

PII: S0362-546X(96)00092-2

EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR ELLIPTIC SYSTEMS

D. R. DUNNINGER and HAIYAN WANG

Department of Mathematics, Michigan State University, East Lansing, MI 48824, U.S.A.

(Received 22 May 1995; received for publication 19 September 1996)

Key words and phrases: Elliptic system, existence and multiplicity, positive solution.

1. INTRODUCTION

In this paper we consider the existence and multiplicity of positive radial solutions for elliptic systems of the form

$$\begin{cases} \Delta u + \lambda k_1(|x|) f(u, v) = 0 \\ \Delta v + \mu k_2(|x|) g(u, v) = 0 \\ u|_{\partial\Omega} = v|_{\partial\Omega} = 0 \end{cases}$$
 (1)

where $(u, v) \in C^2(\bar{\Omega}) \times C^2(\bar{\Omega})$, with $\Omega = \{x \in \mathbb{R}^N : R_1 < |x| < R_2, R_1, R_2 > 0\}$ an annulus with boundary $\partial \Omega$.

The following conditions will be assumed throughout:

$$(A_1) \begin{cases} f,g\colon [0,\infty)\times [0,\infty)\to [0,\infty) \text{ are continuous.} \\ \lambda \text{ and } \mu \text{ are positive parameters.} \\ k_1,k_2\colon [R_1,R_2]\to [0,\infty) \text{ are continuous and do not vanish identically on any subinterval of } [R_1,R_2]. \end{cases}$$

By a positive solution of (1) we understand a solution (u, v) with $u \ge 0$, $v \ge 0$ and either $u \ne 0$ or $v \ne 0$. By the maximum principle, each nontrivial component of (u, v) is thus positive in Ω .

In recent years it has been proved that for a single equation, superlinearity or sublinearity of the nonlinearity at both ends (zero and infinity) can guarantee the existence of a positive solution on an annulus. See [1-14], for instance. On the other hand, as was shown in [7, 8, 11], superlinearity at one end and sublinearity at the other end can imply the existence of at least two positive solutions. We also refer to [2, 11, 14] for further results in this direction.

In our previous work [6], we showed the existence and multiplicity of positive solutions for the system (1) when f(u, v) = f(v) and g(u, v) = g(u) are functions of one variable. Our purpose here is to deal with more general f and g. It should be noted that the existence of positive solutions for elliptic systems on a ball has been studied in [15]. In this paper we use a fixed point theorem of cone expansion/compression type which allows us to establish not only existence, but also multiplicity.

2. PRELIMINARIES

We shall seek criteria for the existence of positive radial solutions u = u(r), v = v(r) of (1) which then satisfy

$$\begin{cases} u'' + \frac{n-1}{r}u' + \lambda k_1(r)f(u, v) = 0 \\ v'' + \frac{n-1}{r}v' + \mu k_2(r)g(u, v) = 0 \\ u(R_1) = u(R_2) = v(R_1) = v(R_2) = 0. \end{cases}$$
 (2)

By several changes of variables (see e.g. [14]) the system (2) can be brought into the form

$$\begin{cases} u''(t) + \lambda h_1(t) f(u, v) = 0 \\ v''(t) + \mu h_2(t) g(u, v) = 0 \\ u(0) = u(1) = v(0) = v(1) = 0 \end{cases}$$
 (3)

where $h_1(t)$, $h_2(t)$ are continuous and do not vanish identically on any subinterval of [0, 1]. The system (3), in turn, is equivalent to the system of integral equations

$$\begin{cases} u(t) = \lambda \int_0^1 k(t, s) h_1(s) f(u(s), v(s)) \, \mathrm{d}s \\ v(t) = \mu \int_0^1 k(t, s) h_2(s) g(u(s), v(s)) \, \mathrm{d}s \end{cases}$$

$$(4)$$

where k(t, s) is the Green's function

$$k(t,s) = \begin{cases} t(1-s), & t \leq s \\ s(1-t), & t > s. \end{cases}$$

Let

$$A(u, v)(t) = \lambda \int_0^1 k(t, s) h_1(s) f(u(s), v(s)) ds$$

$$B(u, v)(t) = \mu \int_0^1 k(t, s) h_2(s) g(u(s), v(s)) ds$$

$$F(u, v)(t) = (A(u, v)(t), B(u, v)(t)).$$

Then (4) is equivalent to the fixed point equation

$$F(u,v)=(u,v)$$

in the Banach space $X = C([0, 1]^2)$. The following Fixed-Point Theorem of cone expansion/compression type will be crucial in the arguments that follow.

