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1. Introduction

Let Q ={x € R": R| < |x| < Rz, R|,R; > 0} be an annulus with boundary 2. In
this paper we seek the existence of positive radial solutions of the elliptic system

Au+ 7k (|x))f(u,0) =0 in Q,
Av + ko (|x)g(u,0) =0 in O,

0 0
mu+ Pt =0, v+ Paes =0 on x| =Ry, (1)
on on
0 0
Pt S =0, v+ s =0 on [x| =R,
on on

where oy, B, 7i,0; > 0 and p; = v;f; + o;y; +o;0; > 0 for i=1,2. By a positive solution
of (1) is meant a solution (u,v) € C2(Q) x C*() with u>0,0>0 in Q. By virtue
of the strong maximum principle and conditions (A;)—(A3) below, it follows that
u>0,v>0in Q.

Motivated by some recent results in [2,5] for scalar boundary value problems, we
prove the following:
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Theorem 1.1. Assume
(A1) : Ais a positive parameter.
(A2) @ ki,ky @ [R1,R2] — [0,00) are continuous and do not vanish identically on
any subinterval of [R1,R;].
(As): f,9:[0,00) x[0,00) — (0,00) are continuous.
(A4) : f'(Ll],U]) S f(l/tz,Uz),g(uhU]) S g(uz,vz) fOI" 0 S uy S le,o S U1 S Uy.
(As):
flwv) _

: g(u,v)
= lim 0, = =00
Joo (wp)—oo U+ U o0 = wotoe ut v

Then there exists a positive number 2.* such that (1) has at least two positive solutions
for 0 < . < A%, at least one positive solution for 1= 1* and no positive solution for
A> A"

Remark. With some obvious modifications in the proofs that follow, Theorem 1.1 can
be seen to hold for the weakly coupled elliptic system:

Au+ M (]x]))f(v)=0 in Ry < |x| < Ry,

2
Av+ ka(x])g(u) =0 in Ry < |x| < Ry, )
where
fro=tim L o,
v—00 v
Joo = lim g() =00
Uu—0o0 u

Related results for system (1) can be found in [3,6], and for system (2) in [1] and the
references therein.

In proving Theorem 1.1 we shall employ upper and lower solution methods together
with the following fixed-point index results [4]:

Lemma 1.2. Let X be a Banach space and K a cone in X. For r > 0, define K, =
{x € K: ||x|| <r}. Assume that T : K, — K is a compact map such that Tx # x
for x € 0K,.

(1) If ||x|| < ||Tx|| for x € 0K,, then

i(T,K,,K)=0.
(i) If ||x|| > ||Tx]|| for x € OK,, then
(T,K,K)= 1.

Lemma 1.3. Let X be a Banach space, K a cone in X and 2 a bounded open set in
X. Let0 € Qand T : KNQ — K be condensing. Suppose that Tx # ux, for all
x € KNoQ and all u> 1. Then

i(T,KNQLK)=1.
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The paper is organized as follows. In Section 2 we prove that (1) has a positive
solution for A sufficiently small, and no positive solution for A sufficiently large. The

proof of Theorem 1.1 is then given in Section 3.

2. Existence and nonexistence
For radial solutions u = u(r),v=wv(r), (1) is equivalent to

in R, <r<R,

W'y + 2 ; lu’(r) + M (r) f (u(r), v(r)) = 0

in Ry <r <Ry, (3)

V) + ) (g, 1) =0

au(Ry) — P! (R1) =0, av(Ry) — v’ (R)) =0,

Pu(Ry) + 014’ (Ry) =0,  7:0(Ry) + 6,0'(Ry) = 0.

