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1. INTRODUCTION

In this paper we consider the existence and multiplicity of positive radial solutions for elliptic
systems of the form

Au + Aky(|Ix])f(u, v) = 0
Av + pky(|x))g(u, v) = 0 n

ulan = U|an =0

where (u, v) € C}(Q) x C*(Q), withQ = {x € RV : R, < |x| < R,, R, R, > 0} an annulus with
boundary 9Q.
The following conditions will be assumed throughout:

£, g: [0, ©) x [0, ) — [0, ) are continuous.

(A) A and u are positive parameters.
1
ki, k5. [Ry, R;] — [0, =) are continuous and do not

vanish identically on any subinterval of [R,, R,].

By a positive solution of (1) we understand a solution (u, v) with ¥ = 0, v = 0 and either
u # 0 or v # 0. By the maximum principle, each nontrivial component of (u, v) is thus positive
in Q.

In recent years it has been proved that for a single equation, superlinearity or sublinearity of
the nonlinearity at both ends (zero and infinity) can guarantee the existence of a positive
solution on an annulus. See [1-14], for instance. On the other hand, as was shown in [7, 8, 11],
superlinearity at one end and sublinearity at the other end can imply the existence of at least two
positive solutions. We also refer to [2, 11, 14] for further results in this direction.

In our previous work [6], we showed the existence and multiplicity of positive solutions for
the system (1) when f(u, v) = f(v) and g(u, v) = g(u) are functions of one variable. Our purpose
here is to deal with more general f and g. It should be noted that the existence of positive
solutions for elliptic systems on a ball has been studied in [15]. In this paper we use a fixed point
theorem of cone expansion/compression type which allows us to establish not only existence,
but also multiplicity.
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1052 D. R. DUNNINGtR and HAIYAN WANG
2. PRELIMINARIES

We shall seek criteria for the existence of positive radial solutions u = u(r), v = v(r) of (1)
which then satisfy

w + 2w b Ak (D fu, v) = 0

r

— Lot 4 whp(Pgu, v) = 0 @

u(Ry) = u(Ry) = v(R,) = v(Ry) = 0.

v’ +

By several changes of variables (see e.g. [14]) the system (2) can be brought into the form

u"(t) + Ah()f(u,v) = 0
v"(t) + phy(t)gu, v) = 0 (3)
u(0) = u(l) = v(0) = v(1) = 0

where h,(¢), h,(¢) are continuous and do not vanish identically on any subinterval of [0, 1]. The
system (3), in turn, is equivalent to the system of integral equations
1
u(t) = A j k(t, s)h (8)Sf (u(s), v(s)) ds
0
1 @
ut) = u j k(t, $)hy(s)g(u(s), v(s)) ds

0

where k(z, s) is the Green’s function

‘ {t(l - 5), t<s
t,s) =
) s(1 — 1), t>s.

Let

* 1
A, v)(t) =2 S k(t, )h () f(u(s), v(s)) ds
0

*1
B(u, v)(t) = u \ k(t, s)hy(s)g(u(s), v(s)) ds
JO

Flu, v)(t) = (A(u, v)(1), B(u, v)(1)).
Then (4) is equivalent to the fixed point equation
Flu, v) = (4, v)

in the Banach space X = C([0, 1]*). The following Fixed-Point Theorem of cone expansion/
compression type will be crucial in the arguments that follow.
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THEOREM 2.1 [16]. Let X be a Banach space and let K C X be a cone in X. Assume Q,, Q, are
open subsets of X with 0 € Q,, Q, C Q, and let

F:KN@QN\Q) - K
be a completely continuous operator such that either
@) IFul < lull, ueKnoQ
and
|Ful = llull, ueKNaQ,
or
(i) [Ful = lu]l, ueKNaQ,
and
|Full < |lull, ueKNaQ,.
Then F has a fixed point in X N (Q,\Q)).

