

Nonlinear Analysis 42 (2000) 803-811

www.elsevier.nl/locate/na

Multiplicity of positive radial solutions for an elliptic system on an annulus

D.R. Dunninger*, Haiyan Wang

Department of Mathematics, Michigan State University, Wells Hall, East Lansing, MI 48824-1022, USA

Received 5 April 1998; accepted 15 October 1998

Keywords: Elliptic system; Positive radial solution; Multiplicity; Upper and lower solution

1. Introduction

Let $\Omega = \{x \in \mathbb{R}^n : R_1 < |x| < R_2, R_1, R_2 > 0\}$ be an annulus with boundary $\partial\Omega$. In this paper we seek the existence of positive radial solutions of the elliptic system

$$\begin{aligned} \Delta u + \lambda k_1(|x|) f(u, v) &= 0 \quad \text{in } \Omega, \\ \Delta v + \lambda k_2(|x|) g(u, v) &= 0 \quad \text{in } \Omega, \\ \alpha_1 u + \beta_1 \frac{\partial u}{\partial n} &= 0, \quad \alpha_2 v + \beta_2 \frac{\partial v}{\partial n} &= 0 \quad \text{on } |x| = R_1, \end{aligned}$$

$$\begin{aligned} \gamma_1 u + \delta_1 \frac{\partial u}{\partial n} &= 0, \quad \gamma_2 v + \delta_2 \frac{\partial v}{\partial n} &= 0 \quad \text{on } |x| = R_2, \end{aligned}$$

$$(1)$$

where $\alpha_i, \beta_i, \gamma_i, \delta_i \ge 0$ and $\rho_i \equiv \gamma_i \beta_i + \alpha_i \gamma_i + \alpha_i \delta_i > 0$ for i = 1, 2. By a positive solution of (1) is meant a solution $(u, v) \in C^2(\overline{\Omega}) \times C^2(\overline{\Omega})$ with $u \ge 0, v \ge 0$ in Ω . By virtue of the strong maximum principle and conditions $(A_1)-(A_3)$ below, it follows that u > 0, v > 0 in Ω .

Motivated by some recent results in [2,5] for scalar boundary value problems, we prove the following:

^{*} Corresponding author.

Theorem 1.1. Assume

 (A_1) : λ is a positive parameter.

 (A_2) : k_1, k_2 : $[R_1, R_2] \rightarrow [0, \infty)$ are continuous and do not vanish identically on any subinterval of $[R_1, R_2]$.

(A₃): $f,g:[0,\infty) \times [0,\infty) \to (0,\infty)$ are continuous.

(A₄): $f(u_1, v_1) \le f(u_2, v_2), g(u_1, v_1) \le g(u_2, v_2)$ for $0 \le u_1 \le u_2, 0 \le v_1 \le v_2$. (A₅):

$$f_{\infty} \equiv \lim_{(u,v) \to \infty} \frac{f(u,v)}{u+v} = \infty, \quad g_{\infty} \equiv \lim_{(u,v) \to \infty} \frac{g(u,v)}{u+v} = \infty.$$

Then there exists a positive number λ^* such that (1) has at least two positive solutions for $0 < \lambda < \lambda^*$, at least one positive solution for $\lambda = \lambda^*$ and no positive solution for $\lambda > \lambda^*$.

Remark. With some obvious modifications in the proofs that follow, Theorem 1.1 can be seen to hold for the weakly coupled elliptic system:

$$\Delta u + \lambda k_1(|x|) f(v) = 0 \quad \text{in } R_1 < |x| < R_2, \Delta v + \lambda k_2(|x|) g(u) = 0 \quad \text{in } R_1 < |x| < R_2,$$
(2)

where

$$f_{\infty} = \lim_{v \to \infty} \frac{f(v)}{v} = \infty,$$
$$g_{\infty} = \lim_{u \to \infty} \frac{g(u)}{u} = \infty.$$

Related results for system (1) can be found in [3,6], and for system (2) in [1] and the references therein.

In proving Theorem 1.1 we shall employ upper and lower solution methods together with the following fixed-point index results [4]:

Lemma 1.2. Let X be a Banach space and K a cone in X. For r > 0, define $K_r = \{x \in K : ||x|| < r\}$. Assume that $T : \overline{K_r} \to K$ is a compact map such that $Tx \neq x$ for $x \in \partial K_r$.

