ON THE STRUCTURE OF POSITIVE RADIAL SOLUTIONS FOR QUASILINEAR EQUATIONS IN ANNULAR DOMAINS

Haiyan Wang
Department of Integrative Studies, Arizona State University West
P.O. Box 37100, Phoenix, Arizona 85069

(Submitted by: Reza Aftabizadeh)

Abstract

We study the existence, multiplicity and nonexistence of positive radial solutions to boundary value problems for the quasilinear equation $\operatorname{div}(A(|\nabla u|) \nabla u)+\lambda h(|x|) f(u)=0$ in annular domains under general assumptions on the function $A(u)$. Various possible behaviors of the quotient $\frac{f(u)}{A(u) u}$ at zero and infinity are considered. We shall use fixed point theorems for operators on a Banach space.

1. Introduction

In this paper we consider the existence, multiplicity and nonexistence of positive radial solutions for the quasilinear equation

$$
\begin{equation*}
\operatorname{div}(A(|\nabla u|) \nabla u)+\lambda k(|x|) f(u)=0, \text { in } R_{1}<|x|<R_{2}, x \in \mathbb{R}^{n}, n \geq 2 \tag{1.1}
\end{equation*}
$$

with one of the following three sets of boundary conditions,

$$
\begin{align*}
& u=0 \text { on }|x|=R_{1} \text { and }|x|=R_{2}, \tag{1.2a}\\
& \partial u / \partial r=0 \text { on }|x|=R_{1} \text { and } u=0 \text { on }|x|=R_{2} \text {, } \tag{1.2b}\\
& u=0 \text { on }|x|=R_{1} \text { and } \partial u / \partial r=0 \text { on }|x|=R_{2}, \tag{1.2c}
\end{align*}
$$

where $r=|x|$ and $\partial / \partial r$ denotes differentiation in the radial direction, and $0<R_{1}<R_{2}<\infty$.

Ni and Serrin $[14,15]$ established some existence and non-existence theorems for radial ground state solutions of quasilinear equations of the form (1.1) in \mathbb{R}^{n}. The function A originates from a variety of practical applications, for instance, the degenerate m-Laplace operator, namely $A(|p|)=$

Accepted for publication: September 2002.
AMS Subject Classifications: 35J65, 35P30.
$|p|^{m-2}, m>1$. When $A \equiv 1$ we recall that (1.1) reduces to the classical semilinear elliptic equation

$$
\begin{equation*}
\Delta u+\lambda k(|x|) f(u)=0, \text { in } R_{1}<|x|<R_{2}, x \in \mathbb{R}^{n}, n \geq 2 \tag{1.3}
\end{equation*}
$$

(1.3)-(1.2) has been studied by Bandle, Coffman and Marcus [1], Bandle and Peletier [2], Coffman and Kwong [3], Lin [12], Ni and Nussbaum [13] and many others $[5,7,9,11,16,18,19]$. In particular, when f is non-negative, Bandle, Coffman and Marcus [1], Coffman and Marcus [5] and Lin [12] have established the existence of positive radial solutions of (1.3)-(1.2) under the assumption that f is superlinear, i.e., $\lim _{u \rightarrow 0} \frac{f(u)}{u}=0$ and $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=\infty$, which improves various earlier existence results by many authors under some additional assumptions on f.

On the other hand, the present author [16] has established the existence of positive radial solutions of (1.3)-(1.2) under the assumption that f is sublinear, i.e., $\lim _{u \rightarrow 0} \frac{f(u)}{u}=\infty$ and $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=0$. In fact, we shall show that the existence, multiplicity and nonexistence of positive radial solutions of (1.3)-(1.2) are characterized by the asymptotic behaviors of the quotient $\frac{f(u)}{u}$ at zero and infinity.

The main purpose of this paper is to examine the quasilinear problem (1.1)-(1.2) under general assumptions on the function A. In this paper we introduce a new and general assumption (see H1) on the function A, which covers the two important cases $A \equiv 1$ and $A(|p|)=|p|^{m-2}, m>1$, i.e., the degenerate m-Laplace operator.

Under such assumption, we are able to show that the structure of the positive radial solution set of (1.1)-(1.2) is exactly the same as that of the two special cases $A \equiv 1$ and $A(|p|)=|p|^{m-2}, m>1$, in the sense that Theorems 1.1 and 1.2 hold for the general problem (1.1)-(1.2) and the two special cases. We consider not only existence, but also multiplicity and nonexistence. Our results (Theorems 1.1 and 1.2) generalize and extend the work of many authors $[1,2,3,5,7,11,12,13,16,18,19]$. Furthermore, most of our results are new even for the case $A(|p|)=|p|^{m-2}, m>1$.

Finally, our arguments in this paper are closely related to those of [16], in which the present author uses the fixed point index for compact maps, which is based on Leray-Schauder degree theory, to study (1.1)-(1.2) for $A \equiv 1$.

Let $\varphi(t):=A(|t|) t$. We make the assumptions:
(H1) φ is an odd, increasing homeomorphism from \mathbb{R} onto \mathbb{R} and there exist two increasing homeomorphisms ψ_{1} and ψ_{2} from $(0, \infty)$ onto
$(0, \infty)$ such that

$$
\psi_{1}(\sigma) \varphi(t) \leq \varphi(\sigma t) \leq \psi_{2}(\sigma) \varphi(t), \text { for all } \sigma \text { and } t>0
$$

(H2) $k:\left[R_{1}, R_{2}\right] \rightarrow[0, \infty)$ is continuous and $k(t) \not \equiv 0$ on any subinterval of $\left[R_{1}, R_{2}\right]$.
(H3) $f:[0, \infty) \rightarrow[0, \infty)$ is continuous.
(H4) $f(u)>0$ for $u>0$.
In order to state our results we introduce the notation

$$
f_{0}:=\lim _{u \rightarrow 0} \frac{f(u)}{\varphi(u)} \quad \text { and } \quad f_{\infty}:=\lim _{u \rightarrow \infty} \frac{f(u)}{\varphi(u)}
$$

Our main results are:
Theorem 1.1. Assume (H1)-(H3) hold.
(a) If $f_{0}=0$ and $f_{\infty}=\infty$, then for all $\lambda>0$ (1.1)-(1.2) has a positive radial solution.
(b) If $f_{0}=\infty$ and $f_{\infty}=0$, then for all $\lambda>0$ (1.1)-(1.2) has a positive radial solution.

