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1. Introduction

Let 
 = {x ∈ Rn: R1¡ |x|¡R2; R1; R2¿ 0} be an annulus with boundary @
. In
this paper we seek the existence of positive radial solutions of the elliptic system

�u+ �k1(|x|)f(u; v) = 0 in 
;

�v+ �k2(|x|)g(u; v) = 0 in 
;

�1u+ �1
@u
@n
= 0; �2v+ �2

@v
@n
= 0 on |x|= R1;


1u+ �1
@u
@n
= 0; 
2v+ �2

@v
@n
= 0 on |x|= R2;

(1)

where �i; �i; 
i; �i ≥ 0 and �i ≡ 
i�i+ �i
i+ �i�i ¿ 0 for i=1; 2. By a positive solution
of (1) is meant a solution (u; v) ∈ C2( �
) × C2( �
) with u≥ 0; v≥ 0 in 
. By virtue
of the strong maximum principle and conditions (A1)–(A3) below, it follows that
u¿ 0; v¿ 0 in 
.
Motivated by some recent results in [2,5] for scalar boundary value problems, we

prove the following:

∗ Corresponding author.

0362-546X/00/$ - see front matter ? 2000 Elsevier Science Ltd. All rights reserved.
PII: S0362 -546X(99)00125 -X



804 D.R. Dunninger, H. Wang / Nonlinear Analysis 42 (2000) 803–811

Theorem 1.1. Assume
(A1) : � is a positive parameter.
(A2) : k1; k2 : [R1; R2] → [0;∞) are continuous and do not vanish identically on

any subinterval of [R1; R2].
(A3) : f; g : [0;∞)× [0;∞)→ (0;∞) are continuous.
(A4) : f(u1; v1) ≤ f(u2; v2); g(u1; v1) ≤ g(u2; v2) for 0 ≤ u1 ≤ u2; 0 ≤ v1 ≤ v2.
(A5) :

f∞ ≡ lim
(u;v)→∞

f(u; v)
u+ v

=∞; g∞ ≡ lim
(u;v)→∞

g(u; v)
u+ v

=∞:

Then there exists a positive number �∗ such that (1) has at least two positive solutions
for 0¡�¡�∗; at least one positive solution for � = �∗ and no positive solution for
�¿�∗.

Remark. With some obvious modi�cations in the proofs that follow, Theorem 1.1 can
be seen to hold for the weakly coupled elliptic system:

�u+ �k1(|x|)f(v) = 0 in R1¡ |x|¡R2;

�v+ �k2(|x|)g(u) = 0 in R1¡ |x|¡R2;
(2)

where

f∞ = lim
v→∞

f(v)
v

=∞;

g∞ = lim
u→∞

g(u)
u
=∞:

Related results for system (1) can be found in [3,6], and for system (2) in [1] and the
references therein.

In proving Theorem 1.1 we shall employ upper and lower solution methods together
with the following �xed-point index results [4]:

Lemma 1.2. Let X be a Banach space and K a cone in X . For r ¿ 0; de�ne Kr =
{x ∈ K : ‖x‖¡r}. Assume that T : Kr → K is a compact map such that Tx 6= x
for x ∈ @Kr .
(i) If ‖x‖ ≤ ‖Tx‖ for x ∈ @Kr; then
i(T; Kr; K) = 0:

(ii) If ‖x‖ ≥ ‖Tx‖ for x ∈ @Kr; then
i(T; Kr; K) = 1:

Lemma 1.3. Let X be a Banach space; K a cone in X and 
 a bounded open set in
X . Let 0 ∈ 
 and T : K ∩ �
 → K be condensing. Suppose that Tx 6= �x; for all
x ∈ K ∩ @
 and all �≥ 1. Then

i(T; K ∩ 
; K) = 1:
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The paper is organized as follows. In Section 2 we prove that (1) has a positive
solution for � su�ciently small, and no positive solution for � su�ciently large. The
proof of Theorem 1.1 is then given in Section 3.