(i) If ||x|| ≤ ||Tx|| for x ∈ ∂K_r, then i(T, K_r, K) = 0.
(ii) If ||x|| ≥ ||Tx|| for x ∈ ∂K_r, then i(T, K_r, K) = 1.

Lemma 1.3. Let X be a Banach space, K a cone in X and Ω a bounded open set in X. Let $0 \in \Omega$ and $T : K \cap \overline{\Omega} \to K$ be condensing. Suppose that $Tx \neq \mu x$, for all $x \in K \cap \partial\Omega$ and all $\mu \ge 1$. Then

$$i(T, K \cap \Omega, K) = 1.$$

The paper is organized as follows. In Section 2 we prove that (1) has a positive solution for λ sufficiently small, and no positive solution for λ sufficiently large. The proof of Theorem 1.1 is then given in Section 3.

2. Existence and nonexistence

For radial solutions u = u(r), v = v(r), (1) is equivalent to

$$u''(r) + \frac{n-1}{r}u'(r) + \lambda k_1(r)f(u(r), v(r)) = 0 \quad \text{in } R_1 < r < R_2,$$

$$v''(r) + \frac{n-1}{r}v'(r) + \lambda k_2(r)g(u(r), v(r)) = 0 \quad \text{in } R_1 < r < R_2,$$

$$\alpha_1 u(R_1) - \beta_1 u'(R_1) = 0, \quad \alpha_2 v(R_1) - \beta_2 v'(R_1) = 0,$$

$$\gamma_1 u(R_2) + \delta_1 u'(R_2) = 0, \quad \gamma_2 v(R_2) + \delta_2 v'(R_2) = 0.$$

(3)

By applying the change of variables $s = -\int_{r}^{R_2} (1/t^{n-1}) dt$, followed by the change of variables t = (m - s)/m, where $m = -\int_{R_1}^{R_2} (1/t^{n-1}) dt$, (3) can be brought into the form

$$u''(t) + \lambda h_1(t) f(u(t), v(t)) = 0, \quad 0 < t < 1,$$

$$v''(t) + \lambda h_2(t) g(u(t), v(t)) = 0, \quad 0 < t < 1,$$

$$\alpha_1 u(0) - \beta_1 u'(0) = 0, \quad \alpha_2 v(0) - \beta_2 v'(0) = 0,$$

$$\gamma_1 u(1) + \delta_1 u'(1) = 0, \quad \gamma_2 v(1) + \delta_2 v'(1) = 0,$$

(4)

where

$$h_1(t) = m^2 r^{2(n-1)} (m(1-t)) k_1(r(m(1-t))),$$

$$h_2(t) = m^2 r^{2(n-1)} (m(1-t)) k_2(r(m(1-t))),$$

and β_i, δ_i are relabels of $-\beta_i R_1^{1-n}/m, -\delta_i R_2^{1-n}/m$, respectively. It is easy to check that h_1, h_2 satisfy (A_2) on [0, 1].

On the other hand, (4) is equivalent to the system of integral equations

$$u(t) = \lambda \int_0^1 k_1(t,s)h_1(s)f(u(s), v(s)) \,\mathrm{d}s,$$

$$v(t) = \lambda \int_0^1 k_2(t,s)h_2(s)f(u(s), v(s)) \,\mathrm{d}s,$$
(5)

where $k_i(t,s), i = 1, 2$ is the Green's function

$$k_i(t,s) = \frac{1}{\rho_i} \begin{cases} (\gamma_i + \delta_i - \gamma_i t)(\beta_i + \alpha_i s), & s \le t, \\ (\beta_i + \alpha_i t)(\gamma_i + \delta_i - \gamma_i s), & t \le s. \end{cases}$$

It is easy to check that for i = 1, 2

$$k_i(t,s) > 0 \quad \text{for all } (t,s) \in [\frac{1}{4}, \frac{3}{4}] \times [\frac{1}{4}, \frac{3}{4}],$$

$$k_i(t,s) \ge \frac{1}{16}k_i(z,s) \quad \text{for all } t \in [\frac{1}{4}, \frac{3}{4}], \ s \in [0,1], \ z \in [0,1]$$

From now on we concentrate on (5). Indeed, any positive solution of (5) is a positive radial solution of (1).