By applying the change of variables s = — fr R2(1 /"~1)dt, followed by the change of
Rz(l/t”*l)dt, (3) can be brought into the form

variables ¢t = (m — s)/m, where m = — R

u’(t) + () f(u(?), v(t))=0, 0<t<l,

v () + Mo (Hg(u(t), v(t))=0, 0<t<]l, @)
au(0) — f1u'(0) =0, xv(0) — f20'(0) =0,

yu(l) 4+ 614’ (1) =0, y0(1)+ dv'(1)=0,

where
h(t) = m* P D(m(1 = )k (r(m(1 = 1)),
ha(t) = m* P~ D(m(1 = 1)Yka(r(m(1 — 1)),
and f;,9; are relabels of —ﬂiR}*”/m,—éiRéf"/m, respectively. It is easy to check that
hi, hy satisty (4;) on [0, 1].
On the other hand, (4) is equivalent to the system of integral equations

1
u(t):/l/0 ky(2,8)h1(s) f (u(s), v(s)) ds,
(%)

1
)= [t u(s),0(5)) s,
0
where k;(t,s),i = 1,2 is the Green’s function

{ (i + 0 — p)(Bi + us), s <1,

1
ki(t,s) = —
(&) (Bi + oit)(yi + 0; — yis),  t <.

Pi
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It is easy to check that for i =1,2
ki(t,s) >0 for all (1,5) € [§,3] % [§.3],
ki(t,s) > 1gki(z,s) forall € [},3], s €[0,1], z € [0,1].
From now on we concentrate on (5). Indeed, any positive solution of (5) is a positive

radial solution of (1).
Let

1
A(u,v)(1) :/1/0 ki1 (t,8)h1(s) f(u(s), v(s)) ds,

1
Bu,o)(t) = 4 / ha(t,5)ha(s)g(u(s ), 0(s)) s,
0
T, 0)(1) = (AGu,0)(0), Bt 0)(1)).

Then (5) is equivalent to the fixed-point equation
T(u,v) = (u,v)
in the usual Banach space X = C[0,1] x C[0,1] with ||(w,v)|| = ||u|l + ||v||, where

[ul| = SUP;ero,1 |u(t)].
Let K be the cone defined by

1
= : > i > —
k= {wn exiuo= 0. min G0+ o) > Joll + o)
and let C be the cone defined by

C={(u,v) € X: u,v>0}.
Lemma 2.1. T : X — X is completely continuous and T(C) CK.

Proof. To prove T(C)CK, choose (u,v) € C. Then for ¢ € [%, %],

1
A(u,v)(t) > % /0 ki(z,8)h1(s) f(u(s),v(s))ds = 1—16A(u,u)(z)
for all z € [0, 1], and so

in A > L4 .
i Al o)) 2 16 14, v)||

Similarly,

in B £)> LB
i (u,0)(t) = 5||Bu, ),

i.e., T(u,v) € K; hence, T(C) C K. The complete continuity of 7 is obvious. [J

In the following we set:

M= max{ max ki(t,s), max kz(l,S)} >0,
(4,5)€[0,1]x[0,1] (4,5)€[0,1]x[0,1]
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m = min min
{(t,s)€[1/4,3/4] x[1/4,3/4]

kit s) kz(t,s)} > 0.

R min
(1,5)€[1/4,3/4]x[1/4,3/4]

The main result of this section is the following:

Theorem 2.2. Suppose that either fo, =00 or goo, = 00. Then for A sufficiently small,
(5) has at least one positive solution, whereas for 1 sufficiently large, (5) has no pos-
itive solution.

Proof. If ¢ > 0, then it follows from (A;) and (Aj3) that

1
gy =M max </ hi(s)f(u(s), v(s))ds) >0,
(u,0)EK.[|(u,0)||=¢ 0

(u,0)€K, || (w,0)[|=¢

1
Pa(q) =M max </0 o (s)g(u(s), v(s))ds) > 0.

Let f(q) = max(f1(q), f2(q)). For any number 0 < ry, let a; = r;/2(r;) and set
K., ={(u,v) € K: ||(u, v)|| <}

Then for 1 < g; and (u, v) € JK,,, we have

1
A(u, v)(2) < alM/ h(s) f(u(s),v(s))ds < a,(r1) =r1/2.
0

In a similar way, B(u, v)(¢) < r1/2, which implies
1T, v)l| <ri = |, V),

for (u,v) € 0K,,. By Lemma 1.2,
(T,K,,K)=1.