2. Existence and nonexistence

For radial solutions u= u(r); v= v(r), (1) is equivalent to

u′′(r) +
n− 1
r
u′(r) + �k1(r)f(u(r); v(r)) = 0 in R1¡r¡R2;

v′′(r) +
n− 1
r
v′(r) + �k2(r)g(u(r); v(r)) = 0 in R1¡r¡R2;

�1u(R1)− �1u′(R1) = 0; �2v(R1)− �2v′(R1) = 0;

1u(R2) + �1u′(R2) = 0; 
2v(R2) + �2v′(R2) = 0:

(3)

By applying the change of variables s = − ∫ R2r (1=tn−1) dt, followed by the change of
variables t = (m− s)=m, where m=− ∫ R2R1 (1=tn−1) dt, (3) can be brought into the form

u′′(t) + �h1(t)f(u(t); v(t)) = 0; 0¡t¡ 1;

v′′(t) + �h2(t)g(u(t); v(t)) = 0; 0¡t¡ 1;

�1u(0)− �1u′(0) = 0; �2v(0)− �2v′(0) = 0;

1u(1) + �1u′(1) = 0; 
2v(1) + �2v′(1) = 0;

(4)

where

h1(t) = m2r2(n−1)(m(1− t))k1(r(m(1− t)));

h2(t) = m2r2(n−1)(m(1− t))k2(r(m(1− t)));

and �i; �i are relabels of −�iR1−n1 =m;−�iR1−n2 =m, respectively. It is easy to check that
h1; h2 satisfy (A2) on [0; 1].
On the other hand, (4) is equivalent to the system of integral equations

u(t) = �
∫ 1

0
k1(t; s)h1(s)f(u(s); v(s)) ds;

v(t) = �
∫ 1

0
k2(t; s)h2(s)f(u(s); v(s)) ds;

(5)

where ki(t; s); i = 1; 2 is the Green’s function

ki(t; s) =
1
�i

{
(
i + �i − 
it)(�i + �is); s ≤ t;
(�i + �it)(
i + �i − 
is); t ≤ s:
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It is easy to check that for i = 1; 2

ki(t; s)¿ 0 for all (t; s) ∈ [ 14 ; 34 ]× [ 14 ; 34 ];
ki(t; s) ≥ 1

16ki(z; s) for all t ∈ [ 14 ; 34 ]; s ∈ [0; 1]; z ∈ [0; 1]:
From now on we concentrate on (5). Indeed, any positive solution of (5) is a positive

radial solution of (1).
Let

A(u; v)(t) = �
∫ 1

0
k1(t; s)h1(s)f(u(s); v(s)) ds;

B(u; v)(t) = �
∫ 1

0
k2(t; s)h2(s)g(u(s); v(s)) ds;

T (u; v)(t) = (A(u; v)(t); B(u; v)(t)):

Then (5) is equivalent to the �xed-point equation

T (u; v) = (u; v)

in the usual Banach space X = C[0; 1] × C[0; 1] with ‖(u; v)‖ = ‖u‖ + ‖v‖, where
‖u‖= supt∈[0;1] |u(t)|.
Let K be the cone de�ned by

K =
{
(u; v) ∈ X : u; v ≥ 0; min

1=4≤t≤3=4
(u(t) + v(t)) ≥ 1

16
(‖u‖+ ‖v‖)

}
and let C be the cone de�ned by

C = {(u; v) ∈ X : u; v ≥ 0}:

Lemma 2.1. T : X → X is completely continuous and T (C)⊂K .

