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Abstract. We study the existence, multiplicity and nonexistence of
positive radial solutions to boundary value problems for the quasilinear
equation div (A(|∇u|)∇u) + λh(|x|)f(u) = 0 in annular domains under
general assumptions on the function A(u). Various possible behaviors

of the quotient f(u)
A(u)u

at zero and infinity are considered. We shall use

fixed point theorems for operators on a Banach space.

1. Introduction

In this paper we consider the existence, multiplicity and nonexistence
of positive radial solutions for the quasilinear equation

div (A(|∇u|)∇u) + λk(|x|)f(u) = 0, in R1 < |x| < R2, x ∈ R
n, n ≥ 2

(1.1)
with one of the following three sets of boundary conditions,

u = 0 on |x| = R1 and |x| = R2, (1.2a)

∂u/∂r = 0 on |x| = R1 and u = 0 on |x| = R2, (1.2b)

u = 0 on |x| = R1 and ∂u/∂r = 0 on |x| = R2, (1.2c)

where r = |x| and ∂/∂r denotes differentiation in the radial direction, and
0 < R1 < R2 < ∞.

Ni and Serrin [14, 15] established some existence and non-existence the-
orems for radial ground state solutions of quasilinear equations of the form
(1.1) in R

n. The function A originates from a variety of practical appli-
cations, for instance, the degenerate m-Laplace operator, namely A(|p|) =
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|p|m−2, m > 1. When A ≡ 1 we recall that (1.1) reduces to the classical
semilinear elliptic equation

∆u + λk(|x|)f(u) = 0, in R1 < |x| < R2, x ∈ R
n, n ≥ 2. (1.3)

(1.3)-(1.2) has been studied by Bandle, Coffman and Marcus [1], Bandle and
Peletier [2], Coffman and Kwong [3], Lin [12], Ni and Nussbaum [13] and
many others [5, 7, 9, 11, 16, 18, 19]. In particular, when f is non-negative,
Bandle, Coffman and Marcus [1], Coffman and Marcus [5] and Lin [12] have
established the existence of positive radial solutions of (1.3)-(1.2) under the
assumption that f is superlinear, i.e., limu→0

f(u)
u = 0 and limu→∞

f(u)
u = ∞,

which improves various earlier existence results by many authors under some
additional assumptions on f .

On the other hand, the present author [16] has established the existence
of positive radial solutions of (1.3)-(1.2) under the assumption that f is
sublinear, i.e., limu→0

f(u)
u = ∞ and limu→∞

f(u)
u = 0. In fact, we shall show

that the existence, multiplicity and nonexistence of positive radial solutions
of (1.3)-(1.2) are characterized by the asymptotic behaviors of the quotient
f(u)

u at zero and infinity.
The main purpose of this paper is to examine the quasilinear problem

(1.1)-(1.2) under general assumptions on the function A. In this paper we
introduce a new and general assumption (see H1) on the function A, which
covers the two important cases A ≡ 1 and A(|p|) = |p|m−2, m > 1, i.e., the
degenerate m-Laplace operator.

Under such assumption, we are able to show that the structure of the
positive radial solution set of (1.1)-(1.2) is exactly the same as that of the two
special cases A ≡ 1 and A(|p|) = |p|m−2, m > 1, in the sense that Theorems
1.1 and 1.2 hold for the general problem (1.1)-(1.2) and the two special cases.
We consider not only existence, but also multiplicity and nonexistence. Our
results (Theorems 1.1 and 1.2) generalize and extend the work of many
authors [1, 2, 3, 5, 7, 11, 12, 13, 16, 18, 19]. Furthermore, most of our results
are new even for the case A(|p|) = |p|m−2, m > 1.

Finally, our arguments in this paper are closely related to those of [16], in
which the present author uses the fixed point index for compact maps, which
is based on Leray-Schauder degree theory, to study (1.1)-(1.2) for A ≡ 1.

Let ϕ(t) := A(|t|)t. We make the assumptions:

(H1) ϕ is an odd, increasing homeomorphism from R onto R and there
exist two increasing homeomorphisms ψ1 and ψ2 from (0,∞) onto
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(0,∞) such that

ψ1(σ)ϕ(t) ≤ ϕ(σt) ≤ ψ2(σ)ϕ(t), for all σ and t > 0.

(H2) k : [R1, R2] → [0,∞) is continuous and k(t) �≡ 0 on any subinterval
of [R1, R2].

(H3) f : [0,∞) → [0,∞) is continuous.
(H4) f(u) > 0 for u > 0.

In order to state our results we introduce the notation

f0 := lim
u→0

f(u)
ϕ(u)

and f∞ := lim
u→∞

f(u)
ϕ(u)

.

Our main results are:

Theorem 1.1. Assume (H1)-(H3) hold.
(a) If f0 = 0 and f∞ = ∞, then for all λ > 0 (1.1)-(1.2) has a positive

radial solution.
(b) If f0 = ∞ and f∞ = 0, then for all λ > 0 (1.1)-(1.2) has a positive

radial solution.