Let

$$A(u, v)(t) = \lambda \int_0^1 k_1(t, s) h_1(s) f(u(s), v(s)) ds,$$

$$B(u, v)(t) = \lambda \int_0^1 k_2(t, s) h_2(s) g(u(s), v(s)) ds,$$

$$T(u, v)(t) = (A(u, v)(t), B(u, v)(t)).$$

Then (5) is equivalent to the fixed-point equation

$$T(u,v) = (u,v)$$

in the usual Banach space $X = C[0,1] \times C[0,1]$ with ||(u,v)|| = ||u|| + ||v||, where $||u|| = \sup_{t \in [0,1]} |u(t)|$.

Let K be the cone defined by

$$K = \left\{ (u, v) \in X \colon u, v \ge 0, \ \min_{1/4 \le t \le 3/4} (u(t) + v(t)) \ge \frac{1}{16} (\|u\| + \|v\|) \right\}$$

and let C be the cone defined by

 $C = \{ (u, v) \in X : u, v \ge 0 \}.$

Lemma 2.1. $T: X \to X$ is completely continuous and $T(C) \subset K$.

Proof. To prove $T(C) \subset K$, choose $(u, v) \in C$. Then for $t \in [\frac{1}{4}, \frac{3}{4}]$,

$$A(u,v)(t) \ge \frac{\lambda}{16} \int_0^1 k_1(z,s)h_1(s)f(u(s),v(s)) \,\mathrm{d}s = \frac{1}{16}A(u,v)(z)$$

for all $z \in [0, 1]$, and so

$$\min_{t \in [1/4, 3/4]} A(u, v)(t) \ge \frac{1}{16} \|A(u, v)\|.$$

Similarly,

$$\min_{t \in [1/4, 3/4]} B(u, v)(t) \ge \frac{1}{16} \|B(u, v)\|,$$

i.e., $T(u,v) \in K$; hence, $T(C) \subset K$. The complete continuity of T is obvious. \Box

In the following we set:

$$M = \max\left\{\max_{(t,s)\in[0,1]\times[0,1]}k_1(t,s), \max_{(t,s)\in[0,1]\times[0,1]}k_2(t,s)\right\} > 0,$$

$$m = \min\left\{\min_{(t,s)\in[1/4,3/4]\times[1/4,3/4]}k_1(t,s),\min_{(t,s)\in[1/4,3/4]\times[1/4,3/4]}k_2(t,s)\right\} > 0$$

The main result of this section is the following:

Theorem 2.2. Suppose that either $f_{\infty} = \infty$ or $g_{\infty} = \infty$. Then for λ sufficiently small, (5) has at least one positive solution, whereas for λ sufficiently large, (5) has no positive solution.

Proof. If q > 0, then it follows from (A₂) and (A₃) that

$$\beta_1(q) \equiv M \max_{(u,v) \in K, ||(u,v)||=q} \left(\int_0^1 h_1(s) f(u(s), v(s)) \, \mathrm{d}s \right) > 0,$$

$$\beta_2(q) \equiv M \max_{(u,v) \in K, ||(u,v)||=q} \left(\int_0^1 h_2(s) g(u(s), v(s)) \, \mathrm{d}s \right) > 0.$$

Let $\beta(q) \equiv \max(\beta_1(q), \beta_2(q))$. For any number $0 < r_1$, let $\sigma_1 = r_1/2\beta(r_1)$ and set

$$K_{r_1} = \{(u, v) \in K \colon ||(u, v)|| < r_1\}.$$

Then for $\lambda < \sigma_1$ and $(u, v) \in \partial K_{r_1}$, we have

$$A(u, v)(t) < \sigma_1 M \int_0^1 h_1(s) f(u(s), v(s)) \, \mathrm{d}s \le \sigma_1 \beta(r_1) = r_1/2.$$