THEOREM 2.1 [16]. Let X be a Banach space and let $K \subset X$ be a cone in X. Assume Ω_1, Ω_2 are open subsets of X with $0 \in \Omega_1, \bar{\Omega}_1 \subset \Omega_2$ and let

$$F: K \cap (\bar{\Omega}_2 \backslash \Omega_1) \to K$$

be a completely continuous operator such that either

(i)
$$||Fu|| \le ||u||$$
, $u \in K \cap \partial \Omega_1$
and $||Fu|| \ge ||u||$, $u \in K \cap \partial \Omega_2$

or

(ii)
$$||Fu|| \ge ||u||$$
, $u \in K \cap \partial \Omega_1$
and $||Fu|| \le ||u||$, $u \in K \cap \partial \Omega_2$.

Then F has a fixed point in $K \cap (\bar{\Omega}_2 \setminus \Omega_1)$.

In order to apply Theorem 2.1, we will let K be the cone defined by

$$K = \left\{ (u, v) : (u, v) \in X, u, v \ge 0, \min_{1/4 \le t \le 3/4} (u(t) + v(t)) \ge \frac{1}{4} (\|u\| + \|v\|) \right\}$$

where $||u|| = \sup_{t \in [0,1]} |u(t)|$. This choice of a cone is motivated by the concavity of nonnegative solutions of (1). In what follows we set ||(u,v)|| = ||u|| + ||v||.

LEMMA 2.2. $F: X \to X$ is completely continuous and $F(K) \subset K$.

Proof. The complete continuity of F is obvious. To prove $F(K) \subset K$, choose $(u, v) \in K$. Since $k(t, s) \le s(1 - s)$ for $0 \le s \le 1$, and $k(t, s) \ge s(1 - s)/4$ for $1/4 \le t \le 3/4$, $0 \le s \le 1$, we have

$$\min_{1/4 \le t \le 3/4} A(u, v)(t) \ge \frac{\lambda}{4} \int_0^1 s(1 - s) h_1(s) f(u(s), v(s)) \, \mathrm{d}s \ge \frac{1}{4} \|A(u, v)\|$$

and similarly

$$\min_{1/4 \le t \le 3/4} B(u, v)(t) \ge \frac{1}{4} \|B(u, v)\|.$$

Thus

$$\min_{1/4 \le t \le 3/4} (A(u, v)(t) + B(u, v)(t)) \ge \min_{1/4 \le t \le 3/4} A(u, v)(t) + \min_{1/4 \le t \le 3/4} B(u, v)(t)$$

$$\ge \frac{1}{4} (\|A(u, v)\| + \|B(u, v)\|)$$

$$= \frac{1}{4} \|(A(u, v), B(u, v))\|.$$

Since k(t, s) > 0 for 0 < t, s < 1 and (A_1) holds, we conclude that $FK \subset K$.

3. EXISTENCE THEOREMS

We introduce the following notation:

$$f_0 = \lim_{(u,v)\to 0} \frac{f(u,v)}{u+v}, \qquad g_0 = \lim_{(u,v)\to 0} \frac{g(u,v)}{u+v},$$

$$f_{\infty} = \lim_{(u,v)\to\infty} \frac{f(u,v)}{u+v}, \qquad g_{\infty} = \lim_{(u,v)\to\infty} \frac{g(u,v)}{u+v}.$$

THEOREM 3.1. Assume (A_1) holds. Then for all $\lambda > 0$, $\mu > 0$, the system (1) has at least one positive radial solution in the following cases:

- (a) $f_0 = g_0 = 0$, and either $f_{\infty} = \infty$ or $g_{\infty} = \infty$ (superlinear)
- (b) $f_{\infty} = g_{\infty} = 0$, and either $f_0 = \infty$ or $g_0 = \infty$ (sublinear).