Theorem 1.2. Assume (H1)-(H4) hold.
(a) If f0 = 0 or f∞ = 0, then there exists a λ0 > 0 such that for all

λ > λ0 (1.1)-(1.2) has a positive radial solution.
(b) If f0 = ∞ or f∞ = ∞, then there exists a λ0 > 0 such that for all

0 < λ < λ0 (1.1)-(1.2) has a positive radial solution.
(c) If f0 = f∞ = 0, then there exists a λ0 > 0 such that for all λ > λ0

(1.1)-(1.2) has two positive radial solutions.
(d) If f0 = f∞ = ∞, then there exists a λ0 > 0 such that for all 0 < λ <

λ0 (1.1)-(1.2) has two positive radial solutions.
(e) If f0 < ∞ and f∞ < ∞, then there exists a λ0 > 0 such that for all

0 < λ < λ0 (1.1)-(1.2) has no positive radial solution.
(f) If f0 > 0 and f∞ > 0, then there exists a λ0 > 0 such that for all

λ > λ0 (1.1)-(1.2) has no positive radial solution.

We should mention that, on an annulus, there are non-radially symmet-
ric positive solutions of (1.1)-(1.2) even when f(u) = up, which was first
observed by Brezis and Nirenberg [4].

2. Preliminaries

A radial solution of (1.1)-(1.2) can be considered as a solution of the
equation(

rn−1ϕ(u′(r))
)′ + λrn−1k(r)f(u(r)) = 0, in R1 < r < R2, (2.1)
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with one of the following three sets of boundary conditions,

u(R1) = u(R2) = 0, (2.2a)

u′(R1) = u(R2) = 0, (2.2b)

u(R1) = u′(R2) = 0. (2.2c)

We shall treat classical solutions of (2.1)-(2.2), namely functions u of class
C1 on [R1, R2] with ϕ(u′) ∈ C1(R1, R2), which satisfies (2.1)-(2.2) for r ∈
(R1, R2). A solution u is positive if u(r) > 0 for all r ∈ (R1, R2).

Applying change of variables, r = (R2 − R1)t + R1, we can transform
(2.1)-(2.2) into the form

(q(t)ϕ(p(t)u′))′ + λh(t)f(u) = 0, 0 < t < 1 (2.3)

with one of the following three sets of boundary conditions,

u(0) = u(1) = 0, (2.4a)

u′(0) = u(1) = 0, (2.4b)

u(0) = u′(1) = 0, (2.4c)

where
q(t) := ((R2 − R1)t + R1)n−1, p(t) :=

1
R2 − R1

and

h(t) := (R2 − R1)((R2 − R1)t + R1)n−1k((R2 − R1)t + R1).

It is easy to see that (H1)-(H2) imply

(P )




p(t) and q(t) ∈ C[0, 1] with p > 0 and q > 0 for t ∈ [0, 1]
and q(t) is nondecreasing on [0, 1].
ϕ is an odd, increasing homeomorphism from R onto R and
there exist two increasing homeomorphisms ψ1 and ψ2 from
(0,∞) onto (0,∞) such that

ψ1(σ)ϕ(t) ≤ ϕ(σt) ≤ ψ2(σ)ϕ(t), for all σ and t > 0.
h : [0, 1] → [0,∞) is continuous and does not vanish identically
on any subinterval of [0, 1].

For (2.3)-(2.4) we shall prove Theorems 2.1 and 2.2, which immediately
imply that Theorems 1.1 and 1.2 are true. In addition, Part (g) of Theorem
2.2 also holds for (1.1)-(1.2).

Although the functions p, q, ϕ and h are of the special forms defined
above, we remark that Theorems 2.1 and 2.2, including Lemmas 2.4-2.11,
hold even for general functions p, q, ϕ and h if they satisfy the property (P).
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In the following proof we only use the property (P) of p, q, ϕ and h and do
not rely on any special form that p, q, ϕ and h may have. Define

ρ :=
[ ∫ 1

0

1
p(s)

ds
]−1

min
{∫ 1

4

0

1
p(t)

dt,

∫ 1

3
4

1
p(t)

dt
}

> 0,

and

γ(t) :=
ρ

2

[ ∫ t

1
4

1
p(s)

ψ−1
2

( 1
q(1)

∫ t

s
h(τ)dτ

)
ds

+
∫ 3

4

t

1
p(s)

ψ−1
2

( 1
q(1)

∫ s

t
h(τ)dτ

)
ds

]
,

where t ∈ [14 , 3
4 ]. It follows from (H1)-(H2) that Γ := min 1

4
≤t≤ 3

4
γ(t) > 0.

Theorem 2.1. Assume (H1)-(H3) hold.
(a) If f0 = 0 and f∞ = ∞, then for all λ > 0 (2.3)-(2.4) has a positive

solution.
(b) If f0 = ∞ and f∞ = 0, then for all λ > 0 (2.3)-(2.4) has a positive

solution.