In a similar way, $B(u, v)(t) < r_1/2$, which implies

 $||T(u, v)|| < r_1 = ||(u, v)||,$

for $(u, v) \in \partial K_{r_1}$. By Lemma 1.2,

$$i(T, K_{r_1}, K) = 1.$$

Now assume $f_{\infty} = \infty$. (The proof is similar if $g_{\infty} = \infty$.) Then there is an H > 0 such that $f(u, v) \ge \eta(u + v)$ for $u + v \ge H$, where η is chosen so that

$$\frac{\lambda m\eta}{16} \int_{1/4}^{3/4} h_1(s) \,\mathrm{d}s > 1.$$

Let $r_2 \ge 16H$, and set

$$K_{r_2} = \{(u, v) \in K \colon ||(u, v)|| < r_2\}.$$

If $(u, v) \in \partial K_{r_2}$, then

$$\min_{1/4 \le t \le 3/4} (u(t) + v(t)) \ge \frac{1}{16} ||(u, v)|| \ge H.$$

Hence, for any $t \in [1/4, 3/4]$

$$\begin{aligned} A(u,v)(t) &\geq \lambda m \int_{1/4}^{3/4} h_1(s) f(u(s),v(s)) \, \mathrm{d}s \\ &\geq \lambda m \eta \int_{1/4}^{3/4} h_1(s) (u(s) + v(s)) \, \mathrm{d}s \\ &\geq \frac{\lambda m \eta}{16} \int_{1/4}^{3/4} h_1(s) \|(u,v)\| \, \mathrm{d}s \\ &> \|(u,v)\| \end{aligned}$$

and therefore,

$$||T(u, v)|| \ge A(u, v)(t) > ||(u, v)||$$

for $(u, v) \in \partial K_{r_2}$. Another application of Lemma 1.2 gives

$$i(T, K_{r_2}, K) = 0.$$

Since we can adjust r_1 , r_2 so that $r_1 < r_2$, it follows from the additivity of the fixed point index that $i(T, K_{r_2} \setminus \overline{K}_{r_1}, K) = -1$. Thus, T has a fixed point in $K_{r_2} \setminus \overline{K}_{r_1}$ which is the desired positive solution of (5).

To prove the nonexistence part, we note that $f_{\infty} = \infty$ implies the existence of a constant c > 0 such that $f(u, v) \ge c(u + v)$ for $u, v \ge 0$. Let $(u, v) \in X$ be a positive solution of (5). By Lemma 2.1, $(u, v) \in K$, and thus

$$\min_{1/4 \le t \le 3/4} (u(t) + v(t)) \ge \frac{1}{16} (||u|| + ||v||).$$

For $t \in [1/4, 3/4]$, we have

$$u(t) \ge \lambda mc \int_{1/4}^{3/4} h_1(s)(u(s) + v(s)) \, \mathrm{d}s$$
$$\ge \frac{\lambda mc}{16} \int_{1/4}^{3/4} h_1(y)(||u|| + ||v||) \, \mathrm{d}s$$
$$> ||(u, v)||,$$

for λ large enough, which is a contradiction. \Box

3. Multiplicity

We first need the following a priori estimate.

Lemma 3.1. If either $f_{\infty} = \infty$ or $g_{\infty} = \infty$, then there is a constant $b_I > 0$ such that $||(u, v)|| \le b_I$ for all positive solutions (u, v) of (5), where λ belongs to a compact subset I of $(0, \infty)$.

Proof. Suppose there is a sequence $\{(u_n, v_n)\}$ of positive solutions of (5), with corresponding λ_n belonging to a compact subset of $(0, \infty)$, such that $\lim_{n\to\infty} ||(u_n, v_n)|| = \infty$. By Lemma 2.1, $(u_n, v_n) \in K$, and so

$$\min_{1/4 \le t \le 3/4} (u_n(t) + v_n(t)) \ge \frac{1}{16} (||u_n|| + ||v_n||).$$

Without loss of generality assume $f_{\infty} = \infty$. As before, there is an H > 0 such that $f(u, v) \ge \eta(u + v)$ for all $u + v \ge H$, where η is chosen so that

$$\frac{\lambda_n m\eta}{16} \int_{1/4}^{3/4} h_1(s) \,\mathrm{d}s > 1.$$

Choosing *n* large enough so that $\frac{1}{16}(||u_n|| + ||v_n||) \ge H$, and taking $t \in [\frac{1}{4}, \frac{3}{4}]$, we have

$$\|u_n\| \ge u_n(t),$$

$$\ge \lambda_n m\eta \int_{1/4}^{3/4} h_1(s)(u_n(s) + v_n(s)) \, \mathrm{d}s$$

$$\ge \frac{\lambda_n m\eta}{16} \int_{1/4}^{3/4} h_1(s)(\|u_n\| + \|v_n\|) \, \mathrm{d}s$$

$$> \|u_n\| + \|v_n\|$$

which is a contradiction. \Box

In the following, we shall write $(u_1, v_1) \le (u_2, v_2)$ if $u_1(t) \le u_2(t)$, $v_1(t) \le v_2(t)$ holds for all $t \in [0, 1]$.

