}
& \left|f\left(u^{*}(t)+\varepsilon, v^{*}(t)+\varepsilon\right)-f\left(u^{*}(t), v^{*}(t)\right)\right|<c\left(\lambda^{*}-\lambda\right) / \lambda \\
& \left|g\left(u^{*}(t)+\varepsilon, v^{*}(t)+\varepsilon\right)-g\left(u^{*}(t), v^{*}(t)\right)\right|<c\left(\lambda^{*}-\lambda\right) / \lambda
\end{aligned}
$$

for all $t \in[0,1], 0 \leq \varepsilon \leq \varepsilon^{*}$. Now

$$
\begin{aligned}
u^{*}(t)+\varepsilon \geq & \lambda^{*} \int_{0}^{1} k_{1}(t, s) h_{1}(s) f\left(u^{*}(s), v^{*}(s)\right) \mathrm{d} s \\
= & \lambda \int_{0}^{1} k_{1}(t, s) h_{1}(s) f\left(u^{*}(s)+\varepsilon, v^{*}(s)+\varepsilon\right) \mathrm{d} s \\
& -\lambda \int_{0}^{1} k_{1}(t, s) h_{1}(s)\left[f\left(u^{*}(s)+\varepsilon, v^{*}(s)+\varepsilon\right)-f\left(u^{*}(s), v^{*}(s)\right)\right] \mathrm{d} s \\
& +\left(\lambda^{*}-\lambda\right) \int_{0}^{1} k_{1}(t, s) h_{1}(s) f\left(u^{*}(s), v^{*}(s)\right) \mathrm{d} s \\
\geq & \lambda \int_{0}^{1} k_{1}(t, s) h_{1}(s) f\left(u^{*}(s)+\varepsilon, v^{*}(s)+\varepsilon\right) \mathrm{d} s
\end{aligned}
$$

where the first inequality is strict if $\varepsilon>0$. A similar computation holds for $v^{*}+\varepsilon$, thus establishing the result.

Proof of Theorem 1.1. Let $0<\lambda<\lambda^{*}$. Since $\left(u^{*}, v^{*}\right)$ is an upper solution of (5), Lemma 3.2 implies the existence of a positive solution $\left(u_{\lambda}, v_{\lambda}\right)$ of (5) with $(0,0) \leq$ $\left(u_{\lambda}, v_{\lambda}\right) \leq\left(u^{*}, v^{*}\right)$. Thus for $0<\lambda \leq \lambda^{*}$ a positive solution exists, whereas for $\lambda>\lambda^{*}$ a positive solution does not exist.

We next establish the existence of a second positive solution of (5) for $0<\lambda<\lambda^{*}$. Consider

$$
\Omega=\left\{(u, v) \in X:-\varepsilon<u(t)<u^{*}(t)+\varepsilon,-\varepsilon<v(t)<v^{*}(t)+\varepsilon, t \in[0,1]\right\}
$$

where $\varepsilon>0$ is given in Lemma 3.3. Then Ω is bounded and open in $X,(0,0) \in \Omega$, and $T: K \cap \bar{\Omega} \rightarrow K$ is condensing since it is compact. Moreover, $\left(u_{\lambda}, v_{\lambda}\right) \in \Omega$ for $0<\lambda \leqslant \lambda^{*}$.

Let $(u, v) \in K \cap \partial \Omega$. Then there is a t_{0} such that either $u\left(t_{0}\right)=u^{*}\left(t_{0}\right)+\varepsilon$ or $v\left(t_{0}\right)=v^{*}\left(t_{0}\right)+\varepsilon$. Assuming the first case holds, and taking into account $\left(\mathrm{A}_{4}\right)$,
we have

$$
\begin{aligned}
A(u, v)\left(t_{0}\right) & =\lambda \int_{0}^{1} k_{1}\left(t_{0}, s\right) h_{1}(s) f(u(s), v(s)) \mathrm{d} s \\
& \leqslant \lambda \int_{0}^{1} k_{1}\left(t_{0}, s\right) h_{1}(s) f\left(u^{*}(s)+\varepsilon, v^{*}(s)+\varepsilon\right) \mathrm{d} s \\
& <u^{*}\left(t_{0}\right)+\varepsilon \\
& =u\left(t_{0}\right) \leqslant \mu u\left(t_{0}\right)
\end{aligned}
$$

for all $\mu \geq 1$. Similarly, in the second case, $B(u, v)\left(t_{0}\right)<\mu v\left(t_{0}\right)$. Thus $T(u, v) \neq \mu(u, v)$ for all $(u, v) \in K \cap \partial \Omega$ and all $\mu \geq 1$. By Lemma 1.3,

$$
i(T, K \cap \Omega, K)=1 .
$$

Next, let $r=\max \left\{b_{I}+1, r_{2},\left\|\left(u^{*}+\varepsilon, v^{*}+\varepsilon\right)\right\|\right\}$, where b_{I} is given in Lemma 3.1, and r_{2} is given in the proof of Theorem 2.2. Set

$$
K_{r}=\{(u, v) \in K:\|(u, v)\|<r\} .
$$

Lemma 3.1 implies that $T(u, v) \neq(u, v)$ for $(u, v) \in \partial K_{r}$. Furthermore, if $(u, v) \in \partial K_{r}$, then, as in the proof of Theorem 2.2, we see that $\|T(u, v)\| \geq\|(u, v)\|$. Consequently, Lemma 1.2 implies $i\left(T, K_{r}, K\right)=0$, and by the additivity of the fixed point index we get

$$
i\left(T, K_{r} \backslash \overline{K \cap \Omega}, K\right)=-1
$$

Thus, T has a fixed point in $K_{r} \backslash \overline{K \cap \Omega}$, which establishes the existence of a second positive solution.

References

[1] R. Dalmasso, Positive solutions of nonlinear elliptic systems, Ann. Polon. Math. 58 (1993) 201-212.
[2] H. Dang, K. Schmitt, R. Shivaji, On the number of solutions of boundary value problems involving the p-Laplacian, Electron. J. Differential Equations 1 (1996) 1-9.
[3] D.R. Dunninger, H. Wang, Existence and multiplicity of positive solutions for elliptic systems, Nonlinear Anal. 29 (1997) 1051-1060.
[4] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, Fl, 1988.
[5] K.S. Ha, Y. Lee, Existence of multiple positive solutions of singular boundary value problems, Nonlinear Anal. 28 (1997) 1429-1438.
[6] R. Ma, Existence of positive radial solutions for elliptic systems, J. Math. Anal. Appl. 201 (1996) 375-386.

[^0]: * Corresponding author.