Theorem 2.2. Assume (H1)-(H4) hold.
(a) If f0 = 0 or f∞ = 0, then there exists a λ0 > 0 such that for all

λ > λ0 (2.3)-(2.4) has a positive solution.
(b) If f0 = ∞ or f∞ = ∞, then there exists a λ0 > 0 such that for all

0 < λ < λ0 (2.3)-(2.4) has a positive solution.
(c) If f0 = f∞ = 0, then there exists a λ0 > 0 such that for all λ > λ0

(2.3)-(2.4) has two positive solutions.
(d) If f0 = f∞ = ∞, then there exists a λ0 > 0 such that for all 0 < λ <

λ0 (2.3)-(2.4) has two positive solutions.
(e) If f0 < ∞ and f∞ < ∞, then there exists a λ0 > 0 such that for all

0 < λ < λ0 (2.3)-(2.4) has no positive solution.
(f) If f0 > 0 and f∞ > 0, then there exists a λ0 > 0 such that for all

λ > λ0 (2.3)-(2.4) has no positive solution.
(g) If 0 < f0 < ∞, 0 < f∞ < ∞ and either

ψ2(
1

Γψ−1
2 (f0)

) < λ < ψ1(
1∫ 1

0
1

p(s)dsψ−1
1 ( 1

q(0)

∫ 1
0 h(τ)dτ)ψ−1

1 (f∞)
)

or

ψ2(
1

Γψ−1
2 (f∞)

) < λ < ψ1(
1∫ 1

0
1

p(s)dsψ−1
1 ( 1

q(0)

∫ 1
0 h(τ)dτ)ψ−1

1 (f0)
),
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then (2.3)-(2.4) has a positive solution.

The following well-known result of the fixed point index is crucial in our
arguments.

Lemma 2.3. ([6, 8, 10]). Let E be a Banach space and K a cone in E.
For r > 0, define Kr := {u ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is
completely continuous such that Tx �= x for x ∈ ∂Kr := {u ∈ K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, then i(T, Kr, K) = 0.
(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, then i(T, Kr, K) = 1.

In order to apply Lemma 2.3 to (2.3)-(2.4), let X be the Banach space
C[0, 1] with ‖u‖ = supt∈[0,1] |u(t)|. Define K be a cone in X by

K := {u ∈ X : u(t) ≥ 0, min
1
4
≤t≤ 3

4

u(t) ≥ ρ‖u‖}.

Also, define, for r a positive number, Ωr by Ωr := {u ∈ K : ‖u‖ < r}. Note
that ∂Ωr = {u ∈ K : ‖u‖ = r}.

Let the map Tλ : K → X be defined by

Tλu(t) :=




∫ t
0

1
p(s)ϕ

−1( 1
q(s)λ

∫ σ
s h(τ)f(u(τ))dτ)ds, 0 ≤ t ≤ σ,∫ 1

t
1

p(s)ϕ
−1( 1

q(s)λ
∫ s
σ h(τ)f(u(τ))dτ)ds, σ ≤ t ≤ 1,

where σ = 0 for (2.3)-(2.4b) and σ = 1 for (2.3)-(2.4c). For (2.3)-(2.4a)
σ ∈ (0, 1) is a solution of the equation

Z1(t) = Z2(t), (2.5)

where

Z1(t) =
∫ t

0

1
p(s)

ϕ−1(
1

q(s)
λ

∫ t

s
h(τ)f(u(τ))dτ)ds, 0 ≤ t ≤ 1,

and

Z2(t) =
∫ 1

t

1
p(s)

ϕ−1(
1

q(s)
λ

∫ s

t
h(τ)f(u(τ))dτ)ds, 0 ≤ t ≤ 1.

Note that (2.5) has at least one solution in (0, 1). In fact, if h(τ)f(u(τ)) ≡ 0
on [0,1], we may choose any σ ∈ (0, 1). If there is a τ ∈ (0, 1) such that
h(τ)f(u(τ)) > 0, then Z1(0) − Z2(0) < 0 and Z1(1) − Z2(1) > 0. Since
Z1(t)−Z2(t) is nondecreasing continuous function defined on [0,1], (2.5) has
at least one solution in (0,1). Moreover, if σ1 and σ2 ∈ (0, 1) are solutions of
(2.5), it is not difficult to show that h(τ)f(u(τ)) ≡ 0 on [σ1, σ2]. Therefore,
Tλu(t) is independent of the choice of σ ∈ [σ1, σ2] and then the operator is
well defined.
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Lemma 2.4. Assume (H1)-(H2) hold. Let u and v ∈ X with u(t) ≥ 0 and
v(t) ≤ 0 for t ∈ [0, 1]. If (q(t)ϕ(p(t)u′))′ = v, then

u(t) ≥ [
∫ 1

0

1
p(s)

ds]−1 min{
∫ t

0

1
p(s)

ds,

∫ 1

t

1
p(s)

ds}||u||, t ∈ [0, 1].

In particular,
min

1
4
≤t≤ 3

4

u(t) ≥ ρ||u||.

Proof. Since q(t)ϕ(p(t)u′(t)) is nonincreasing, it follows, from ϕ−1 is in-
creasing and q(t) is nondecreasing, that p(t)u′(t) is nonincreasing. Hence,
for 0 ≤ t0 < t < t1 ≤ 1,

u(t) − u(t0) =
∫ t

t0

1
p(s)

p(s)u′(s)ds ≥
∫ t

t0

1
p(s)

dsp(t)u′(t)

and

u(t1) − u(t) =
∫ t1

t

1
p(s)

p(s)u′(s)ds ≤
∫ t1

t

1
p(s)

dsp(t)u′(t),

from which, we have

u(t) ≥ [
∫ t1

t0

1
p(s)

ds]−1[
∫ t1

t

1
p(s)

dsu(t0) +
∫ t

t0

1
p(s)

dsu(t1)].