We say that the pair $(\bar{u}, \bar{v}) \in C[0, 1] \times C[0, 1]$ is an upper solution of the system (5) if $(\bar{u}, \bar{v}) \ge (0, 0)$ and

$$\bar{u}(t) \ge \lambda \int_0^1 k_1(t,s)h_1(s)f(\bar{u}(s),\bar{v}(s)) \,\mathrm{d}s,$$

$$\bar{v}(t) \ge \lambda \int_0^1 k_2(t,s)h_2(s)f(\bar{u}(s),\bar{v}(s)) \,\mathrm{d}s.$$
(6)

A lower solution $(\underline{u}, \underline{v}) \ge (0, 0)$ is defined similarly by reversing the inequalities in (6).

Lemma 3.2. If there exists an upper solution (\bar{u}, \bar{v}) of (5), then there is a positive solution (u, v) of (5) with

$$(0,0) \le (u,v) \le (\bar{u},\bar{v}).$$

Proof. By taking into account the monotonicity conditions (A_4) , and noting that (0,0) is a lower solution of (5), it follows that the usual monotone iteration scheme applies. \Box

Now let Γ denote the set of $\lambda > 0$ such that a positive solution of (5) exists, and set $\lambda^* = \sup \Gamma$. By Theorem 2.2, Γ is nonempty and bounded, and thus $0 < \lambda^* < \infty$. We

claim that $\lambda^* \in \Gamma$. To see this, let $\lambda_n \to \lambda^*$, where $\lambda_n \in \Gamma$. Since the λ_n are bounded, Lemma 3.1 implies that the corresponding solutions (u_n, v_n) are bounded. By the compactness of the integral operators A and B, it easily follows that $\lambda^* \in \Gamma$. Let (u^*, v^*) be a positive solution of (5) corresponding to λ^* .

Lemma 3.3. Let $0 < \lambda < \lambda^*$. Then there exists $\varepsilon^* > 0$ such that $(u^* + \varepsilon, v^* + \varepsilon)$, $0 \le \varepsilon \le \varepsilon^*$ is an upper solution of (5).

Proof. Since $(u^*, v^*) \ge (0, 0)$, there is a constant c such that $f(u^*(t), v^*(t)) \ge c > 0$, $g(u^*(t), v^*(t)) \ge c > 0$ for all $t \in [0, 1]$. By uniform continuity, there is an ε^* such that

$$\begin{aligned} \left| f(u^*(t) + \varepsilon, v^*(t) + \varepsilon) - f(u^*(t), v^*(t)) \right| &< c(\lambda^* - \lambda)/\lambda, \\ \left| g(u^*(t) + \varepsilon, v^*(t) + \varepsilon) - g(u^*(t), v^*(t)) \right| &< c(\lambda^* - \lambda)/\lambda, \end{aligned}$$

for all $t \in [0, 1]$, $0 \le \varepsilon \le \varepsilon^*$. Now

$$u^{*}(t) + \varepsilon \ge \lambda^{*} \int_{0}^{1} k_{1}(t,s)h_{1}(s)f(u^{*}(s), v^{*}(s)) ds$$

= $\lambda \int_{0}^{1} k_{1}(t,s)h_{1}(s)f(u^{*}(s) + \varepsilon, v^{*}(s) + \varepsilon) ds$
- $\lambda \int_{0}^{1} k_{1}(t,s)h_{1}(s)[f(u^{*}(s) + \varepsilon, v^{*}(s) + \varepsilon) - f(u^{*}(s), v^{*}(s))] ds$
+ $(\lambda^{*} - \lambda) \int_{0}^{1} k_{1}(t,s)h_{1}(s)f(u^{*}(s), v^{*}(s)) ds$
 $\ge \lambda \int_{0}^{1} k_{1}(t,s)h_{1}(s)f(u^{*}(s) + \varepsilon, v^{*}(s) + \varepsilon) ds,$

where the first inequality is strict if $\varepsilon > 0$. A similar computation holds for $v^* + \varepsilon$, thus establishing the result. \Box