Proof. (a) Since $f_0 = g_0 = 0$, we may choose $H_1 > 0$ so that $f(u, v) \le \varepsilon(u + v)$ and $g(u, v) \le \varepsilon(u + v)$ for $0 < u, v \le H_1$, where the constant $\varepsilon > 0$ satisfies

$$2\varepsilon\lambda\int_0^1 s(1-s)h_1(s)\,\mathrm{d} s\leq 1, \qquad 2\varepsilon\mu\int_0^1 s(1-s)h_2(s)\,\mathrm{d} s\leq 1.$$

Set

$$\Omega_1 = \{(u, v) : (u, v) \in X, ||(u, v)|| < H_1\}.$$

If $(u,v) \in K \cap \partial \Omega_1$, we have

$$A(u, v)(t) \le \lambda \int_0^1 s(1 - s)h_1(s)f(u(s), v(s)) ds$$

$$\le \varepsilon \lambda \int_0^1 s(1 - s)h_1(s)(u(s) + v(s)) ds$$

$$\le \varepsilon \lambda (\|u\| + \|v\|) \int_0^1 s(1 - s)h_1(s) ds$$

$$\le \frac{\|(u, v)\|}{2}$$

and similarly,

$$B(u, v)(t) \leq \frac{\|(u, v)\|}{2}.$$

Hence

$$||F(u,v)|| = ||A(u,v)|| + ||B(u,v)|| \le ||(u,v)||$$

for $(u, v) \in K \cap \partial \Omega_1$.

If we further assume $f_{\infty} = \infty$, then there is an $\hat{H} > 0$ such that $f(u, v) \ge \eta(u + v)$ for $u + v \ge \hat{H}$, where $\eta > 0$ is chosen so that

$$\frac{\eta\lambda}{4}\int_{1/4}^{3/4}k\left(\frac{1}{2},s\right)h_1(s)\,\mathrm{d}s\geq 1.$$

Let $H_2 = \max\{2H_1, 4\hat{H}\}$ and set

$$\Omega_2 = \{(u, v) : (u, v) \in X, \|(u, v)\| < H_2\}.$$

If $(u, v) \in K \cap \partial \Omega_2$, we have

$$\min_{1/4 \le t \le 3/4} (u(t) + v(t)) \ge \frac{1}{4} (\|u, v\|) \ge \hat{H}$$

and

$$A(u, v)\left(\frac{1}{2}\right) = \lambda \int_{0}^{1} k\left(\frac{1}{2}, s\right) h_{1}(s) f(u(s), v(s)) ds$$

$$\geq \lambda \int_{1/4}^{3/4} k\left(\frac{1}{2}, s\right) h_{1}(s) f(u(s), v(s)) ds$$

$$\geq \eta \lambda \int_{1/4}^{3/4} k\left(\frac{1}{2}, s\right) h_{1}(s) (u(s) + v(s)) ds$$

$$\geq \frac{\eta \lambda}{4} (\|u\| + \|v\|) \int_{1/4}^{3/4} k\left(\frac{1}{2}, s\right) h_{1}(s) ds$$

$$\geq \|(u, v)\|.$$

Therefore

$$||F(u, v)|| \ge A(u, v) \left(\frac{1}{2}\right) \ge ||(u, v)||$$

for $(u, v) \in K \cap \partial \Omega_2$. An analogous estimate holds if $g_{\infty} = \infty$.

Now by Theorem 2.1, F has a fixed point $(u, v) \in K \cap (\bar{\Omega}_2 \backslash \Omega_1)$ such that $H_1 \leq ||(u, v)|| \leq H_2$, and so (1) has a positive radial solution.

(b) If $f_0 = \infty$, we now choose $H_1 > 0$ so that $f(u, v) \ge \hat{\eta}(u + v)$ for $0 \le u, v \le H_1$, where $\hat{\eta}$ satisfies

$$\frac{\hat{\eta}\lambda}{4}\int_{1/4}^{3/4} k\left(\frac{1}{2},s\right) h_1(s) \,\mathrm{d}s \geq 1.$$

Set

$$\Omega_1 = \{(u, v) : (u, v) \in X, ||(u, v)|| < H_1\}.$$

If $(u, v) \in K \cap \partial \Omega_1$, we have

$$A(u, v) \left(\frac{1}{2}\right) = \lambda \int_{0}^{1} k\left(\frac{1}{2}, s\right) h_{1}(s) f(u(s), v(s)) ds$$

$$\geq \lambda \int_{1/4}^{3/4} k\left(\frac{1}{2}, s\right) h_{1}(s) f(u(s), v(s)) ds$$

$$\geq \hat{\eta} \lambda \int_{1/4}^{3/4} k\left(\frac{1}{2}, s\right) h_{1}(s) (u(s) + v(s)) ds$$

$$\geq \frac{\hat{\eta} \lambda}{4} (\|u\| + \|v\|) \int_{1/4}^{3/4} k\left(\frac{1}{2}, s\right) h_{1}(s) ds$$