Considering the above inequality on [0, σ] and [σ, 1], we have

u(t) ≥ [
∫ 1

0

1
p(s)

ds]−1

∫ t

0

1
p(s)

ds||u|| for t ∈ [0, σ],

and

u(t) ≥ [
∫ 1

0

1
p(s)

ds]−1

∫ 1

t

1
p(s)

ds||u|| for t ∈ [σ, 1],

where σ ∈ [0, 1] such that u(σ) = ||u||. Hence,

u(t) ≥ [
∫ 1

0

1
p(s)

ds]−1 min{
∫ t

0

1
p(s)

ds,

∫ 1

t

1
p(s)

ds}||u||, t ∈ [0, 1]. �

We remark that, according to Lemma 2.4, any non-negative solution of
(2.3)-(2.4) is positive unless it is identical to zero.

Lemma 2.5. Assume (H1)-(H3) hold. Then Tλ(K) ⊂ K and the map
Tλ : K → K is completely continuous.
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Proof. Lemma 2.4 implies that Tλ(K) ⊂ K. It is not difficult to verify that
Tλ is compact and continuous. �

Now it is not difficult to show that (2.3)-(2.4) is equivalent to the fixed
point equation

Tλu = u in K.

Lemma 2.6. Assume (H1) holds. Then for all σ, t ∈ (0,∞)

ψ−1
2 (σ)t ≤ ϕ−1(σϕ(t)) ≤ ψ−1

1 (σ)t.

Proof. Since σ = ψ1(ψ−1
1 (σ)) = ψ2(ψ−1

2 (σ)) and ϕ(ϕ−1(σϕ(t))) = σϕ(t), it
follows that

ψ2(ψ−1
2 (σ))ϕ(t) = ϕ(ϕ−1(σϕ(t))) = ψ1(ψ−1

1 (σ))ϕ(t).

On the other hand, we have by (H1)

ψ1(ψ−1
1 (σ))ϕ(t) ≤ ϕ(ψ−1

1 (σ)t) and ψ2(ψ−1
2 (σ))ϕ(t) ≥ ϕ(ψ−1

2 (σ)t).

Hence,
ϕ(ψ−1

2 (σ)t) ≤ ϕ(ϕ−1(σϕ(t)) ≤ ϕ(ψ−1
1 (σ)t).

Since ϕ−1 is increasing, we obtain

ψ−1
2 (σ)t ≤ ϕ−1(σϕ(t)) ≤ ψ−1

1 (σ)t. �
Lemma 2.7. Assume (H1)-(H3) hold and let η > 0. If u ∈ K and f(u(t)) ≥
ϕ(u(t)η) for t ∈ [14 , 3

4 ], then

‖Tλu‖ ≥ ψ−1
2 (λ)Γη‖u‖.

Proof. Note that from the definition of Tλu that Tλu(σ) is the maximum
value of Tλu on [0,1]. If σ ∈ [14 , 3

4 ], it follows from Lemma 2.4 and Lemma 2.6
that

‖Tλu‖ ≥ 1
2

[ ∫ σ

1
4

1
p(s)

ϕ−1(
1

q(1)
λ

∫ σ

s
h(τ)f(u(τ))dτ)ds

+
∫ 3

4

σ

1
p(s)

ϕ−1(
1

q(1)
λ

∫ s

σ
h(τ)f(u(τ))dτ)ds

]

≥ 1
2

[ ∫ σ

1
4

1
p(s)

ϕ−1(
1

q(1)

∫ σ

s
h(τ)ψ2(ψ−1

2 (λ))ϕ(u(τ)η)dτ)ds

+
∫ 3

4

σ

1
p(s)

ϕ−1(
1

q(1)

∫ s

σ
h(τ)ψ2(ψ−1

2 (λ))ϕ(u(τ)η)dτ)ds
]

≥ 1
2

[ ∫ σ

1
4

1
p(s)

ϕ−1(
1

q(1)

∫ σ

s
h(τ)ϕ(ψ−1

2 (λ)ρη‖u‖)dτ)ds
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+
∫ 3

4

σ

1
p(s)

ϕ−1(
1

q(1)

∫ s

σ
h(τ)ϕ(ψ−1

2 (λ)ρη‖u‖)dτ)ds
]

≥ 1
2

[ ∫ σ

1
4

1
p(s)

ψ−1
2 (

1
q(1)

∫ σ

s
h(τ)dτ)ψ−1

2 (λ)ρη‖u‖ds

+
∫ 3

4

σ

1
p(s)

ψ−1
2 (

1
q(1)

∫ s

σ
h(τ)dτ)ψ−1

2 (λ)ρη‖u‖ds
]

=
ψ−1

2 (λ)ηρ‖u‖
2

[ ∫ σ

1
4

1
p(s)

ψ−1
2 (

1
q(1)

∫ σ

s
h(τ)dτ)ds

+
∫ 3

4

σ

1
p(s)

ψ−1
2 (

1
q(1)

∫ s

σ
h(τ)dτ)ds

]
≥ ψ−1

2 (λ)Γη‖u‖.

For σ > 3
4 , it is easy to see

‖Tλu‖ ≥
∫ 3

4

1
4

1
p(s)

ϕ−1(
1

q(1)
λ

∫ 3
4

s
h(τ)f(u(τ))dτ)ds.