Theorem 1.2. Assume (H1)-(H4) hold.
(a) If $f_{0}=0$ or $f_{\infty}=0$, then there exists a $\lambda_{0}>0$ such that for all $\lambda>\lambda_{0}$ (1.1)-(1.2) has a positive radial solution.
(b) If $f_{0}=\infty$ or $f_{\infty}=\infty$, then there exists a $\lambda_{0}>0$ such that for all $0<\lambda<\lambda_{0}$ (1.1)-(1.2) has a positive radial solution.
(c) If $f_{0}=f_{\infty}=0$, then there exists a $\lambda_{0}>0$ such that for all $\lambda>\lambda_{0}$ (1.1)-(1.2) has two positive radial solutions.
(d) If $f_{0}=f_{\infty}=\infty$, then there exists a $\lambda_{0}>0$ such that for all $0<\lambda<$ λ_{0} (1.1)-(1.2) has two positive radial solutions.
(e) If $f_{0}<\infty$ and $f_{\infty}<\infty$, then there exists a $\lambda_{0}>0$ such that for all $0<\lambda<\lambda_{0}$ (1.1)-(1.2) has no positive radial solution.
(f) If $f_{0}>0$ and $f_{\infty}>0$, then there exists a $\lambda_{0}>0$ such that for all $\lambda>\lambda_{0}$ (1.1)-(1.2) has no positive radial solution.

We should mention that, on an annulus, there are non-radially symmetric positive solutions of (1.1)-(1.2) even when $f(u)=u^{p}$, which was first observed by Brezis and Nirenberg [4].

2. Preliminaries

A radial solution of (1.1)-(1.2) can be considered as a solution of the equation

$$
\begin{equation*}
\left(r^{n-1} \varphi\left(u^{\prime}(r)\right)\right)^{\prime}+\lambda r^{n-1} k(r) f(u(r))=0, \text { in } R_{1}<r<R_{2}, \tag{2.1}
\end{equation*}
$$

with one of the following three sets of boundary conditions,

$$
\begin{align*}
u\left(R_{1}\right)=u\left(R_{2}\right) & =0 \tag{2.2a}\\
u^{\prime}\left(R_{1}\right)=u\left(R_{2}\right) & =0 \tag{2.2~b}\\
u\left(R_{1}\right)=u^{\prime}\left(R_{2}\right) & =0 \tag{2.2c}
\end{align*}
$$

We shall treat classical solutions of (2.1)-(2.2), namely functions u of class C^{1} on $\left[R_{1}, R_{2}\right]$ with $\varphi\left(u^{\prime}\right) \in C^{1}\left(R_{1}, R_{2}\right)$, which satisfies (2.1)-(2.2) for $r \in$ $\left(R_{1}, R_{2}\right)$. A solution u is positive if $u(r)>0$ for all $r \in\left(R_{1}, R_{2}\right)$.

Applying change of variables, $r=\left(R_{2}-R_{1}\right) t+R_{1}$, we can transform (2.1)-(2.2) into the form

$$
\begin{equation*}
\left(q(t) \varphi\left(p(t) u^{\prime}\right)\right)^{\prime}+\lambda h(t) f(u)=0, \quad 0<t<1 \tag{2.3}
\end{equation*}
$$

with one of the following three sets of boundary conditions,

$$
\begin{align*}
u(0) & =u(1)=0 \tag{2.4a}\\
u^{\prime}(0) & =u(1)=0 \tag{2.4b}\\
u(0) & =u^{\prime}(1)=0 \tag{2.4c}
\end{align*}
$$

where

$$
q(t):=\left(\left(R_{2}-R_{1}\right) t+R_{1}\right)^{n-1}, \quad p(t):=\frac{1}{R_{2}-R_{1}}
$$

and

$$
h(t):=\left(R_{2}-R_{1}\right)\left(\left(R_{2}-R_{1}\right) t+R_{1}\right)^{n-1} k\left(\left(R_{2}-R_{1}\right) t+R_{1}\right)
$$

It is easy to see that (H1)-(H2) imply

$$
\left\{\begin{array}{l}
p(t) \text { and } q(t) \in C[0,1] \text { with } p>0 \text { and } q>0 \text { for } t \in[0,1] \\
\text { and } q(t) \text { is nondecreasing on }[0,1] \text {. } \\
\varphi \text { is an odd, increasing homeomorphism from } \mathbb{R} \text { onto } \mathbb{R} \text { and } \\
\text { there exist two increasing homeomorphisms } \psi_{1} \text { and } \psi_{2} \text { from } \\
(0, \infty) \text { onto }(0, \infty) \text { such that } \\
\psi_{1}(\sigma) \varphi(t) \leq \varphi(\sigma t) \leq \psi_{2}(\sigma) \varphi(t) \text {, for all } \sigma \text { and } t>0 . \\
h:[0,1] \rightarrow[0, \infty) \text { is continuous and does not vanish identically } \\
\text { on any subinterval of }[0,1] .
\end{array}\right.
$$

For (2.3)-(2.4) we shall prove Theorems 2.1 and 2.2 , which immediately imply that Theorems 1.1 and 1.2 are true. In addition, Part (g) of Theorem 2.2 also holds for (1.1)-(1.2).

Although the functions p, q, φ and h are of the special forms defined above, we remark that Theorems 2.1 and 2.2, including Lemmas 2.4-2.11, hold even for general functions p, q, φ and h if they satisfy the property (P).