$$\geq \|(u, v)\|.$$

Therefore

$$||F(u, v)|| \ge A(u, v) \left(\frac{1}{2}\right) \ge ||(u, v)||$$

for $(u, v) \in K \cap \partial \Omega_1$. An analogous estimate holds if $g_0 = \infty$. We now determine Ω_2 . Let us define two new functions $f^*(t) = \max_{0 \le u+v \le t} f(u, v)$ and $g^*(t) = \max_{0 \le u+v \le t} f(u, v)$ $\max_{0 \le u+v \le t} g(u, v)$. Note that $f^*(t)$ and $g^*(t)$ are nondecreasing in their respective arguments. Moreover, from $f_{\infty} = g_{\infty} = 0$, it follows that

$$\lim_{t\to\infty}\frac{f^*(t)}{t}=0,\qquad \lim_{t\to\infty}\frac{g^*(t)}{t}=0.$$

Therefore, there is an $H_2 > 2H_1$ such that $f^*(t) \le \varepsilon t$, $g^*(t) \le \varepsilon t$ for $t \ge H_2$, where the constant $\varepsilon > 0$ satisfies

$$\varepsilon \lambda \int_0^1 s(1-s)h_1(s) \, \mathrm{d}s \le \frac{1}{2}, \qquad \varepsilon \mu \int_0^1 s(1-s)h_2(s) \, \mathrm{d}s \le \frac{1}{2}.$$

Set

$$\Omega_2 = \{(u, v) : (u, v) \in X, ||(u, v)|| < H_2\}.$$

If $(u, v) \in K \cap \partial \Omega$, we have

$$A(u, v)(t) \le \lambda \int_0^1 s(1 - s)h_1(s)f(u(s), v(s)) ds$$

$$\le \lambda \int_0^1 s(1 - s)h_1(s)f^*(H_2) ds$$

$$\le \varepsilon \lambda H_2 \int_0^1 s(1 - s)h_1(s) ds$$

$$\le \frac{H_2}{2} = \frac{\|(u, v)\|}{2}.$$

Similarly, $B(u, v)(t) \le ||(u, v)||/2$, and so

$$||F(u, v)|| \le ||(u, v)||$$

for $(u, v) \in K \cap \partial \Omega_2$. Applying Theorem 2.1, we obtain the existence of a positive radial solution (u, v) for (1).

4. MULTIPLICITY THEOREMS

In this section we consider the multiplicity of solutions. The idea is as follows: we construct sets $\Omega_3 \subset \Omega_4$, such that $\Omega_1 \subset \Omega_3 \subset \Omega_4 \subset \Omega_2$, where Ω_1, Ω_2 are constructed in Theorem 3.1. This will allow us to apply the fixed point theorem twice. In this direction we shall need:

$$f(u, v), g(u, v) > 0$$
 for $u, v > 0$.

THEOREM 4.1. Assume (A_1) , (A_2) hold.

- (a) If $f_0 = g_0 = f_\infty = g_\infty = 0$, then there is a positive constant σ_1 such that (1) has at least two positive radial solutions for all $\lambda, \mu \ge \sigma_1$.
- (b) If either $f_0 = \infty$ or $g_0 = \infty$, and either $f_\infty = \infty$ or $g_\infty = \infty$, then there is a positive constant σ_2 such that (1) has at least two positive radial solutions for all $\lambda, \mu \leq \sigma_2$.

Proof. (a) For $(u, v) \in K$ and ||(u, v)|| = q, let

$$m(q) = \min \left\{ \int_{1/4}^{3/4} k\left(\frac{1}{2}, s\right) h_1(s) f(u(s), v(s)) \, \mathrm{d}s, \, \int_{1/4}^{3/4} k\left(\frac{1}{2}, s\right) h_2(s) g(u(s), v(s)) \, \mathrm{d}s \right\}.$$

It follows from (A_1) , (A_2) that m(q) > 0 for q > 0.

Choose two numbers $0 < H_3 < H_4$, let $\sigma_1 = \max\{H_3/(2m(H_3)), H_4/(2m(H_4))\}$ and set

$$\Omega_i = \{(u, v) : (u, v) \in X, \|(u, v)\| < H_i\} \quad (i = 3, 4).$$

Then, for $\lambda, \mu \geq \sigma_1$ and $(u, v) \in K \cap \partial \Omega_i$ (i = 3, 4), we have

$$A(u, v)\left(\frac{1}{2}\right) \ge \lambda \int_{1/4}^{3/4} k\left(\frac{1}{2}, s\right) h_1(s) f(u(s), v(s)) \, \mathrm{d}s \ge \lambda m(H_i) \ge \frac{H_i}{2}, \qquad (i = 3, 4)$$