On the other hand, we have

‖Tλu‖ ≥
∫ 3

4

1
4

1
p(s)

ϕ−1(
1

q(1)
λ

∫ s

1
4

h(τ)f(u(τ))dτ)ds for σ <
1
4
.

Therefore, similar arguments show that

‖Tλu‖ ≥ ψ−1
2 (λ)Γη‖u‖ if σ >

3
4

or σ <
1
4
. �

Define a new function

f∗(u) := max
0≤t≤u

{f(t)}.

Note that f∗
0 = limu→0

f∗(u)
ϕ(u) and f∗∞ = limu→∞

f∗(u)
ϕ(u) .

Lemma 2.8. Assume (H1)-(H3) hold. Then f∗
0 = f0 and f∗∞ = f∞.

Proof. It is easy to see that f∗
0 = f0. For the second part, we consider two

cases, (a) f(u) is bounded and (b) f(u) is unbounded. For the case (a), it
follows, from limu→∞ ϕ(u) = ∞, that f∗∞ = 0 = f∞. For the case (b), for
any δ > 0, let M := max

0≤t≤δ
{f(t)} and Nδ := min{u : u ≥ δ, f(u) ≥ M} ≥ δ,

then
max

0≤t≤Nδ

{f(t)} = f(Nδ).
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Thus, for any δ > 0, there exists a Nδ ≥ δ such that

f∗(u) = max{ max
0≤t≤Nδ

{f(t)}, max
Nδ≤t≤u

{f(t)}} = max
Nδ≤t≤u

{f(t)} for u > Nδ.

Hence, it follows, from the definitions of f∞ and f∗∞, that f∗∞ = f∞. �

Lemma 2.9. Assume (H1)-(H3) hold and let r > 0. If there exists an ε > 0
such that f∗(r) ≤ ψ1(ε)ϕ(r), then

‖Tλu‖ ≤ ψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(τ)dτ)ε‖u‖ for u ∈ ∂Ωr.

Proof. From the definition of Tλ, Lemma 2.4 and Lemma 2.6, for u ∈ ∂Ωr,
we have

‖Tλu‖ ≤
∫ 1

0

1
p(s)

ϕ−1(
1

q(0)
λ

∫ 1

0
h(τ)f(u(τ))dτ)ds

≤
∫ 1

0

1
p(s)

ϕ−1(
1

q(0)

∫ 1

0
h(τ)λf∗(r)dτ)ds

≤
∫ 1

0

1
p(s)

dsϕ−1(
1

q(0)

∫ 1

0
h(τ)ψ1(ψ−1

1 (λ))ψ1(ε)ϕ(r)dτ)

≤
∫ 1

0

1
p(s)

dsϕ−1(
1

q(0)

∫ 1

0
h(τ)dτϕ(ψ−1

1 (λ)εr))

≤
∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(τ)dτ)ψ−1

1 (λ)ε‖u‖. �

The following two lemmas are weak forms of Lemmas 2.7 and 2.9.

Lemma 2.10. Assume (H1)-(H4) hold. If u ∈ ∂Ωr, r > 0, then

‖Tλu‖ ≥ ϕ−1(λm̂r)Γ
ρ

,

where m̂r := min
ρr≤t≤r

{f(t)} > 0.

Proof. Since λf(u(t)) ≥ λm̂r = ϕ(ϕ−1(λm̂r)) for t ∈ [14 , 3
4 ], it is easy to see

that this lemma can be shown in a similar manner as in Lemma 2.7. �

Lemma 2.11. Assume (H1)-(H4) hold. If u ∈ ∂Ωr, r > 0, then

‖Tλu‖ ≤ ϕ−1(λM̂r)
∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(τ)dτ),
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where M̂r := max
0≤t≤r

{f(t)} > 0.

Proof. Since λf(u(t)) ≤ λM̂r = ϕ(ϕ−1(λM̂r)) for t ∈ [0, 1], it is easy to see
that this lemma can be shown in a similar manner as in Lemma 2.9. �

3. Proof of Theorem 2.1

Proof. Part (a). It follows from Lemma 2.8 that f∗
0 = 0. Therefore, we can

choose r1 > 0 so that f∗(r1) ≤ ψ1(ε)ϕ(r1), where the constant ε > 0 satisfies

εψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(s)ds) < 1.

We have by Lemma 2.9 that

‖Tλu‖ ≤ ψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(τ)dτ)ε‖u‖ < ‖u‖ for u ∈ ∂Ωr1 .

Now, since f∞ = ∞, there is an Ĥ > 0 such that f(u) ≥ ψ2(η)ϕ(u) for
u ≥ Ĥ , where η > 0 is chosen so that

ψ−1
2 (λ)Γη > 1.

Let r2 = max{2r1,
Ĥ
ρ }. If u ∈ ∂Ωr2 , then

min
1
4
≤t≤ 3

4

u(t) ≥ ρ‖u‖ = ρr2 ≥ Ĥ,

which implies that

f(u(t)) ≥ ψ2(η)ϕ(u(t)) ≥ ϕ(u(t)η) for t ∈ [
1
4
,
3
4
].

It follows from Lemma 2.7 that

‖Tλu‖ ≥ ψ−1
2 (λ)Γη‖u‖ > ‖u‖ for u ∈ ∂Ωr2 .