In the following proof we only use the property (P) of p, q, φ and h and do not rely on any special form that p, q, φ and h may have. Define

$$
\rho:=\left[\int_{0}^{1} \frac{1}{p(s)} d s\right]^{-1} \min \left\{\int_{0}^{\frac{1}{4}} \frac{1}{p(t)} d t, \int_{\frac{3}{4}}^{1} \frac{1}{p(t)} d t\right\}>0
$$

and

$$
\begin{aligned}
& \gamma(t):=\frac{\rho}{2}\left[\int_{\frac{1}{4}}^{t} \frac{1}{p(s)} \psi_{2}^{-1}\left(\frac{1}{q(1)} \int_{s}^{t} h(\tau) d \tau\right) d s\right. \\
&\left.+\int_{t}^{\frac{3}{4}} \frac{1}{p(s)} \psi_{2}^{-1}\left(\frac{1}{q(1)} \int_{t}^{s} h(\tau) d \tau\right) d s\right]
\end{aligned}
$$

where $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$. It follows from (H1)-(H2) that $\Gamma:=\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} \gamma(t)>0$.
Theorem 2.1. Assume (H1)-(H3) hold.
(a) If $f_{0}=0$ and $f_{\infty}=\infty$, then for all $\lambda>0$ (2.3)-(2.4) has a positive solution.
(b) If $f_{0}=\infty$ and $f_{\infty}=0$, then for all $\lambda>0$ (2.3)-(2.4) has a positive solution.

Theorem 2.2. Assume (H1)-(H4) hold.
(a) If $f_{0}=0$ or $f_{\infty}=0$, then there exists a $\lambda_{0}>0$ such that for all $\lambda>\lambda_{0}(2.3)-(2.4)$ has a positive solution.
(b) If $f_{0}=\infty$ or $f_{\infty}=\infty$, then there exists a $\lambda_{0}>0$ such that for all $0<\lambda<\lambda_{0}$ (2.3)-(2.4) has a positive solution.
(c) If $f_{0}=f_{\infty}=0$, then there exists a $\lambda_{0}>0$ such that for all $\lambda>\lambda_{0}$ (2.3)-(2.4) has two positive solutions.
(d) If $f_{0}=f_{\infty}=\infty$, then there exists a $\lambda_{0}>0$ such that for all $0<\lambda<$ $\lambda_{0}(2.3)-(2.4)$ has two positive solutions.
(e) If $f_{0}<\infty$ and $f_{\infty}<\infty$, then there exists a $\lambda_{0}>0$ such that for all $0<\lambda<\lambda_{0}$ (2.3)-(2.4) has no positive solution.
(f) If $f_{0}>0$ and $f_{\infty}>0$, then there exists a $\lambda_{0}>0$ such that for all $\lambda>\lambda_{0}$ (2.3)-(2.4) has no positive solution.
(g) If $0<f_{0}<\infty, 0<f_{\infty}<\infty$ and either

$$
\psi_{2}\left(\frac{1}{\Gamma \psi_{2}^{-1}\left(f_{0}\right)}\right)<\lambda<\psi_{1}\left(\frac{1}{\int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}\left(f_{\infty}\right)}\right)
$$

or
$\psi_{2}\left(\frac{1}{\Gamma \psi_{2}^{-1}\left(f_{\infty}\right)}\right)<\lambda<\psi_{1}\left(\frac{1}{\int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}\left(f_{0}\right)}\right)$,
then (2.3)-(2.4) has a positive solution.
The following well-known result of the fixed point index is crucial in our arguments.

Lemma 2.3. $([6,8,10])$. Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}:=\{u \in K:\|x\|<r\}$. Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous such that $T x \neq x$ for $x \in \partial K_{r}:=\{u \in K:\|x\|=r\}$.
(i) If $\|T x\| \geq\|x\|$ for $x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=0$.
(ii) If $\|T x\| \leq\|x\|$ for $x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=1$.

In order to apply Lemma 2.3 to (2.3)-(2.4), let X be the Banach space $C[0,1]$ with $\|u\|=\sup _{t \in[0,1]}|u(t)|$. Define K be a cone in X by

$$
K:=\left\{u \in X: u(t) \geq 0, \quad \min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq \rho\|u\|\right\}
$$

Also, define, for r a positive number, Ω_{r} by $\Omega_{r}:=\{u \in K:\|u\|<r\}$. Note that $\partial \Omega_{r}=\{u \in K:\|u\|=r\}$.

Let the map $T_{\lambda}: K \rightarrow X$ be defined by

$$
T_{\lambda} u(t):= \begin{cases}\int_{0}^{t} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(s)} \lambda \int_{s}^{\sigma} h(\tau) f(u(\tau)) d \tau\right) d s, & 0 \leq t \leq \sigma \\ \int_{t}^{1} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(s)} \lambda \int_{\sigma}^{s} h(\tau) f(u(\tau)) d \tau\right) d s, & \sigma \leq t \leq 1\end{cases}
$$

where $\sigma=0$ for $(2.3)-(2.4 \mathrm{~b})$ and $\sigma=1$ for (2.3)-(2.4c). For (2.3)-(2.4a) $\sigma \in(0,1)$ is a solution of the equation

$$
\begin{equation*}
Z_{1}(t)=Z_{2}(t) \tag{2.5}
\end{equation*}
$$

where

$$
Z_{1}(t)=\int_{0}^{t} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(s)} \lambda \int_{s}^{t} h(\tau) f(u(\tau)) d \tau\right) d s, \quad 0 \leq t \leq 1
$$

and

$$
Z_{2}(t)=\int_{t}^{1} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(s)} \lambda \int_{t}^{s} h(\tau) f(u(\tau)) d \tau\right) d s, \quad 0 \leq t \leq 1
$$

Note that (2.5) has at least one solution in $(0,1)$. In fact, if $h(\tau) f(u(\tau)) \equiv 0$ on $[0,1]$, we may choose any $\sigma \in(0,1)$. If there is a $\tau \in(0,1)$ such that $h(\tau) f(u(\tau))>0$, then $Z_{1}(0)-Z_{2}(0)<0$ and $Z_{1}(1)-Z_{2}(1)>0$. Since $Z_{1}(t)-Z_{2}(t)$ is nondecreasing continuous function defined on $[0,1]$, (2.5) has at least one solution in $(0,1)$. Moreover, if σ_{1} and $\sigma_{2} \in(0,1)$ are solutions of (2.5), it is not difficult to show that $h(\tau) f(u(\tau)) \equiv 0$ on $\left[\sigma_{1}, \sigma_{2}\right]$. Therefore, $T_{\lambda} u(t)$ is independent of the choice of $\sigma \in\left[\sigma_{1}, \sigma_{2}\right]$ and then the operator is well defined.

