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ABSTRACT. We study the existence of positive solutions of the equation " +
a(t)f(u) = 0 with linear boundary conditions. We show the existence of at
least one positive solution if f is either superlinear or sublinear by a simple
application of a Fixed Point Theorem in cones.

1. INTRODUCTION

In this paper we shall consider the second-order boundary value problem
(BVP)

(1.1) W +al)f(u)=0, O<t<l1;

au(0) — fu'(0) =0,

yu(l) +du'(1) =0.

The following conditions will be assumed throughout:
(A.1) feC([0, ), [0, )),
(A.2) ae C([0, 1], [0, o0)) and a(t) #0 on any subinterval of [0, 1].
(A3) a,B,7,0>0and p:=yBf+ay+ad>0.

The BVP (1.1), (1.2) arises in many different areas of applied mathematics
and physics; see [1-3, 6, 12, 13] for some references along this line. Additional
existence results may be found in [4, 7, 8, 10, 11]. Our purpose here is to
give an existence result for positive solutions to the BVP (1.1), (1.2), assuming
that f is either superlinear or sublinear. We do not require any monotonicity
assumptions on f. To be precise, we introduce the notation

f(u) f(u)

Jor=lim ==, Joo 1= Jim —

(1.2)

Thus, fo =0 and f,, = oo correspond to the superlinear case, and fy = oo
and f,, = 0 correspond to the sublinear case. By a positive solution of (1.1),
(1.2) we understand a solution #(z) which is positive on 0 < ¢ < 1 and satisfies
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the differential equation (1.1) for 0 < ¢ < 1 and the boundary conditions (1.2).
By a change of variable, the existence of a positive solution of (1.1), (1.2) may
be shown to be equivalent to the existence of a positive radial solution of the
semilinear elliptic equation Au + g(|x|)f(#) =0 in the annulus R; < |x| < R
subject to certain boundary conditions for |x| = R; and |x| = R,. (Here |x|
denotes the Euclidean norm.) We refer to [11] for some additional details.

2. EXISTENCE RESULTS
The main result of this paper is
Theorem 1. Assume (A.1)-(A.3) hold. Then the BVP (1.1), (1.2) has at least one
positive solution in the case
(i) fo=0 and fo = oo (superlinear), or
(ii) fo =oc and fo =0 (sublinear).

It will be seen in the proof that Theorem 1 is also valid for the more general
equation
(1.1)* W+ f(t,u)=0
with the same boundary conditions (1.2), provided we assume a certain unifor-
mity with respect to the ¢ variable. We state this more general result as

Corollary 1. Assume f is continuous, f(t,u) >0 for t €[0,1], and u >0
with f(t, u) #0 on any subinterval of [0, 1] for u > 0; and let condition (A.3)
hold. Then the BVP (1.1)*, (1.2) has at least one positive solution in the case

(1)*  limy_o+ MaX.epo, 1 —f-%—'—‘l =0 and lim,_,o, min,, 1 ﬂ’u—“l =00, or
(if)*  limy,—o4+ minggp, 1 ﬂ'u—"l = o0 and lim,_,o MaxX.cp, 1 —f%ll =0.
The proof of Theorem 1 will be based on an application of the following Fixed

Point Theorem due to Krasnoselskii [9]. The proof of Corollary 1 follows from
the proof of Theorem 1 with obvious slight modifications which we shall omit.

Theorem 2 [4, 9]. Let E be a Banach space, and let K C E be a cone in E.
Assume Q,, Q, are open subsets of E with 0 € Q,, Q, C Q,, and let
A: KN (Q\Q) = K

be a completely continuous operator such that either

(1) || 4u|| < |lu|l, ue KNoQ,, and ||Au|| > ||lu||, ue KNay; or
(ii) ||Au| > ||u||, € KNOQ,, and ||Au|| < |lul|, ue KNIQ;.

Then A has a fixed point in K N (Q\Q).

We will apply the first and second parts of the above Fixed Point Theorem
to the superlinear and sublinear cases, respectively.

Proof of Theorem 1. Superlinear case. Suppose then that f; =0 and f. = 0.
We wish to show the existence of a positive solution of (1.1), (1.2). Now (1.1),
(1.2) has a solution u = u(¢) if and only if u solves the operator equation

u(t) = /01 k(t, s)a(s)f(u(s))ds := Au(t), ueC[o, 1].
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Here k(t¢, s) denotes the Green’s function for the BVP
(2.1) u' =0;

au(0) — pu'(0) =0,

(2.2) yu(l) +6u/(1)=0

and is explicitly given by

Jo+d—yt)(B+as), 0<s<t<l,
k(t,s)= f

s(B+at)(y+d—-ys), 0<t<s<l
We let K be the cone in C[0, 1] given by
(2.3) K= {u € C[0, 1]: u(¢) >0, 1/4121;13/4140) > Mllull}
where ||u|| = supyo, 1;|#(2)| and