In order to apply Theorem 2.1, we will let K be the cone defined by

K= {(u, v): (@, v)eX,u,v=0, min (@) + v(t) = ‘l—t(llull + HUM

1/4sts3/4

where ||u]| = sup |u(¢f)|. This choice of a cone is motivated by the concavity of nonnegative
te[0,1]

solutions of (1). In what follows we set |[(u, v)|| = [ull + [v]l.

LeEMMA 2.2. F: X = X is completely continuous and F(K) C K.

Proof. The complete continuity of F is obvious. To prove F(K) C K, choose (u, v) € K.
Since k(t,5) <s(1 —s)for0 < s <1, and k(t,5) = s(1 — s)/4for1/4d <t =<3/4,0=<s=<1,
we have

1
s(1 = 9h($)f(us), v(s) ds = § A, v

1/4 st <3/4

A 1
min  A(u, v)(t) = - S

4 Jo
and similarly

min  B(u, v)(t) = % |B(u, v).

1/4<st<3/4

Thus

min (A, v)(¢) + Bu, v)(¥)) = min Ay, v)(¢) + min  B(u, v)(t)
1/4<t<3/4 1/4<st=<3/4 1/4st=<3/4

1
= Z(”A(u! U)” + "B(ll, U)")

1
=32 (A, v), B(u, v)|.

Since k(¢,5) > 0 for 0 < ¢, s < 1 and (A;) holds, we conclude that FK C K. W
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3. EXISTENCE THEOREMS

We introduce the following notation:

. u,v . u, v)
fo= lim f(_’_) s = lim g(_'_,

-0 U + v u,n—0 U+

. u,v . u, v)
Jo = lim S, v) ), go = lim 8w, v) .
(u,0)»0 U + VU w,v)—=o U + 0V

THEOREM 3.1. Assume (A,) holds. Then for all A > 0, z > 0, the system (1) has at least one
positive radial solution in the following cases:

@) fo = g, = 0, and either f,, = o or g, = o (superlinear)

(b) fo = 8= = 0, and either f, = o or g, = « (sublinear).

Proof. (a) Since f;, = go = 0, we may choose H, > 0 so that f(u, v) < e(u + v) and g(u, v) <
e(u + v) for 0 < u, v < H,, where the constant ¢ > 0 satisfies

1

2eA }

1
s(1 — s)h(s)ds < 1, 2¢eu § s(1 — s)hy(s)ds < 1.
[1]

0

Set
Q, = {(u,v): (u,v) € X, |[(u, v)[| < Hy}.
If (u,v) € K N 3Q,, we have

1

Au, v)(1) < Aj s(1 — 9, () S (us), v(s)) ds
0

1
<éei E s(1 — $Hh(s)(u(s) + v(s)) ds

0

1

< ea(lul + ||v||>j o1 = () ds

0

< I, v)li
2

and similarly,

B(u, v)(t) < I, o)l "2”)" .

Hence
1@, »)ll = [A@, v)|| + 1B, v)ll < ll@w, v)]
for (u, v) € K N 492,.
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If we fprther assume f, = oo, then there is an H > 0 such that f(u, v) = n(u + v) for
u + v = H, where n > 0 is chosen so that

nl 3/4 1
— = = 1.
4 gmk 38 ) ds =

Let H, = max{2H,, 4H) and set
Q, = {(u, V) : (i, v) € X, ||(u, v)|| < H,).
If (4, v) € KN 9Q,, we have

min @) + o) =~ (lu, 0)l) = A
/4 4

1/dst<3
and
() -#1,G)
A, =) =4 | kil =, s )h ) fu(s), v(s)) ds
2 o \2
$3/4 /1
=2 j k(-, S>h1(S)f (u(s), v(s)) ds
e \2
3/4 1
= ni S k(i’ s)hl(s)(u(s) + v(s)) ds
1/4
A 3/4 1
= T (lul + ||v||>g k(-,s)h,mds
4 174 2
= ||, v).
Therefore

1
I ol = 40 03 = 0

for (u, v) € KN dQ,. An analogous estimate holds if g, = o.