By Lemma 2.3, i(Tλ, Ωr1 , K) = 1 and i(Tλ, Ωr2 , K) = 0. It follows from the
additivity of the fixed point index that i(Tλ, Ωr2 \ Ω̄r1 , K) = −1. Thus,
i(Tλ, Ωr2 \ Ω̄r1 , K) �= 0, which implies Tλ has a fixed point u ∈ Ωr2 \ Ω̄r1

according to the existence property of the fixed point index. The fixed point
u ∈ Ωr2 \ Ω̄r1 is the desired positive solution of (2.3)-(2.4).

Part (b). If f0 = ∞, there is a r1 > 0 such that f(u) ≥ ψ2(η)ϕ(u) for
0 ≤ u ≤ r1, where η > 0 is chosen so that ψ−1

2 (λ)Γη > 1. If u ∈ ∂Ωr1 , then

f(u(t)) ≥ ψ2(η)ϕ(u(t)) ≥ ϕ(u(t)η) for t ∈ [0, 1].

Lemma 2.7 implies that

‖Tλu‖ ≥ ψ−1
2 (λ)Γη‖u‖ > ‖u‖ for u ∈ ∂Ωr1 .
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We now determine Ωr2 . Since f∗∞ = f∞ = 0, there is a r2 > 2r1 such that
f∗(r2) ≤ ψ1(ε)ϕ(r2), where the constant ε > 0 satisfies

εψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(s)ds) < 1.

Thus, we have by Lemma 2.9

‖Tλu‖ ≤ ψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(τ)dτ)ε‖u‖ < ‖u‖ for u ∈ ∂Ωr2 .

By Lemma 2.3, i(Tλ, Ωr1 , K) = 0 and i(Tλ, Ωr2 , K) = 1. It follows from the
additivity of the fixed point index that i(Tλ, Ωr2 \ Ω̄r1 , K) = 1. Thus, Tλ has
a fixed point in Ωr2 \Ω̄r1 , which is the desired positive solution of (2.3)-(2.4).

4. Proof of Theorem 2.2

Proof. Part (a). Choose a number r1 > 0. By Lemma 2.10, we infer that
there exists a λ0 > 0 such that

‖Tλu‖ > ‖u‖, for u ∈ ∂Ωr1 , λ > λ0.

If f∗
0 = f0 = 0, we can choose 0 < r2 < r1 so that f∗(r2) ≤ ψ1(ε)ϕ(r2),

where the constant ε > 0 satisfies

εψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(s)ds) < 1.

Thus, we have by Lemma 2.9 that

‖Tλu‖ ≤ ψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(τ)dτ)ε‖u‖ < ‖u‖ for u ∈ ∂Ωr2 .

If f∗∞ = f∞ = 0, there is an r3 > 2r1 such that f∗(r3) ≤ ψ1(ε)ϕ(r3), where
the constant ε > 0 satisfies

εψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(s)ds) < 1.

Thus, we have

‖Tλu‖ ≤ ψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(τ)dτ)ε‖u‖ < ‖u‖ for u ∈ ∂Ωr3 .

It follows from Lemma 2.3 that

i(Tλ, Ωr1 , K) = 0, i(Tλ, Ωr2 , K) = 1 and i(Tλ, Ωr3 , K) = 1.

Thus, i(Tλ, Ωr1 \ Ω̄r2 , K) = −1 and i(Tλ, Ωr3 \ Ω̄r1 , K) = 1. Hence, Tλ has
a fixed point in Ωr1 \ Ω̄r2 or Ωr3 \ Ω̄r1 according to f0 = 0 or f∞ = 0,
respectively. Consequently, (2.3)-(2.4) has a positive solution for λ > λ0.
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Part (b). Choose a number r1 > 0. By Lemma 2.11 we infer that there
exists a λ0 > 0 such that

‖Tλu‖ < ‖u‖, for u ∈ ∂Ωr1 , 0 < λ < λ0.

If f0 = ∞, there is a 0 < r2 < r1 such that f(u) ≥ ψ2(η)ϕ(u) for 0 ≤ u ≤ r2,
where η > 0 is chosen so that

ψ−1
2 (λ)Γη > 1.

Then

f(u(t)) ≥ ψ2(η)ϕ(u(t)) ≥ ϕ(u(t)η) for u ∈ ∂Ωr2 , t ∈ [0, 1].

Lemma 2.7 implies that

‖Tλu‖ ≥ ψ−1
2 (λ)Γη‖u‖ > ‖u‖ for u ∈ ∂Ωr2 .

If f∞ = ∞, there is an Ĥ > 0 such that f(u) ≥ ψ2(η)ϕ(u) for u ≥ Ĥ, where
η > 0 is chosen so that

ψ−1
2 (λ)Γη > 1.

Let r3 = max{2r1,
Ĥ
ρ }. If u ∈ ∂Ωr3 , then

min
1
4
≤t≤ 3

4

u(t) ≥ ρ‖u‖ ≥ Ĥ,

and hence,

f(u(t)) ≥ ψ2(η)ϕ(u(t)) ≥ ϕ(u(t)η) for t ∈ [
1
4
,
3
4
].

It follows from Lemma 2.7 that

‖Tλu‖ ≥ ψ−1
2 (λ)Γη‖u‖ > ‖u‖ for u ∈ ∂Ωr3 .