Lemma 2.4. Assume (H1)-(H2) hold. Let u and $v \in X$ with $u(t) \geq 0$ and $v(t) \leq 0$ for $t \in[0,1]$. If $\left(q(t) \varphi\left(p(t) u^{\prime}\right)\right)^{\prime}=v$, then

$$
u(t) \geq\left[\int_{0}^{1} \frac{1}{p(s)} d s\right]^{-1} \min \left\{\int_{0}^{t} \frac{1}{p(s)} d s, \int_{t}^{1} \frac{1}{p(s)} d s\right\}\|u\|, \quad t \in[0,1] .
$$

In particular,

$$
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq \rho\|u\| .
$$

Proof. Since $q(t) \varphi\left(p(t) u^{\prime}(t)\right)$ is nonincreasing, it follows, from φ^{-1} is increasing and $q(t)$ is nondecreasing, that $p(t) u^{\prime}(t)$ is nonincreasing. Hence, for $0 \leq t_{0}<t<t_{1} \leq 1$,

$$
u(t)-u\left(t_{0}\right)=\int_{t_{0}}^{t} \frac{1}{p(s)} p(s) u^{\prime}(s) d s \geq \int_{t_{0}}^{t} \frac{1}{p(s)} d s p(t) u^{\prime}(t)
$$

and

$$
u\left(t_{1}\right)-u(t)=\int_{t}^{t_{1}} \frac{1}{p(s)} p(s) u^{\prime}(s) d s \leq \int_{t}^{t_{1}} \frac{1}{p(s)} d s p(t) u^{\prime}(t)
$$

from which, we have

$$
u(t) \geq\left[\int_{t_{0}}^{t_{1}} \frac{1}{p(s)} d s\right]^{-1}\left[\int_{t}^{t_{1}} \frac{1}{p(s)} d s u\left(t_{0}\right)+\int_{t_{0}}^{t} \frac{1}{p(s)} d s u\left(t_{1}\right)\right] .
$$

Considering the above inequality on $[0, \sigma]$ and $[\sigma, 1]$, we have

$$
u(t) \geq\left[\int_{0}^{1} \frac{1}{p(s)} d s\right]^{-1} \int_{0}^{t} \frac{1}{p(s)} d s\|u\| \quad \text { for } \quad t \in[0, \sigma]
$$

and

$$
u(t) \geq\left[\int_{0}^{1} \frac{1}{p(s)} d s\right]^{-1} \int_{t}^{1} \frac{1}{p(s)} d s\|u\| \quad \text { for } \quad t \in[\sigma, 1]
$$

where $\sigma \in[0,1]$ such that $u(\sigma)=\|u\|$. Hence,

$$
u(t) \geq\left[\int_{0}^{1} \frac{1}{p(s)} d s\right]^{-1} \min \left\{\int_{0}^{t} \frac{1}{p(s)} d s, \int_{t}^{1} \frac{1}{p(s)} d s\right\}\|u\|, \quad t \in[0,1] .
$$

We remark that, according to Lemma 2.4, any non-negative solution of (2.3)-(2.4) is positive unless it is identical to zero.

Lemma 2.5. Assume (H1)-(H3) hold. Then $T_{\lambda}(K) \subset K$ and the map $T_{\lambda}: K \rightarrow K$ is completely continuous.

Proof. Lemma 2.4 implies that $T_{\lambda}(K) \subset K$. It is not difficult to verify that T_{λ} is compact and continuous.

Now it is not difficult to show that (2.3)-(2.4) is equivalent to the fixed point equation

$$
T_{\lambda} u=u \quad \text { in } \quad \mathrm{K}
$$

Lemma 2.6. Assume (H1) holds. Then for all $\sigma, t \in(0, \infty)$

$$
\psi_{2}^{-1}(\sigma) t \leq \varphi^{-1}(\sigma \varphi(t)) \leq \psi_{1}^{-1}(\sigma) t .
$$

Proof. Since $\sigma=\psi_{1}\left(\psi_{1}^{-1}(\sigma)\right)=\psi_{2}\left(\psi_{2}^{-1}(\sigma)\right)$ and $\varphi\left(\varphi^{-1}(\sigma \varphi(t))\right)=\sigma \varphi(t)$, it follows that

$$
\psi_{2}\left(\psi_{2}^{-1}(\sigma)\right) \varphi(t)=\varphi\left(\varphi^{-1}(\sigma \varphi(t))\right)=\psi_{1}\left(\psi_{1}^{-1}(\sigma)\right) \varphi(t)
$$

On the other hand, we have by (H1)

$$
\psi_{1}\left(\psi_{1}^{-1}(\sigma)\right) \varphi(t) \leq \varphi\left(\psi_{1}^{-1}(\sigma) t\right) \text { and } \psi_{2}\left(\psi_{2}^{-1}(\sigma)\right) \varphi(t) \geq \varphi\left(\psi_{2}^{-1}(\sigma) t\right)
$$

Hence,

$$
\varphi\left(\psi_{2}^{-1}(\sigma) t\right) \leq \varphi\left(\varphi^{-1}(\sigma \varphi(t)) \leq \varphi\left(\psi_{1}^{-1}(\sigma) t\right) .\right.
$$

Since φ^{-1} is increasing, we obtain

$$
\psi_{2}^{-1}(\sigma) t \leq \varphi^{-1}(\sigma \varphi(t)) \leq \psi_{1}^{-1}(\sigma) t
$$

Lemma 2.7. Assume (H1)-(H3) hold and let $\eta>0$. If $u \in K$ and $f(u(t)) \geq$ $\varphi(u(t) \eta)$ for $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$, then

$$
\left\|T_{\lambda} u\right\| \geq \psi_{2}^{-1}(\lambda) \Gamma \eta\|u\| .
$$

Proof. Note that from the definition of $T_{\lambda} u$ that $T_{\lambda} u(\sigma)$ is the maximum value of $T_{\lambda} u$ on $[0,1]$. If $\sigma \in\left[\frac{1}{4}, \frac{3}{4}\right]$, it follows from Lemma 2.4 and Lemma 2.6 that