Proof. To prove T (C)⊂K , choose (u; v) ∈ C. Then for t ∈ [ 14 ; 34 ],

A(u; v)(t) ≥ �
16

∫ 1

0
k1(z; s)h1(s)f(u(s); v(s)) ds=

1
16
A(u; v)(z)

for all z ∈ [0; 1], and so
min

t∈[1=4;3=4]
A(u; v)(t) ≥ 1

16‖A(u; v)‖:

Similarly,

min
t∈[1=4;3=4]

B(u; v)(t) ≥ 1
16‖B(u; v)‖;

i.e., T (u; v) ∈ K ; hence, T (C)⊂K . The complete continuity of T is obvious.

In the following we set:

M =max
{

max
(t; s)∈[0;1]×[0;1]

k1(t; s); max
(t; s)∈[0;1]×[0;1]

k2(t; s)
}
¿ 0;
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m=min
{

min
(t; s)∈[1=4;3=4]×[1=4;3=4]

k1(t; s); min
(t; s)∈[1=4;3=4]×[1=4;3=4]

k2(t; s)
}
¿ 0:

The main result of this section is the following:

Theorem 2.2. Suppose that either f∞=∞ or g∞=∞. Then for � su�ciently small;
(5) has at least one positive solution; whereas for � su�ciently large; (5) has no pos-
itive solution.

Proof. If q¿ 0, then it follows from (A2) and (A3) that

�1(q) ≡ M max
(u; v)∈K;‖(u; v)‖=q

(∫ 1

0
h1(s)f(u(s); v(s)) ds

)
¿ 0;

�2(q) ≡ M max
(u; v)∈K;‖(u; v)‖=q

(∫ 1

0
h2(s)g(u(s); v(s)) ds

)
¿ 0:

Let �(q) ≡ max(�1(q); �2(q)). For any number 0¡r1, let �1 = r1=2�(r1) and set

Kr1 = {(u; v) ∈ K : ‖(u; v)‖¡r1}:
Then for �¡�1 and (u; v) ∈ @Kr1 , we have

A(u; v)(t)¡�1M
∫ 1

0
h1(s)f(u(s); v(s)) ds ≤ �1�(r1) = r1=2:

In a similar way, B(u; v)(t)¡r1=2, which implies

‖T (u; v)‖¡r1 = ‖(u; v)‖;

for (u; v) ∈ @Kr1 . By Lemma 1.2,

i(T; Kr1 ; K) = 1:

Now assume f∞ =∞. (The proof is similar if g∞ =∞.) Then there is an H ¿ 0
such that f(u; v) ≥ �(u+ v) for u+ v ≥ H , where � is chosen so that

�m�
16

∫ 3=4

1=4
h1(s) ds¿ 1:

Let r2 ≥ 16H , and set

Kr2 = {(u; v) ∈ K : ‖(u; v)‖¡r2}:

If (u; v) ∈ @Kr2 , then

min
1=4≤ t≤3=4

(u(t) + v(t)) ≥ 1
16‖(u; v)‖ ≥ H:
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Hence, for any t ∈ [1=4; 3=4]

A(u; v)(t) ≥ �m
∫ 3=4

1=4
h1(s)f(u(s); v(s)) ds

≥ �m�
∫ 3=4

1=4
h1(s)(u(s) + v(s)) ds

≥ �m�
16

∫ 3=4

1=4
h1(s)‖(u; v)‖ ds

¿ ‖(u; v)‖
and therefore,

‖T (u; v)‖ ≥ A(u; v)(t)¿ ‖(u; v)‖
for (u; v) ∈ @Kr2 . Another application of Lemma 1.2 gives

i(T; Kr2 ; K) = 0:

Since we can adjust r1; r2 so that r1¡r2, it follows from the additivity of the �xed
point index that i(T; Kr2\Kr1 ; K) =−1. Thus, T has a �xed point in Kr2\Kr1 which is
the desired positive solution of (5).
To prove the nonexistence part, we note that f∞ =∞ implies the existence of a

constant c¿ 0 such that f(u; v) ≥ c(u+ v) for u; v ≥ 0. Let (u; v) ∈ X be a positive
solution of (5). By Lemma 2.1, (u; v) ∈ K , and thus

min
1=4≤ t≤3=4

(u(t) + v(t)) ≥ 1
16 (‖u‖+ ‖v‖):

For t ∈ [1=4; 3=4], we have

u(t) ≥ �mc
∫ 3=4

1=4
h1(s)(u(s) + v(s)) ds

≥ �mc
16

∫ 3=4

1=4
h1(y)(‖u‖+ ‖v‖) ds

¿ ‖(u; v)‖;
for � large enough, which is a contradiction.