. Y+ 40 a+4p }
(2.4) M—mm{4(y+6) Mt p) )
We define
(2.5) pt):=(+o-»t), wt)=B+at, 0<t<1,
so that
Lo)w(s), 0<s<t<l1,
(2.6) k(t,s)= ,l,co( W)
so(s)w(), 0<t<s<l
Observe that k(z, s) < %(p(s)c//(s) =k(s,s), 0<t,s<1,sothat, if ue K,
then
1 1
(2.7) Au(t) =/ k(t, s)a(s)f(u(s))ds S/ k(s, s)a(s)f(u(s))ds
0 0
and hence
1

(2.8) | 4u]| < A k(s, s)a(s)f(u(s)) ds.
Furthermore, for 1 <7< 3

(1) 7+ 40 <

k(. 5) _{ oo = _Jagre S
k(s,s) ] w() =) a+4p

Y IENE) t <S, YN R tSS,

y(s) 4(a+B)
% k(t, ) 1 3

, S
k(S,S)>M’ 25154

Hence, if u € K,

1
min Au()=  min /0 k(t, s)a(s) f(u(s)) ds

1/4<t<3/4

>M / (s, $)a(s)f(u(s) ds > M| Au].
0
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Therefore, AK C K. Moreover, it is easy to see that A: K — K is com-
pletely continuous.

Now, since fy = 0, we may choose H; >0 so that f(u) < nu, for 0 < u <
H, , where 1 > 0 satisfies

(2.9) n/kss s)ds < 1.
Thus, if u € K and ||u|| = H,, then from (2.7) and (2.9)
1
(2.10) Au(t) < / k(s, s)a(s) f(u) < |ull, O0<r<l.
0
Now if we let
(2.11) Q :={uekE: |u| < H}
then (2.10) shows that
(2.12) | Au|| < ||u|l, ueKnoQ,.

Further, since f,, = oo, there exists A, > 0 such that f(u)>pu, u> H,,
where u > 0 is chosen so that
3/4
(2.13) Mu k(L,s)a(s)ds > 1.
1/4
Let H, :=max{2H;, H,/M} and Q,:={u € E: ||u|| < H,}. Then u € K and
\lu|| = H, implies

s ()2 Miul 2 B
and so
3/4
Au(}) = / k(4 ws)ds> [ k(d, s)a(s)f(u(s)) ds
1/4
3/4 3/4

>u » k(L. s)a(s)u(s)ds > uM]u| » k%, s)a(s)ds > ||ul.

Hence, ||Au|l > ||u|| for ue KNoQ,.

Therefore, by the first part of the Fixed Point Theorem, it follows that A
has a fixed point in K N Q\Q, such that H; < ||u|| < H,. Further, since
k(t,s) > 0, it follows that u(¢) > 0 for 0 < ¢t < 1. This completes the
superlinear part of the theorem.

Sublinear case. Suppose next that fy = co and f,, = 0. We first choose
H; > 0 such that f(u) > fiu for 0 < u < H,, where

3/4
(2.14) M k(%,s)a(s)ds > 1
1/4
(M 1s as in the first part of the proof). Then for u € K and ||u|| = H; we have

Au(3) = / k(%, s)a(s)f(u(s))ds

3/4 3/4
> 9 k(%,s)a(s)f(u(s))ds > 1 i k(%, s)a(s)u(s)ds
3/4
=AM ||u| s k(3,s)a(s)ds > |lul| [by (2.14)].
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Thus, we may let Q; :={u € E: ||u|| < H,} so that
|Au|| > ||u|| for u e KNoQ,.
Now, since fo, = 0, there exists H, > 0 so that f (u) < Au for u > flz
where A > 0 satisfies

1
(2.15) A/ k(s, s)a(s)ds < 1.
0

We consider two cases:

Case (i). Suppose f is bounded, say f(u) < N forall u € (0, o). In this case
choose H, := max{2H,, Nfol k(s, s)a(s)ds} so that for u € K with ||u|| = H;
we have

1 1
Au(t) = / k(t, s)a(s)f(u(s))ds < N / k(s, s)a(s)ds < H
0 0
and therefore ||Au| < ¥ .
Case (ii). If f is unbounded, then let H, > max{2H,, flz} and such that

f(u) < f(Hy) for0<u< H,.

(We are able to do this since f is unbounded.)
Then for ¥ € K and ||u|| = H, we have

1 1
Au(t) = /0 k(t, s)a(s)f(u(s))ds < /0 k(s, s)a(s)f(u(s))ds

1 1
< / k(s, s)a(s)f(Hy)ds < AHZ/ k(s,s)a(s)ds < Hy = ||u||-
0 0

Therefore, in either case we may put
Q:={u€E: |ul < Hy},

and for u € KNAQ, we have ||Au| < |lu||. By the second part of the Fixed
Point Theorem it follows that BVP (1.1), (1.2) has a positive solution, and this
completes the proof of the theorem.
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