Now assume f., = co. (The proof is similar if go, = c0.) Then there is an H >0
such that f(u, v) > y(u + v) for u+ v > H, where 5 is chosen so that
y) 3/4
A (s)ds > 1.
16 /14
Let r, > 16H, and set
K,, = {(u7 v) €K: H(u’ l))” < 7’2}.
If (u, v) € K,,, then

' > L > H.
1/4211123/4(14(0 + (1)) = 5 ll(u, v)[| =
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Hence, for any ¢ € [1/4,3/4]

3/4
A(u,v)(t) > Am h(s)f(u(s),v(s))ds
1/4

3/4
> Jmn /1/ ) ((s) + £(5)) ds

, 3/4
> e [, @l olds
> [l 0]

and therefore,
[ T(u, v)[| = A, v)(#) > [|(u, v)]|
for (u, v) € 0K,,. Another application of Lemma 1.2 gives
(T,K,,,K)=0.
Since we can adjust rq, ry SO that 7| < r, it follows from the additivity _of the fixed
point index that i(7,K,,\K,,K) = —1. Thus, T has a fixed point in K,,\K,, which is
the desired positive solution of (5).
To prove the nonexistence part, we note that f., = oo implies the existence of a

constant ¢ > 0 such that f(u, v) > c(u + v) for u, v > 0. Let (u, v) € X be a positive
solution of (5). By Lemma 2.1, (u, v) € K, and thus

; > L )
1/42123/4(u(t) +0(1)) > e ([Jull +[[v])

For t € [1/4,3/4], we have

3/4
u(t) > /lmc/ h(s)(u(s) + v(s))ds
1/4

Jme 4

> — P (»)([lull + [[o]l) ds
16 Jij4

> |[(u, v)]],

for A large enough, which is a contradiction. [

3. Multiplicity
We first need the following a priori estimate.
Lemma 3.1. If either fo, =00 or goo =00, then there is a constant by > 0 such that

l(u, v)|| < by for all positive solutions (u,v) of (5), where 1 belongs to a compact
subset I of (0,00).
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Proof. Suppose there is a sequence {(u,,v,)} of positive solutions of (5), with corre-
sponding /4, belonging to a compact subset of (0, 00), such that lim,,_, o || (¢, U, ) || = 0.
By Lemma 2.1, (u,,v,) € K, and so

i > 1 .
1/42123/4(”11(1‘) +ua(t)) > 16(Hu'1|| + [loall)

Without loss of generality assume f., = co. As before, there is an H > 0 such that
f(u,v) > n(u+v) for all u+ v > H, where 5 is chosen so that

inmn /3/4
hi(s)ds > 1.
16 )i

Choosing n large enough so that <(||u,| + ||lva||) > H, and taking ¢ € [4,3], we have
l|tn]| > un(2),

3/4

> dnmi » hi(s)(un(s) + va(s)) ds

Apt]

3/4
2 7/ hi($)([lunl| + [loall) ds
1/4

> [funl + [fon]

which is a contradiction. [J

In the following, we shall write (uy,v;) < (uz,vz) if ui(¢t) <uy(t), v1(t) < vy(¢) holds
for all € [0, 1].

We say that the pair (u,0) € C[0,1] x C[0, 1] is an upper solution of the system (5)
if (&,0)>(0,0) and

1
Oy, / k(1. ()£ ), 7(s)) ds,
0
()
1
Ry /0 a2, 5Yha(s) £ (i(s), 5(s)) ds.

A lower solution (&, v) > (0,0) is defined similarly by reversing the inequalities in (6).

Lemma 3.2. If there exists an upper solution (u,0) of (5), then there is a positive
solution (u, v) of (5) with

(0,0) < (u, v) < (&,0).
Proof. By taking into account the monotonicity conditions (A4), and noting that

(0,0) is a lower solution of (5), it follows that the usual monotone iteration scheme
applies. [J

Now let I" denote the set of 4 > 0 such that a positive solution of (5) exists, and set
A* =supl'. By Theorem 2.2, I" is nonempty and bounded, and thus 0 < A* < co. We



810 D.R. Dunninger, H. Wang | Nonlinear Analysis 42 (2000) 803-811

claim that A* € I'. To see this, let 4, — A*, where A, € I". Since the A, are bounded,
Lemma 3.1 implies that the corresponding solutions (u,,v,) are bounded. By the com-
pactness of the integral operators 4 and B, it easily follows that A* €I'. Let (u*,v*)
be a positive solution of (5) corresponding to A*.