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| \geq & \frac{1}{2}\left[\int_{\frac{1}{4}}^{\sigma} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(1)} \lambda \int_{s}^{\sigma} h(\tau) f(u(\tau)) d \tau\right) d s\right. \\
& \left.+\int_{\sigma}^{\frac{3}{4}} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(1)} \lambda \int_{\sigma}^{s} h(\tau) f(u(\tau)) d \tau\right) d s\right] \\
\geq & \frac{1}{2}\left[\int_{\frac{1}{4}}^{\sigma} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(1)} \int_{s}^{\sigma} h(\tau) \psi_{2}\left(\psi_{2}^{-1}(\lambda)\right) \varphi(u(\tau) \eta) d \tau\right) d s\right. \\
& \left.+\int_{\sigma}^{\frac{3}{4}} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(1)} \int_{\sigma}^{s} h(\tau) \psi_{2}\left(\psi_{2}^{-1}(\lambda)\right) \varphi(u(\tau) \eta) d \tau\right) d s\right] \\
\geq & \frac{1}{2}\left[\int_{\frac{1}{4}}^{\sigma} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(1)} \int_{s}^{\sigma} h(\tau) \varphi\left(\psi_{2}^{-1}(\lambda) \rho \eta\|u\|\right) d \tau\right) d s\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\int_{\sigma}^{\frac{3}{4}} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(1)} \int_{\sigma}^{s} h(\tau) \varphi\left(\psi_{2}^{-1}(\lambda) \rho \eta\|u\|\right) d \tau\right) d s\right] \\
\geq & \frac{1}{2}\left[\int_{\frac{1}{4}}^{\sigma} \frac{1}{p(s)} \psi_{2}^{-1}\left(\frac{1}{q(1)} \int_{s}^{\sigma} h(\tau) d \tau\right) \psi_{2}^{-1}(\lambda) \rho \eta\|u\| d s\right. \\
& \left.+\int_{\sigma}^{\frac{3}{4}} \frac{1}{p(s)} \psi_{2}^{-1}\left(\frac{1}{q(1)} \int_{\sigma}^{s} h(\tau) d \tau\right) \psi_{2}^{-1}(\lambda) \rho \eta\|u\| d s\right] \\
= & \frac{\psi_{2}^{-1}(\lambda) \eta \rho\|u\|}{2}\left[\int_{\frac{1}{4}}^{\sigma} \frac{1}{p(s)} \psi_{2}^{-1}\left(\frac{1}{q(1)} \int_{s}^{\sigma} h(\tau) d \tau\right) d s\right. \\
& \left.+\int_{\sigma}^{\frac{3}{4}} \frac{1}{p(s)} \psi_{2}^{-1}\left(\frac{1}{q(1)} \int_{\sigma}^{s} h(\tau) d \tau\right) d s\right] \geq \psi_{2}^{-1}(\lambda) \Gamma \eta\|u\| .
\end{aligned}
$$

For $\sigma>\frac{3}{4}$, it is easy to see

$$
\left\|T_{\lambda} u\right\| \geq \int_{\frac{1}{4}}^{\frac{3}{4}} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(1)} \lambda \int_{s}^{\frac{3}{4}} h(\tau) f(u(\tau)) d \tau\right) d s
$$

On the other hand, we have

$$
\left\|T_{\lambda} u\right\| \geq \int_{\frac{1}{4}}^{\frac{3}{4}} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(1)} \lambda \int_{\frac{1}{4}}^{s} h(\tau) f(u(\tau)) d \tau\right) d s \text { for } \sigma<\frac{1}{4} .
$$

Therefore, similar arguments show that

$$
\left\|T_{\lambda} u\right\| \geq \psi_{2}^{-1}(\lambda) \Gamma \eta\|u\| \text { if } \sigma>\frac{3}{4} \text { or } \sigma<\frac{1}{4} .
$$

Define a new function

$$
f^{*}(u):=\max _{0 \leq t \leq u}\{f(t)\} .
$$

Note that $f_{0}^{*}=\lim _{u \rightarrow 0} \frac{f^{*}(u)}{\varphi(u)}$ and $f_{\infty}^{*}=\lim _{u \rightarrow \infty} \frac{f^{*}(u)}{\varphi(u)}$.
Lemma 2.8. Assume (H1)-(H3) hold. Then $f_{0}^{*}=f_{0}$ and $f_{\infty}^{*}=f_{\infty}$.
Proof. It is easy to see that $f_{0}^{*}=f_{0}$. For the second part, we consider two cases, (a) $f(u)$ is bounded and (b) $f(u)$ is unbounded. For the case (a), it follows, from $\lim _{u \rightarrow \infty} \varphi(u)=\infty$, that $f_{\infty}^{*}=0=f_{\infty}$. For the case (b), for any $\delta>0$, let $M:=\max _{0 \leq t \leq \delta}\{f(t)\}$ and $N_{\delta}:=\min \{u: u \geq \delta, f(u) \geq M\} \geq \delta$, then

$$
\max _{0 \leq t \leq N_{\delta}}\{f(t)\}=f\left(N_{\delta}\right)
$$

Thus, for any $\delta>0$, there exists a $N_{\delta} \geq \delta$ such that

$$
f^{*}(u)=\max \left\{\max _{0 \leq t \leq N_{\delta}}\{f(t)\}, \max _{N_{\delta} \leq t \leq u}\{f(t)\}\right\}=\max _{N_{\delta} \leq t \leq u}\{f(t)\} \text { for } u>N_{\delta}
$$

Hence, it follows, from the definitions of f_{∞} and f_{∞}^{*}, that $f_{\infty}^{*}=f_{\infty}$.
Lemma 2.9. Assume (H1)-(H3) hold and let $r>0$. If there exists an $\varepsilon>0$ such that $f^{*}(r) \leq \psi_{1}(\varepsilon) \varphi(r)$, then

$$
\left\|T_{\lambda} u\right\| \leq \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \varepsilon\|u\| \text { for } u \in \partial \Omega_{r}
$$

Proof. From the definition of T_{λ}, Lemma 2.4 and Lemma 2.6, for $u \in \partial \Omega_{r}$, we have