and similarly, $B(u, v)(1/2) \ge H_i/2$, (i = 3, 4), which implies

$$||F(u,v)|| \ge H_i = ||(u,v)||$$

for $(u, v) \in K \cap \partial \Omega_i$ (i = 3, 4). Since $f_0 = g_0 = 0$ and $f_\infty = g_\infty = 0$, it follows from the proof of Theorem 3.1(a) and (b), respectively, that we can choose $H_1 < H_3/2$ and $H_2 > 2H_4$ such that

$$||F(u, v)|| \le ||(u, v)||$$

for $(u, v) \in K \cap \partial \Omega_i$, (i = 1, 2), where

$$\Omega_i = \{(u, v) : (u, v) \in X, \|(u, v)\| < H_i\}, \quad (i = 1, 2).$$

Applying Theorem 2.1 to Ω_1 , Ω_3 and Ω_4 , Ω_2 we get a positive radial solution (u_1, v_1) such that $H_1 \leq \|(u_1, v_1)\| \leq H_3$ and another positive radial solution (u_2, v_2) such that $H_4 \leq \|(u_2, v_2)\| \leq H_2$. Since $H_3 < H_4$, the two solutions are distinct.

(b) For $(u, v) \in K$ and ||(u, v)|| = q, let

$$M(q) = \max \left\{ \int_0^1 s(1-s)h_1(s)f(u(s), v(s)) \, ds, \, \int_0^1 s(1-s)h_2(s)g(u(s), v(s)) \, ds \right\}.$$

Then as above, M(q) > 0 for q > 0.

Choose two numbers $0 < H_3 < H_4$, let $\sigma_2 = \min\{H_3/(2M(H_3)), H_4/(2M(H_4))\}$ and set

$$\Omega_i = \{(u,v) : (u,v) \in X, \|(u,v)\| < H_i\}, \quad (i=3,4).$$

Then for $\lambda, \mu \leq \sigma_2$ and $(u, v) \in K \cap \partial \Omega_i$, (i = 3, 4), we have

$$A(u, v)(t) \le \lambda M(H_i) \le \sigma_2 M(H_i) \le H_i/2, \quad (i = 3, 4)$$

and similarly, $B(u, v)(t) \le \sigma_2 M(H_i) \le H_i/2$, (i = 3, 4), which implies

$$||F(u,v)|| \le H_i = ||(u,v)||$$

for $(u, v) \in K \cap \partial \Omega_i$ (i = 3, 4). Since either $f_0 = \infty$ or $g_0 = \infty$, and either $f_\infty = \infty$ or $g_\infty = \infty$, it follows from the proof of Theorem 3.1(b) and (a), respectively, that we can choose $H_1 < H_3/2$ and $H_2 > 2H_4$ such that

$$||F(u, v)|| \ge ||(u, v)||$$

for $(u, v) \in K \cap \partial \Omega_i$ (i = 1, 2), where

$$\Omega_i = \{(u, v) : (u, v) \in X, \|(u, v)\| < H_i\}, \quad (i = 1, 2).$$

Once again we obtain the existence of two distinct positive radial solutions.

The following existence result is a simple consequence of the preceding theorems.

THEOREM 4.2. Assume (A_1) , (A_2) hold.

- (a) If $f_0 = g_0 = 0$ or $f_\infty = g_\infty = 0$, then there is a positive constant σ_3 such that (1) has at least one positive radial solution for all $\lambda, \mu \ge \sigma_3$.
- (b) If $f_0 = \infty$ or $g_0 = \infty$, or if $f_\infty = \infty$ or $g_\infty = \infty$, then there is a positive constant σ_4 such that (1) has at least one positive radial solution for all $\lambda, \mu \leq \sigma_4$.

5. REMARKS

The results of this paper are also valid for the following mixed-type boundary value problems and are handled in an analogous manner.

$$\begin{cases} \Delta u + \lambda k_1(|x|) f(u, v) = 0\\ \Delta v + \mu k_2(|x|) g(u, v) = 0\\ u = v = 0 \quad \text{on } |x| = R_1, \qquad \frac{\partial u}{\partial r} = \frac{\partial v}{\partial r} = 0 \quad \text{on } |x| = R_2 \end{cases}$$
(5)

$$\begin{cases} \Delta u + \lambda k_1(|x|) f(u, v) = 0\\ \Delta u + \mu k_2(|x|) g(u, v) = 0\\ \frac{\partial u}{\partial r} = \frac{\partial v}{\partial r} = 0 \quad \text{on } |x| = R_1, \qquad u = v = 0 \quad \text{on } |x| = R_2 \end{cases}$$
(6)

where $\partial/\partial r$ denotes differentiation in the radial direction.