It follows from Lemma 2.3 that

i(Tλ, Ωr1 , K) = 1, i(Tλ, Ωr2 , K) = 0 and i(Tλ, Ωr3 , K) = 0,

and hence, i(Tλ, Ωr1 \ Ω̄r2 , K) = 1 and i(Tλ, Ωr3 \ Ω̄r1 , K) = −1. Thus, Tλ

has a fixed point in Ωr1 \ Ω̄r2 or Ωr3 \ Ω̄r1 according to f0 = ∞ or f∞ = ∞,
respectively. Consequently, (2.3)-(2.4) has a positive solution for 0 < λ < λ0.

Part (c). Choose two numbers 0 < r3 < r4. By Lemma 2.10 we infer that
there exists a λ0 > 0 such that

‖Tλu‖ > ‖u‖, for u ∈ ∂Ωri , λ > λ0, (i = 3, 4).

Since f0 = 0 and f∞ = 0, it follows from the proof of Theorem 2.2 (a) that
we can choose r1 < r3/2 and r2 > 2r4 such that

‖Tλu‖ < ‖u‖ for u ∈ ∂Ωri , (i = 1, 2).
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It follows from Lemma 2.3 that

i(Tλ, Ωr1 , K) = 1, i(Tλ, Ωr2 , K) = 1,

i(Tλ, Ωr3 , K) = 0, i(Tλ, Ωr4 , K) = 0

and hence, i(Tλ, Ωr3 \ Ω̄r1 , K) = −1 and i(Tλ, Ωr2 \ Ω̄r4 , K) = 1. Thus,
Tλ has two fixed points u1(t) and u2(t) such that u1(t) ∈ Ωr3 \ Ω̄r1 and
u2(t) ∈ Ωr2 \ Ω̄r4 , which are the desired distinct positive solutions of (2.3)-
(2.4) for λ > λ0 satisfying

r1 < ‖u1‖ < r3 < r4 < ‖u2‖ < r2.

Part (d). Choose two numbers 0 < r3 < r4. By Lemma 2.11 we infer that
there exists a λ0 > 0 such that

‖Tλu‖ < ‖u‖, for u ∈ ∂Ωri , 0 < λ < λ0, (i = 3, 4).

Since f0 = ∞ and f∞ = ∞, it follows from the proof of Theorem 2.2 (b)
that we can choose r1 < r3/2 and r2 > 2r4 such that

‖Tλu‖ > ‖u‖ for u ∈ ∂Ωri , (i = 1, 2).

It follows from Lemma 2.3 that

i(Tλ, Ωr1 , K) = 0, i(Tλ, Ωr2 , K) = 0,

i(Tλ, Ωr3 , K) = 1, i(Tλ, Ωr4 , K) = 1

and hence, i(Tλ, Ωr3 \ Ω̄r1 , K) = 1 and i(Tλ, Ωr2 \ Ω̄r4 , K) = −1. Thus,
Tλ has two fixed points u1(t) and u2(t) such that u1(t) ∈ Ωr3 \ Ω̄r1 and
u2(t) ∈ Ωr2 \ Ω̄r4 , which are the desired distinct positive solutions of (2.3)-
(2.4) for 0 < λ < λ0 satisfying

r1 < ‖u1‖ < r3 < r4 < ‖u2‖ < r2.

Part (e) Since f0 < ∞ and f∞ < ∞, there exist positive numbers ε1, ε2, r1

and r2 such that r1 < r2 and

f(u) ≤ ε1ϕ(u) for u ∈ [0, r1],

f(u) ≤ ε2ϕ(u) for u ∈ [r2,∞).

Let ε3 := max{ε1, ε2, max
r1≤u≤r2

{ f(u)
ϕ{u}}} > 0. Thus, we have

f(u) ≤ ε3ϕ(u) for u ∈ [0,∞).
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Assume v(t) is a positive solution of (2.3)-(2.4). We will show that this leads
to a contradiction for 0 < λ < λ0 := ψ1( 1∫ 1

0
1

p(s)
dsψ−1

1 (ε3
1

q(0)

∫ 1
0 h(τ)dτ)

). Since

Tλv(t) = v(t) for t ∈ [0, 1],

‖v‖ = ‖Tλv‖ ≤
∫ 1

0

1
p(s)

ϕ−1(
1

q(0)
λ

∫ 1

0
h(τ)f(v(τ))dτ)ds

≤
∫ 1

0

1
p(s)

dsϕ−1(
1

q(0)

∫ 1

0
h(τ)ε3dτψ1(ψ−1

1 (λ))ϕ(‖v‖))

≤
∫ 1

0

1
p(s)

dsϕ−1(
1

q(0)

∫ 1

0
h(τ)ε3dτϕ(ψ−1

1 (λ)‖v‖))

≤
∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

ε3

∫ 1

0
h(τ)dτ)ψ−1

1 (λ)‖v‖ < ‖v‖,
which is a contradiction.

Part (f). Since f0 > 0 and f∞ > 0, it follows that there exist positive
numbers η1, η2, r1 and r2 such that r1 < r2 and

f(u) ≥ η1ϕ(u) for u ∈ [0, r1],

f(u) ≥ η2ϕ(u) for u ∈ [r2,∞).