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & \leq \int_{0}^{1} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(0)} \lambda \int_{0}^{1} h(\tau) f(u(\tau)) d \tau\right) d s \\
& \leq \int_{0}^{1} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) \lambda f^{*}(r) d \tau\right) d s \\
& \leq \int_{0}^{1} \frac{1}{p(s)} d s \varphi^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) \psi_{1}\left(\psi_{1}^{-1}(\lambda)\right) \psi_{1}(\varepsilon) \varphi(r) d \tau\right) \\
& \leq \int_{0}^{1} \frac{1}{p(s)} d s \varphi^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau \varphi\left(\psi_{1}^{-1}(\lambda) \varepsilon r\right)\right) \\
& \leq \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}(\lambda) \varepsilon\|u\| .
\end{aligned}
$$

The following two lemmas are weak forms of Lemmas 2.7 and 2.9.
Lemma 2.10. Assume (H1)-(H4) hold. If $u \in \partial \Omega_{r}, r>0$, then

$$
\left\|T_{\lambda} u\right\| \geq \frac{\varphi^{-1}\left(\lambda \hat{m}_{r}\right) \Gamma}{\rho}
$$

where $\hat{m}_{r}:=\min _{\rho r \leq t \leq r}\{f(t)\}>0$.
Proof. Since $\lambda f(u(t)) \geq \lambda \hat{m}_{r}=\varphi\left(\varphi^{-1}\left(\lambda \hat{m}_{r}\right)\right)$ for $\mathrm{t} \in\left[\frac{1}{4}, \frac{3}{4}\right]$, it is easy to see that this lemma can be shown in a similar manner as in Lemma 2.7.

Lemma 2.11. Assume (H1)-(H4) hold. If $u \in \partial \Omega_{r}, r>0$, then

$$
\left\|T_{\lambda} u\right\| \leq \varphi^{-1}\left(\lambda \hat{M}_{r}\right) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right)
$$

where $\hat{M}_{r}:=\max _{0 \leq t \leq r}\{f(t)\}>0$.
Proof. Since $\lambda f(u(t)) \leq \lambda \hat{M}_{r}=\varphi\left(\varphi^{-1}\left(\lambda \hat{M}_{r}\right)\right)$ for $\mathrm{t} \in[0,1]$, it is easy to see that this lemma can be shown in a similar manner as in Lemma 2.9.

3. Proof of Theorem 2.1

Proof. Part (a). It follows from Lemma 2.8 that $f_{0}^{*}=0$. Therefore, we can choose $r_{1}>0$ so that $f^{*}\left(r_{1}\right) \leq \psi_{1}(\varepsilon) \varphi\left(r_{1}\right)$, where the constant $\varepsilon>0$ satisfies

$$
\varepsilon \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(s) d s\right)<1
$$

We have by Lemma 2.9 that

$$
\left\|T_{\lambda} u\right\| \leq \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \varepsilon\|u\|<\|u\| \text { for } u \in \partial \Omega_{r_{1}}
$$

Now, since $f_{\infty}=\infty$, there is an $\hat{H}>0$ such that $f(u) \geq \psi_{2}(\eta) \varphi(u)$ for $u \geq \hat{H}$, where $\eta>0$ is chosen so that

$$
\psi_{2}^{-1}(\lambda) \Gamma \eta>1
$$

Let $r_{2}=\max \left\{2 r_{1}, \frac{\hat{H}}{\rho}\right\}$. If $u \in \partial \Omega_{r_{2}}$, then

$$
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq \rho\|u\|=\rho r_{2} \geq \hat{H}
$$

which implies that

$$
f(u(t)) \geq \psi_{2}(\eta) \varphi(u(t)) \geq \varphi(u(t) \eta) \quad \text { for } \quad t \in\left[\frac{1}{4}, \frac{3}{4}\right]
$$

It follows from Lemma 2.7 that

$$
\left\|T_{\lambda} u\right\| \geq \psi_{2}^{-1}(\lambda) \Gamma \eta\|u\|>\|u\| \quad \text { for } \quad u \in \partial \Omega_{r_{2}}
$$

By Lemma 2.3, $i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=1$ and $i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=0$. It follows from the additivity of the fixed point index that $i\left(T_{\lambda}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=-1$. Thus, $i\left(T_{\lambda}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right) \neq 0$, which implies T_{λ} has a fixed point $u \in \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$ according to the existence property of the fixed point index. The fixed point $u \in \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$ is the desired positive solution of (2.3)-(2.4).

Part (b). If $f_{0}=\infty$, there is a $r_{1}>0$ such that $f(u) \geq \psi_{2}(\eta) \varphi(u)$ for $0 \leq u \leq r_{1}$, where $\eta>0$ is chosen so that $\psi_{2}^{-1}(\lambda) \Gamma \eta>1$. If $u \in \partial \Omega_{r_{1}}$, then

$$
f(u(t)) \geq \psi_{2}(\eta) \varphi(u(t)) \geq \varphi(u(t) \eta) \text { for } t \in[0,1]
$$

Lemma 2.7 implies that

$$
\left\|T_{\lambda} u\right\| \geq \psi_{2}^{-1}(\lambda) \Gamma \eta\|u\|>\|u\| \quad \text { for } \quad u \in \partial \Omega_{r_{1}}
$$

We now determine $\Omega_{r_{2}}$. Since $f_{\infty}^{*}=f_{\infty}=0$, there is a $r_{2}>2 r_{1}$ such that $f^{*}\left(r_{2}\right) \leq \psi_{1}(\varepsilon) \varphi\left(r_{2}\right)$, where the constant $\varepsilon>0$ satisfies

$$
\varepsilon \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(s) d s\right)<1 .
$$

Thus, we have by Lemma 2.9

$$
\left\|T_{\lambda} u\right\| \leq \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \varepsilon\|u\|<\|u\| \text { for } u \in \partial \Omega_{r_{2}}
$$

By Lemma 2.3, $i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=0$ and $i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=1$. It follows from the additivity of the fixed point index that $i\left(T_{\lambda}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=1$. Thus, T_{λ} has a fixed point in $\Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$, which is the desired positive solution of (2.3)-(2.4).