Now by Theorem 2.1, F has a fixed point (u, v) € K N (Q,\Q,) such that H, < (4, v)|| < H,,
and so (1) has a positive radial solution.

(b) If f; = o, we now choose H, > 0 so that f(u, v) = fj(u + v) for 0 < u, v < H|, where

n satisfies
ﬁﬂ. (3/4 1
— —, s |h(s)ds = 1.
a U1/4k 2 s (s

Set
Q, = [, v): (u,v) € X, |, v)|| < Hy}.
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If (u, v) € KN a4Q,, we have

1 v
Au, v)(g) =4 j k<5,S>h1(S)f(u(S), v(s)) ds
0

ryva g
= 5 k<£,s>h,(s)f(u(s), u(s)) ds

174

3/4 1
= 1A j k<§, s)hl(s)(u(s) + u(s)) ds

1/4

“A 3/4 1
=+ 1) | k(s o

b
174 2

= [[(u, v)ll.
Therefore

1
1P ol = 46 03 = w0

for (u, v) € K N 8Q,. An analogous estimate holds if g, = oo.
We now determine Q, . Let us define two new functions f*(f) = max f(u, v) and g*(¢) =
Osu+vst
max g(u, v). Note that f*(¢) and g*(¢) are nondecreasing in their respective arguments.

Osu+vst
Moreover, from f, = g, = 0, it follows that

im0 _o, im0

o {—+ t

0.

Therefore, there is an H, > 2H, such that f*(¢) < ¢t, g*(¢) < &t for t = H,, where the constant
€ > 0 satisfies

rl 1 1 1

&L j s(1 — 9h(s)ds = -, el S s(1 — )h,(s)ds = .

0 2 (1] 2

Set
Q, = {(u, v): (u, V) € X, |[(u, v)|| < H,}.

If (4, v) € K N 3Q, we have

n

A, v)t) < A

1
s(1 = 8$)h,(s) f(u(s), v(s)) ds
0

J

1
<A 3 s(1 = s)h(s)f*(H,) ds
0

1

< ¢\H, S s(1 — s)h,(s)ds
(1]

=<

H, @l
2 2
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Similarly, B(u, v)(t) < ||(4, v)||/2, and so
IF@, vl < @, vl

for (u,v) €e KN 3Q,. Applying Theorem 2.1, we obtain the existence of a positive radial
solution (u, v) for (1). W

4. MULTIPLICITY THEOREMS

In this section we consider the multiplicity of solutions. The idea is as follows: we construct
sets Q; C Q,, such that Q, C Q, C Q, C Q,, where Q,, Q, are constructed in Theorem 3.1.
This will allow us to apply the fixed point theorem twice. In this direction we shall need:

(A,) Sfu,v), glu,v) >0 for u, v > 0.

THEOREM 4.1. Assume (A,), (A,) hold.

(@) If fy = 8¢ = fo = 8- = 0, then there is a positive constant g, such that (1) has at least
two positive radial solutions for all 4, u = a,.

(b) If either f, = o or g, = o, and either f, = © or g, = o, then there is a positive
constant g, such that (1) has at least two positive radial solutions for all 1, 4 < o,.

Proof. (a) For (u, v) € K and ||(u, v)|| = q, let

(" 3/4

m(q) = min“

3/4

1 ' 1
k<§, S>h1(S)f (u(s), v(s)) ds, x k(i’ S>hz(S)g(u(S), v(s)) ds; .