3. Multiplicity

We �rst need the following a priori estimate.

Lemma 3.1. If either f∞=∞ or g∞=∞; then there is a constant bI ¿ 0 such that
‖(u; v)‖ ≤ bI for all positive solutions (u; v) of (5); where � belongs to a compact
subset I of (0;∞).
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Proof. Suppose there is a sequence {(un; vn)} of positive solutions of (5), with corre-
sponding �n belonging to a compact subset of (0;∞), such that limn→∞‖(un; vn)‖=∞.
By Lemma 2.1, (un; vn) ∈ K , and so

min
1=4≤ t≤3=4

(un(t) + vn(t)) ≥ 1
16 (‖un‖+ ‖vn‖):

Without loss of generality assume f∞ =∞. As before, there is an H ¿ 0 such that
f(u; v) ≥ �(u+ v) for all u+ v ≥ H , where � is chosen so that

�nm�
16

∫ 3=4

1=4
h1(s) ds¿ 1:

Choosing n large enough so that 1
16 (‖un‖+ ‖vn‖) ≥ H , and taking t ∈ [ 14 ; 34 ], we have

‖un‖ ≥ un(t);

≥ �nm�
∫ 3=4

1=4
h1(s)(un(s) + vn(s)) ds

≥ �nm�
16

∫ 3=4

1=4
h1(s)(‖un‖+ ‖vn‖) ds

¿ ‖un‖+ ‖vn‖
which is a contradiction.

In the following, we shall write (u1; v1)≤ (u2; v2) if u1(t)≤ u2(t); v1(t)≤ v2(t) holds
for all t ∈ [0; 1].
We say that the pair ( �u; �v) ∈ C[0; 1]×C[0; 1] is an upper solution of the system (5)

if ( �u; �v)≥ (0; 0) and

�u(t) ≥ �
∫ 1

0
k1(t; s)h1(s)f( �u(s); �v(s)) ds;

�v(t) ≥ �
∫ 1

0
k2(t; s)h2(s)f( �u(s); �v(s)) ds:

(6)

A lower solution (u; v) ≥ (0; 0) is de�ned similarly by reversing the inequalities in (6).

Lemma 3.2. If there exists an upper solution ( �u; �v) of (5); then there is a positive
solution (u; v) of (5) with

(0; 0) ≤ (u; v) ≤ ( �u; �v):

Proof. By taking into account the monotonicity conditions (A4), and noting that
(0; 0) is a lower solution of (5), it follows that the usual monotone iteration scheme
applies.

Now let � denote the set of �¿ 0 such that a positive solution of (5) exists, and set
�∗ = sup�. By Theorem 2.2, � is nonempty and bounded, and thus 0¡�∗¡∞. We
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claim that �∗ ∈�. To see this, let �n → �∗, where �n ∈�. Since the �n are bounded,
Lemma 3.1 implies that the corresponding solutions (un; vn) are bounded. By the com-
pactness of the integral operators A and B, it easily follows that �∗ ∈�. Let (u∗; v∗)
be a positive solution of (5) corresponding to �∗.

Lemma 3.3. Let 0¡�¡�∗. Then there exists �∗¿ 0 such that (u∗ + �; v∗ + �);
0≤ �≤ �∗ is an upper solution of (5).