4. Proof of Theorem 2.2

Proof. Part (a). Choose a number $r_{1}>0$. By Lemma 2.10, we infer that there exists a $\lambda_{0}>0$ such that

$$
\left\|T_{\lambda} u\right\|>\|u\|, \text { for } \mathrm{u} \in \partial \Omega_{\mathrm{r}_{1}}, \lambda>\lambda_{0} .
$$

If $f_{0}^{*}=f_{0}=0$, we can choose $0<r_{2}<r_{1}$ so that $f^{*}\left(r_{2}\right) \leq \psi_{1}(\varepsilon) \varphi\left(r_{2}\right)$, where the constant $\varepsilon>0$ satisfies

$$
\varepsilon \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(s) d s\right)<1
$$

Thus, we have by Lemma 2.9 that

$$
\left\|T_{\lambda} u\right\| \leq \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \varepsilon\|u\|<\|u\| \text { for } u \in \partial \Omega_{r_{2}}
$$

If $f_{\infty}^{*}=f_{\infty}=0$, there is an $r_{3}>2 r_{1}$ such that $f^{*}\left(r_{3}\right) \leq \psi_{1}(\varepsilon) \varphi\left(r_{3}\right)$, where the constant $\varepsilon>0$ satisfies

$$
\varepsilon \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(s) d s\right)<1
$$

Thus, we have

$$
\left\|T_{\lambda} u\right\| \leq \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \varepsilon\|u\|<\|u\| \text { for } u \in \partial \Omega_{r_{3}}
$$

It follows from Lemma 2.3 that

$$
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=0, \quad i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=1 \quad \text { and } i\left(T_{\lambda}, \Omega_{r_{3}}, K\right)=1
$$

Thus, $i\left(T_{\lambda}, \Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}, K\right)=-1$ and $i\left(T_{\lambda}, \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}, K\right)=1$. Hence, T_{λ} has a fixed point in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$ or $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$ according to $f_{0}=0$ or $f_{\infty}=0$, respectively. Consequently, (2.3)-(2.4) has a positive solution for $\lambda>\lambda_{0}$.

Part (b). Choose a number $r_{1}>0$. By Lemma 2.11 we infer that there exists a $\lambda_{0}>0$ such that

$$
\left\|T_{\lambda} u\right\|<\|u\|, \text { for } \mathrm{u} \in \partial \Omega_{\mathrm{r}_{1}}, 0<\lambda<\lambda_{0}
$$

If $f_{0}=\infty$, there is a $0<r_{2}<r_{1}$ such that $f(u) \geq \psi_{2}(\eta) \varphi(u)$ for $0 \leq u \leq r_{2}$, where $\eta>0$ is chosen so that

$$
\psi_{2}^{-1}(\lambda) \Gamma \eta>1
$$

Then

$$
f(u(t)) \geq \psi_{2}(\eta) \varphi(u(t)) \geq \varphi(u(t) \eta) \text { for } u \in \partial \Omega_{r_{2}}, \quad t \in[0,1]
$$

Lemma 2.7 implies that

$$
\left\|T_{\lambda} u\right\| \geq \psi_{2}^{-1}(\lambda) \Gamma \eta\|u\|>\|u\| \text { for } u \in \partial \Omega_{r_{2}}
$$

If $f_{\infty}=\infty$, there is an $\hat{H}>0$ such that $f(u) \geq \psi_{2}(\eta) \varphi(u)$ for $u \geq \hat{H}$, where $\eta>0$ is chosen so that

$$
\psi_{2}^{-1}(\lambda) \Gamma \eta>1
$$

Let $r_{3}=\max \left\{2 r_{1}, \frac{\hat{H}}{\rho}\right\}$. If $u \in \partial \Omega_{r_{3}}$, then

$$
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq \rho\|u\| \geq \hat{H}
$$

and hence,

$$
f(u(t)) \geq \psi_{2}(\eta) \varphi(u(t)) \geq \varphi(u(t) \eta) \text { for } t \in\left[\frac{1}{4}, \frac{3}{4}\right]
$$

It follows from Lemma 2.7 that

$$
\left\|T_{\lambda} u\right\| \geq \psi_{2}^{-1}(\lambda) \Gamma \eta\|u\|>\|u\| \text { for } u \in \partial \Omega_{r_{3}}
$$

It follows from Lemma 2.3 that

$$
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=1, \quad i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=0 \quad \text { and } \quad i\left(T_{\lambda}, \Omega_{r_{3}}, K\right)=0
$$

and hence, $i\left(T_{\lambda}, \Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}, K\right)=1$ and $i\left(T_{\lambda}, \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}, K\right)=-1$. Thus, T_{λ} has a fixed point in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$ or $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$ according to $f_{0}=\infty$ or $f_{\infty}=\infty$, respectively. Consequently, (2.3)-(2.4) has a positive solution for $0<\lambda<\lambda_{0}$.

Part (c). Choose two numbers $0<r_{3}<r_{4}$. By Lemma 2.10 we infer that there exists a $\lambda_{0}>0$ such that

$$
\left\|T_{\lambda} u\right\|>\|u\|, \text { for } \mathrm{u} \in \partial \Omega_{\mathrm{r}_{\mathrm{i}}}, \lambda>\lambda_{0},(\mathrm{i}=3,4)
$$

Since $f_{0}=0$ and $f_{\infty}=0$, it follows from the proof of Theorem 2.2 (a) that we can choose $r_{1}<r_{3} / 2$ and $r_{2}>2 r_{4}$ such that

$$
\left\|T_{\lambda} u\right\|<\|u\| \text { for } u \in \partial \Omega_{r_{i}}, \quad(i=1,2)
$$

It follows from Lemma 2.3 that

$$
\begin{aligned}
& i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=1, \quad i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=1 \\
& i\left(T_{\lambda}, \Omega_{r_{3}}, K\right)=0, \quad i\left(T_{\lambda}, \Omega_{r_{4}}, K\right)=0
\end{aligned}
$$

and hence, $i\left(T_{\lambda}, \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}, K\right)=-1$ and $i\left(T_{\lambda}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{4}}, K\right)=1$. Thus, T_{λ} has two fixed points $u_{1}(t)$ and $u_{2}(t)$ such that $u_{1}(t) \in \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$ and $u_{2}(t) \in \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{4}}$, which are the desired distinct positive solutions of (2.3)(2.4) for $\lambda>\lambda_{0}$ satisfying

$$
r_{1}<\left\|u_{1}\right\|<r_{3}<r_{4}<\left\|u_{2}\right\|<r_{2}
$$

Part (d). Choose two numbers $0<r_{3}<r_{4}$. By Lemma 2.11 we infer that there exists a $\lambda_{0}>0$ such that

$$
\left\|T_{\lambda} u\right\|<\|u\|, \text { for } \mathrm{u} \in \partial \Omega_{\mathrm{r}_{\mathrm{i}}}, 0<\lambda<\lambda_{0},(\mathrm{i}=3,4)
$$