Let η3 := min{η1, η2, min
r1≤u≤r2

{ f(u)
ϕ{u}}} > 0. Thus, we have

f(u) ≥ η3ϕ(u) for u ∈ [0,∞).

Since η3ϕ(u) = ψ2(ψ−1
2 (η3))ϕ(u), (H1) implies that

f(u) ≥ η3ϕ(u) ≥ ϕ(ψ−1
2 (η3)u) for u ∈ [0,∞).

Assume v(t) is a positive solution of (2.3)-(2.4). We will show that this
leads to a contradiction for λ > λ0 := ψ2( 1

Γψ−1
2 (η3)

). Since Tλv(t) = v(t) for

t ∈ [0, 1], it follows from Lemma 2.7 that

‖v‖ = ‖Tλv‖ ≥ ψ−1
2 (λ)Γψ−1

2 (η3)‖v‖ > ‖v‖,
which is a contradiction.

Part (g). If

ψ2(
1

Γψ−1
2 (f0)

) < λ < ψ1(
1∫ 1

0
1

p(s)dsψ−1
1 ( 1

q(0)

∫ 1
0 h(τ)dτ)ψ−1

1 (f∞)
),

there exists an 0 < ε < f0 such that

ψ2(
1

Γψ−1
2 (f0 − ε)

) < λ < ψ1(
1∫ 1

0
1

p(s)dsψ−1
1 ( 1

q(0)

∫ 1
0 h(τ)dτ)ψ−1

1 (f∞ + ε)
).
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Beginning with f0, there is a r1 > 0 such that f(u) ≥ (f0 − ε)ϕ(u) for
0 ≤ u ≤ r1. Note that (f0 − ε)ϕ(u) = ψ2(ψ−1

2 (f0 − ε))ϕ(u). If u ∈ ∂Ωr1 ,
then

f(u(t)) ≥ ψ2(ψ−1
2 (f0 − ε))ϕ(u(t)) ≥ ϕ(u(t)ψ−1

2 (f0 − ε)) for t ∈ [0, 1].

Lemma 2.7 implies that

‖Tλu‖ ≥ ψ−1
2 (λ)Γψ−1

2 (f0 − ε)‖u‖ > ‖u‖ for u ∈ ∂Ωr1 .

It remains to consider f∞. It follows from Lemma 2.8 that limu→∞
f∗(u)
ϕ(u) =

f∞. Therefore, there is a r2 > 2r1 such that

f∗(r2) ≤ (f∞ + ε)ϕ(r2) = ψ1(ψ−1
1 (f∞ + ε))ϕ(r2).

Lemma 2.9 implies that, for u ∈ ∂Ωr2 , we have

‖Tλu‖ ≤ ψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(τ)dτ)ψ−1

1 (f∞ + ε)‖u‖ < ‖u‖.

It follows from Lemma 2.3 that

i(Tλ, Ωr1 , K) = 0 and i(Tλ, Ωr2 , K) = 1.

Hence, i(Tλ, Ωr2 \ Ω̄r1 , K) = 1. Thus, Tλ has a fixed point in Ωr2 \ Ω̄r1 , which
is the desired positive solution of (2.3)-(2.4).

If

ψ2(
1

Γψ−1
2 (f∞)

) < λ < ψ1(
1∫ 1

0
1

p(s)dsψ−1
1 ( 1

q(0)

∫ 1
0 h(τ)dτ)ψ−1

1 (f0)
),

there exists an 0 < ε < f∞ such that

ψ2(
1

Γψ−1
2 (f∞ − ε)

) < λ < ψ1(
1∫ 1

0
1

p(s)dsψ−1
1 ( 1

q(0)

∫ 1
0 h(τ)dτ)ψ−1

1 (f0 + ε)
).

Since f∗
0 = f0, there exists a r3 > 0 such that f∗(r3) ≤ (f0+ε)ϕ(r3). Lemma

2.9 implies that

‖Tλu‖ ≤ ψ−1
1 (λ)

∫ 1

0

1
p(s)

dsψ−1
1 (

1
q(0)

∫ 1

0
h(τ)dτ)ψ−1

1 (f0 + ε))‖u‖ < ‖u‖

for u ∈ ∂Ωr3 . Next, considering f∞, there is an Ĥ > 0 such that f(u) ≥
(f∞ − ε)ϕ(u) for u ≥ Ĥ. Let r4 = max{2r3,

Ĥ
ρ }. If u ∈ ∂Ωr4 , then

min
1
4
≤t≤ 3

4

u(t) ≥ ρ‖u‖ ≥ Ĥ
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and hence,

f(u(t)) ≥ (f∞ − ε)ϕ(u(t)) ≥ ϕ(u(t)ψ−1
2 (f∞ − ε)) for t ∈ [

1
4
,
3
4
].

Lemma 2.7 implies that

‖Tλu‖ ≥ ψ−1
2 (λ)Γψ−1

2 (f∞ − ε)‖u‖ > ‖u‖ for u ∈ ∂Ωr4 .

Again it follows from Lemma 2.3 that

i(Tλ, Ωr3 , K) = 1 and i(Tλ, Ωr4 , K) = 0.

Hence, i(Tλ, Ωr4 \ Ω̄r3 , K) = −1. Thus, Tλ has a fixed point in Ωr4 \ Ω̄r3 ,
which is the desired positive solution of (2.3)-(2.4). �
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