1/4 1/4

It follows from (A)), (A,) that m(q) > 0 for g > 0.
Choose two numbers 0 < Hy < H,, let g, = max{H;/2m(H,)), H,/(2m(H,))} and set

Q =wv):wveX|wv<H} (@=34.
Then, for A, 4 = o, and (4, v) € KN 3Q,; (i = 3, 4), we have
H,
2 s

3/4
Alu, v)(%) =z A g k(%, s)h,(s)f(u(s), v(s))ds = Am(H;) = (i=3,4)

J1/4
and similarly, B(u, v)(1/2) = H,/2, (i = 3, 4), which implies
1F @, vl = H; = |4, v)]

for (u,v) € KN aQ; (i = 3, 4). Since f; = g, =0 and f,, = g, = 0, it follows from the proof of
Theorem 3.1(a) and (b), respectively, that we can choose H, < H,/2 and H, > 2H, such that

1F(u, v)l| < |, v)
for (u, v) e KN aAQ,;, (i = 1, 2), where

Q= {w,v):weX @l <H), (=12).
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Applying Theorem 2.1 to Q,;, Q; and Q,, Q, we get a positive radial solution («,, v,)
such that H, < |(u,, v))|| < H, and another positive radial solution (u,, v,) such that H, <
[(u;, v,)|| = H,. Since H, < H,, the two solutions are distinct.

(b) For (¥, v) € K and ||(u, v)|| = g, let

1

1
M(q) = maxﬂ s(1 = $)h(s)f(u(s), v(s)) ds, § s(1 = s)hy(s)g(u(s), v(s)) dS} .
[

0

Then as above, M(g) > 0 for g > 0.
Choose two numbers 0 < H; < H,, let 6, = min{H;/(2M(H,)), H,/(2M(H,))} and set

Q; = {(u,v): (u,v) € X, ||(u, vl < H,, (i =3,4).
Then for A, u < o, and (4, v) € KN 3Q;, (i = 3, 4), we have
A(u, v)(t) = AM(H}) < o, M(H;) < H,;/2, (i=3,4
and similarly, B(u, v)(t) < o,M(H;) < H;/2, (i = 3, 4), which implies
IFu, vl < H; = llu, v)

for (u, v) e KN aQ; (i = 3, 4). Since either f, = « or g, = o, and either f,, = ® or g, = o,
it follows from the proof of Theorem 3.1(b) and (a), respectively, that we can choose
H, < Hy/2 and H, > 2H, such that

£, v)ll = [l(u, v
for (u,v) e KNaQ; (i = 1, 2), where
Q ={wv):wveX|wv<H} (=12).

Once again we obtain the existence of two distinct positive radial solutions. W
The following existence result is a simple consequence of the preceding theorems.

THEOREM 4.2. Assume (A,), (A,) hold.

(@ If fo = go = 0 or f, = g, = 0, then there is a positive constant g5 such that (1) has at
least one positive radial solution for all 4, u = a;.

(b) If fo = o or gy = o, orif f, = « or g, = o, then there is a positive constant g, such
that (1) has at least one positive radial solution for all A, u < g,.

5. REMARKS

The results of this paper are also valid for the following mixed-type boundary value problems
and are handled in an analogous manner.

Au + 2ky(|x)f G, v) = 0

Av + pky(Ix)g(u, v) = 0 )
u @
L) on |x| = R,

u=v=0 on|x =R, Pl
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Au + Ak(|x)f(u,v) = 0
Au + uky(|x|)g(u, v) = 0

w5 (6)
u v
5—5—0 on |x| = R, u=v=0 onlx| =R,
where d/0r denotes differentiation in the radial direction.
It is easy to check that (5) and (6) are equivalent to the integral equations
1
u(t) = 4 g k(2, $)h(s).f (u(s), v(s)) ds
0
X ™
u(t) = u S k1(t, S)hy(s)g(u(s), v(s)) ds
0
1
u(t) = 4 g ky(t, $)h(8)f (u(s), v(s)) ds
0
1 t)
ut) = u S ka(t, $)hy(5)g(u(s), v(s)) ds
0

respectively, where

and
1 -3, t<s

1 -1, t>s.

k2(ts S) = {
For problem (7), one considers the cone

K, = {(u, v): @, v) € X, w02 0, min (1) + u1) = %(Ilull + ||v||)}

1

and for problem (8), one considers the cone

K, = {(u, v):(,v) € X, u,0 20, min (@) + ur)) = %(Ilull i+ IIUII)}.
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