Proof. Since (u∗; v∗)≥ (0; 0), there is a constant c such that f(u∗(t); v∗(t)) ≥ c¿ 0;
g(u∗(t); v∗(t))≥ c¿ 0 for all t ∈ [0; 1]. By uniform continuity, there is an �∗ such that

|f(u∗(t) + �; v∗(t) + �)− f(u∗(t); v∗(t))|¡c(�∗ − �)=�;
|g(u∗(t) + �; v∗(t) + �)− g(u∗(t); v∗(t))|¡c(�∗ − �)=�;

for all t ∈ [0; 1]; 0 ≤ � ≤ �∗. Now

u∗(t) + �≥ �∗
∫ 1

0
k1(t; s)h1(s)f(u∗(s); v∗(s)) ds

= �
∫ 1

0
k1(t; s)h1(s)f(u∗(s) + �; v∗(s) + �) ds

− �
∫ 1

0
k1(t; s)h1(s)[f(u∗(s) + �; v∗(s) + �)− f(u∗(s); v∗(s))] ds

+(�∗ − �)
∫ 1

0
k1(t; s)h1(s)f(u∗(s); v∗(s)) ds

≥ �
∫ 1

0
k1(t; s)h1(s)f(u∗(s) + �; v∗(s) + �) ds;

where the �rst inequality is strict if �¿ 0. A similar computation holds for v∗+ �, thus
establishing the result.

Proof of Theorem 1.1. Let 0¡�¡�∗. Since (u∗; v∗) is an upper solution of (5),
Lemma 3.2 implies the existence of a positive solution (u�; v�) of (5) with (0; 0) ≤
(u�; v�) ≤ (u∗; v∗). Thus for 0¡� ≤ �∗ a positive solution exists, whereas for �¿�∗

a positive solution does not exist.
We next establish the existence of a second positive solution of (5) for 0¡�¡�∗.

Consider


 = {(u; v) ∈ X : − �¡u(t)¡u∗(t) + �;−�¡v(t)¡v∗(t) + �; t ∈ [0; 1]};
where �¿ 0 is given in Lemma 3.3. Then 
 is bounded and open in X , (0; 0) ∈ 
,
and T : K ∩ �
 → K is condensing since it is compact. Moreover, (u�; v�) ∈ 
 for
0¡�6�∗.
Let (u; v) ∈ K ∩ @
. Then there is a t0 such that either u(t0) = u∗(t0) + �

or v(t0) = v∗(t0) + �. Assuming the �rst case holds, and taking into account (A4),
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we have

A(u; v)(t0) = �
∫ 1

0
k1(t0; s)h1(s)f(u(s); v(s)) ds

6 �
∫ 1

0
k1(t0; s)h1(s)f(u∗(s) + �; v∗(s) + �) ds

¡ u∗(t0) + �

= u(t0)6�u(t0)

for all � ≥ 1. Similarly, in the second case, B(u; v)(t0)¡�v(t0). Thus T (u; v) 6= �(u; v)
for all (u; v) ∈ K ∩ @
 and all � ≥ 1. By Lemma 1.3,

i(T; K ∩ 
; K) = 1:
Next, let r = max{bI + 1; r2; ‖(u∗ + �; v∗ + �)‖}, where bI is given in Lemma 3.1,

and r2 is given in the proof of Theorem 2.2. Set

Kr = {(u; v) ∈ K : ‖(u; v)‖¡r}:
Lemma 3.1 implies that T (u; v) 6= (u; v) for (u; v) ∈ @Kr . Furthermore, if (u; v) ∈ @Kr ,
then, as in the proof of Theorem 2.2, we see that ‖T (u; v)‖ ≥ ‖(u; v)‖. Consequently,
Lemma 1.2 implies i(T; Kr; K) = 0, and by the additivity of the �xed point index we
get

i(T; Kr\K ∩ 
; K) =−1:
Thus, T has a �xed point in Kr\K ∩ 
, which establishes the existence of a second
positive solution.
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