Proof of Theorem 1.1. Let $0 < \lambda < \lambda^*$. Since (u^*, v^*) is an upper solution of (5), Lemma 3.2 implies the existence of a positive solution $(u_{\lambda}, v_{\lambda})$ of (5) with $(0,0) \leq (u_{\lambda}, v_{\lambda}) \leq (u^*, v^*)$. Thus for $0 < \lambda \leq \lambda^*$ a positive solution exists, whereas for $\lambda > \lambda^*$ a positive solution does not exist.

We next establish the existence of a second positive solution of (5) for $0 < \lambda < \lambda^*$. Consider

$$\Omega = \{(u, v) \in X: -\varepsilon < u(t) < u^*(t) + \varepsilon, -\varepsilon < v(t) < v^*(t) + \varepsilon, t \in [0, 1]\}$$

where $\varepsilon > 0$ is given in Lemma 3.3. Then Ω is bounded and open in X, $(0,0) \in \Omega$, and $T : K \cap \overline{\Omega} \to K$ is condensing since it is compact. Moreover, $(u_{\lambda}, v_{\lambda}) \in \Omega$ for $0 < \lambda \leq \lambda^*$.

Let $(u, v) \in K \cap \partial \Omega$. Then there is a t_0 such that either $u(t_0) = u^*(t_0) + \varepsilon$ or $v(t_0) = v^*(t_0) + \varepsilon$. Assuming the first case holds, and taking into account (A₄), we have

$$A(u, v)(t_0) = \lambda \int_0^1 k_1(t_0, s) h_1(s) f(u(s), v(s)) ds$$

$$\leq \lambda \int_0^1 k_1(t_0, s) h_1(s) f(u^*(s) + \varepsilon, v^*(s) + \varepsilon) ds$$

$$< u^*(t_0) + \varepsilon$$

$$= u(t_0) \leq \mu u(t_0)$$

for all $\mu \ge 1$. Similarly, in the second case, $B(u, v)(t_0) < \mu v(t_0)$. Thus $T(u, v) \ne \mu(u, v)$ for all $(u, v) \in K \cap \partial\Omega$ and all $\mu \ge 1$. By Lemma 1.3,

$$i(T, K \cap \Omega, K) = 1$$

Next, let $r = \max\{b_I + 1, r_2, ||(u^* + \varepsilon, v^* + \varepsilon)||\}$, where b_I is given in Lemma 3.1, and r_2 is given in the proof of Theorem 2.2. Set

$$K_r = \{(u, v) \in K : ||(u, v)|| < r\}.$$

Lemma 3.1 implies that $T(u, v) \neq (u, v)$ for $(u, v) \in \partial K_r$. Furthermore, if $(u, v) \in \partial K_r$, then, as in the proof of Theorem 2.2, we see that $||T(u, v)|| \ge ||(u, v)||$. Consequently, Lemma 1.2 implies $i(T, K_r, K) = 0$, and by the additivity of the fixed point index we get

$$i(T, K_r \setminus K \cap \Omega, K) = -1.$$

Thus, T has a fixed point in $K_r \setminus K \cap \Omega$, which establishes the existence of a second positive solution.

References

- [1] R. Dalmasso, Positive solutions of nonlinear elliptic systems, Ann. Polon. Math. 58 (1993) 201-212.
- [2] H. Dang, K. Schmitt, R. Shivaji, On the number of solutions of boundary value problems involving the p-Laplacian, Electron. J. Differential Equations 1 (1996) 1–9.
- [3] D.R. Dunninger, H. Wang, Existence and multiplicity of positive solutions for elliptic systems, Nonlinear Anal. 29 (1997) 1051–1060.
- [4] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, Fl, 1988.
- [5] K.S. Ha, Y. Lee, Existence of multiple positive solutions of singular boundary value problems, Nonlinear Anal. 28 (1997) 1429–1438.
- [6] R. Ma, Existence of positive radial solutions for elliptic systems, J. Math. Anal. Appl. 201 (1996) 375–386.