It is easy to check that (5) and (6) are equivalent to the integral equations

$$\begin{cases} u(t) = \lambda \int_{0}^{1} k_{1}(t, s)h_{1}(s)f(u(s), v(s)) ds \\ v(t) = \mu \int_{0}^{1} k_{1}(t, s)h_{2}(s)g(u(s), v(s)) ds \end{cases}$$
 (7)

$$\begin{cases} u(t) = \lambda \int_{0}^{1} k_{2}(t, s) h_{1}(s) f(u(s), v(s)) \, ds \\ v(t) = \mu \int_{0}^{1} k_{2}(t, s) h_{2}(s) g(u(s), v(s)) \, ds \end{cases}$$
(8)

respectively, where

$$k_1(t,s) = \begin{cases} t, & t \le s \\ s, & t > s, \end{cases}$$

and

$$k_2(t,s) = \begin{cases} 1-s, & t \leq s \\ 1-t, & t > s. \end{cases}$$

For problem (7), one considers the cone

$$K_1 = \left\{ (u, v) : (u, v) \in X, \ u, v \ge 0, \min_{1/2 \le t \le 1} (u(t) + v(t)) \ge \frac{1}{2} (\|u\| + \|v\|) \right\}$$

and for problem (8), one considers the cone

$$K_2 = \left\{ (u, v) : (u, v) \in X, \ u, v \ge 0, \min_{0 \le t \le 1/2} (u(t) + v(t)) \ge \frac{1}{2} (\|u\| + \|v\|) \right\}.$$

REFERENCES

- 1. Arcoya, D., Positive solutions for semilinear Dirichlet problems in an annulus. J. diff. Eqns, 1991, 94, 217-227.
- 2. Bandle, C., Coffman, C. V. and Marcus, M., Nonlinear elliptic problems in annular domains. J. diff. Eqns, 1987, 69, 322-345.
- Bandle, C. and Kwong, M., Semilinear elliptic problems in annular domains. J. Appl. Phys. (ZAMP), 1989, 40, 245-257.
- Dancer, E. N., Global breaking of symmetry of positive solutions in two dimensional equations. Differential and Integral Equations, 1992, 5, 903-913.

- 5. Dang, H. and Schmitt, K., Existence of positive solutions for semilinear elliptic equations in annular domains. Differential and Integral Equations, 1994, 7, 747-758.
- 6. Dunninger, D. R. and Wang, H., Existence and multiplicity of positive solutions for elliptic systems in annular domains. Submitted to Differential and Integral Equations.
- 7. Erbe, L. and Wang, H., On the existence of positive solutions of ordinary differential equations. *Proc. Am. math. Soc.*, 1994, 120, 743-748.
- 8. Erbe, L., Hu, S. and Wang, H., Multiple positive solutions of some boundary value problems. *Journal of Mathematical Analysis and Applications*, 1994, 184, 743-748.
- 9. Erbe, L. and Wang, H., Existence and nonexistence of positive solutions for elliptic equations in an annulus. *Inequalities and Applications, WSSAA*, 1994, 3, 207-217.
- 10. Fink, A., Gatica, J. and Hernandez, G., Eigenvalues of generalized Gel'fand models. *Nonlinear Analysis*, 1993, 20, 1453-1468.
- 11. Lin, S. S., On the existence of positive radial solutions for semilinear elliptic equations in annular domains. J. diff. Eqns., 1989, 81, 221-233.
- 12. Lin, S. S., Positive radial solutions and non-radial bifurcation for semilinear elliptic equations in annulus domains. *J. diff. Eqns*, 1990, **86**, 367-391.
- 13. Nagasaki, K. and Suzuki, T., Radial and nonradial solutions for the nonlinear eigenvalue problems $\Delta u + \lambda e^u = 0$ in R^2 . J. diff. Eqns, 1990, 87, 144-168.
- 14. Wang, H., On the existence of positive solutions for semilinear elliptic equations in the annulus. J. diff. Eqns, 1994, 109, 1-7.
- 15. Peletier, L. and van der Vorst, R. C. A. M., Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equations. *Differential and Integral Equations*, 1992, 5, 747-767.
- 16. Deimling, K., Nonlinear Functional Analysis. Springer, New York, 1985.