Lemma 3.3. Let 0 < A < A*. Then there exists ¢ >0 such that (u* + &v* + &),
0<e<e&* is an upper solution of (5).

Proof. Since (u*,v*)>(0,0), there is a constant ¢ such that f(u*(¢),v*(¢)) > ¢ > 0,
g(u*(t),v*(t)) >c > 0 for all 1 €[0,1]. By uniform continuity, there is an ¢* such that
|f (1) + e,v™(t) + &) — [ (1), v"(1))] < (2" = A)/2,
lg(u™ (1) + & v™(1) + &) — g(u™ (1), v* (1)) < (2" = 1)/4,
for all t€[0,1], 0 <& <¢e". Now

|
u*(t)+e> A" / ki (t,$)h(s)f(u*(s),v*(s))ds
0
1
= /1/ ky(t,8)h1(s) f(u™(s) + &, v*(s) + &) ds
0
1
- 1/0 ki(t, ) (s)Lf (U (s) + & 0" (s) + &) — f(u"(s),0"(s))]ds
1
FE D) [ @660 () ds
0

1
> / k(6,5 () £ (" (s) + &, 0*(s) + ) ds,
0

where the first inequality is strict if ¢ > 0. A similar computation holds for v* 4 ¢, thus
establishing the result. [

Proof of Theorem 1.1. Let 0 < A < A*. Since (u*,v*) is an upper solution of (5),
Lemma 3.2 implies the existence of a positive solution (u;,v;) of (5) with (0,0) <
(uy,0;) < (u*,v*). Thus for 0 < 4 < A* a positive solution exists, whereas for 1 > A*
a positive solution does not exist.

We next establish the existence of a second positive solution of (5) for 0 < 4 < A*.
Consider

Q={(u,v) e X: —e<u®)<u*(t)+e—c<v(t)<v*(t)+e t€[0,1]},

where ¢ > 0 is given in Lemma 3.3. Then {2 is bounded and open in X, (0,0) € €,
and T : KNQ — K is condensing since it is compact. Moreover, (u;,v,) € Q for
0 < A<<Am.

Let (u,v) € KNOS2 Then there is a fy such that either u(f) = u*(%) + ¢
or v(ty) = v*(ty) + & Assuming the first case holds, and taking into account (Ay),



D.R. Dunninger, H. Wang | Nonlinear Analysis 42 (2000) 803811 811

we have

1
A(u, v)(ty) = /1/ ki(to,s)h1(s) f(u(s),v(s))ds
0

N

1
i / 10,51 () £ (1" (5) + & 0*(5) + ) d
0

<u*(ty) +¢

= u(ty) < pu(ty)

for all u > 1. Similarly, in the second case, B(u, v)(#y) < uv(ty). Thus T(u, v) # u(u, v)
for all (u,v) € KN O and all 4 > 1. By Lemma 1.3,

(TKNQ,K)= 1.

Next, let » = max{b; + 1,72, ||(u* + & v* + ¢)||}, where b; is given in Lemma 3.1,
and 7, is given in the proof of Theorem 2.2. Set

K. ={(u,v) € K: ||(u, v)|| <r}.

Lemma 3.1 implies that 7T(u,v) # (u,v) for (u,v) € JK,. Furthermore, if (u,v) € 0K,
then, as in the proof of Theorem 2.2, we see that | 7(u,v)|| > ||(u,v)||. Consequently,
Lemma 1.2 implies i(7,K,,K) =0, and by the additivity of the fixed point index we
get

i(T,K\KNQ,K)=—1.

Thus, T has a fixed point in K,\K N2, which establishes the existence of a second
positive solution.
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