Since $f_{0}=\infty$ and $f_{\infty}=\infty$, it follows from the proof of Theorem 2.2 (b) that we can choose $r_{1}<r_{3} / 2$ and $r_{2}>2 r_{4}$ such that

$$
\left\|T_{\lambda} u\right\|>\|u\| \text { for } u \in \partial \Omega_{r_{i}}, \quad(i=1,2)
$$

It follows from Lemma 2.3 that

$$
\begin{array}{ll}
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=0, & i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=0 \\
i\left(T_{\lambda}, \Omega_{r_{3}}, K\right)=1, & i\left(T_{\lambda}, \Omega_{r_{4}}, K\right)=1
\end{array}
$$

and hence, $i\left(T_{\lambda}, \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}, K\right)=1$ and $i\left(T_{\lambda}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{4}}, K\right)=-1$. Thus, T_{λ} has two fixed points $u_{1}(t)$ and $u_{2}(t)$ such that $u_{1}(t) \in \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$ and $u_{2}(t) \in \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{4}}$, which are the desired distinct positive solutions of (2.3)(2.4) for $0<\lambda<\lambda_{0}$ satisfying

$$
r_{1}<\left\|u_{1}\right\|<r_{3}<r_{4}<\left\|u_{2}\right\|<r_{2}
$$

Part (e) Since $f_{0}<\infty$ and $f_{\infty}<\infty$, there exist positive numbers $\varepsilon_{1}, \varepsilon_{2}, r_{1}$ and r_{2} such that $r_{1}<r_{2}$ and

$$
\begin{aligned}
& f(u) \leq \varepsilon_{1} \varphi(u) \text { for } u \in\left[0, r_{1}\right] \\
& f(u) \leq \varepsilon_{2} \varphi(u) \text { for } u \in\left[r_{2}, \infty\right)
\end{aligned}
$$

Let $\varepsilon_{3}:=\max \left\{\varepsilon_{1}, \varepsilon_{2}, \max _{r_{1} \leq u \leq r_{2}}\left\{\frac{f(u)}{\varphi\{u\}}\right\}\right\}>0$. Thus, we have

$$
f(u) \leq \varepsilon_{3} \varphi(u) \text { for } u \in[0, \infty)
$$

Assume $v(t)$ is a positive solution of (2.3)-(2.4). We will show that this leads to a contradiction for $0<\lambda<\lambda_{0}:=\psi_{1}\left(\frac{1}{\int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\varepsilon_{3} \frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right)}\right)$. Since $T_{\lambda} v(t)=v(t)$ for $t \in[0,1]$,

$$
\begin{aligned}
\|v\|=\left\|T_{\lambda} v\right\| & \leq \int_{0}^{1} \frac{1}{p(s)} \varphi^{-1}\left(\frac{1}{q(0)} \lambda \int_{0}^{1} h(\tau) f(v(\tau)) d \tau\right) d s \\
& \leq \int_{0}^{1} \frac{1}{p(s)} d s \varphi^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) \varepsilon_{3} d \tau \psi_{1}\left(\psi_{1}^{-1}(\lambda)\right) \varphi(\|v\|)\right) \\
& \leq \int_{0}^{1} \frac{1}{p(s)} d s \varphi^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) \varepsilon_{3} d \tau \varphi\left(\psi_{1}^{-1}(\lambda)\|v\|\right)\right) \\
& \leq \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \varepsilon_{3} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}(\lambda)\|v\|<\|v\|,
\end{aligned}
$$

which is a contradiction.
Part (f). Since $f_{0}>0$ and $f_{\infty}>0$, it follows that there exist positive numbers $\eta_{1}, \eta_{2}, r_{1}$ and r_{2} such that $r_{1}<r_{2}$ and

$$
\begin{aligned}
& f(u) \geq \eta_{1} \varphi(u) \text { for } u \in\left[0, r_{1}\right] \\
& f(u) \geq \eta_{2} \varphi(u) \text { for } u \in\left[r_{2}, \infty\right) .
\end{aligned}
$$

Let $\eta_{3}:=\min \left\{\eta_{1}, \eta_{2}, \min _{r_{1} \leq u \leq r_{2}}\left\{\frac{f(u)}{\varphi\{u\}}\right\}\right\}>0$. Thus, we have

$$
f(u) \geq \eta_{3} \varphi(u) \text { for } u \in[0, \infty) .
$$

Since $\eta_{3} \varphi(u)=\psi_{2}\left(\psi_{2}^{-1}\left(\eta_{3}\right)\right) \varphi(u)$, (H1) implies that

$$
f(u) \geq \eta_{3} \varphi(u) \geq \varphi\left(\psi_{2}^{-1}\left(\eta_{3}\right) u\right) \text { for } u \in[0, \infty)
$$

Assume $v(t)$ is a positive solution of (2.3)-(2.4). We will show that this leads to a contradiction for $\lambda>\lambda_{0}:=\psi_{2}\left(\frac{1}{\Gamma \psi_{2}^{-1}\left(\eta_{3}\right)}\right)$. Since $T_{\lambda} v(t)=v(t)$ for $t \in[0,1]$, it follows from Lemma 2.7 that

$$
\|v\|=\left\|T_{\lambda} v\right\| \geq \psi_{2}^{-1}(\lambda) \Gamma \psi_{2}^{-1}\left(\eta_{3}\right)\|v\|>\|v\|,
$$

which is a contradiction.
Part (g). If

$$
\psi_{2}\left(\frac{1}{\Gamma \psi_{2}^{-1}\left(f_{0}\right)}\right)<\lambda<\psi_{1}\left(\frac{1}{\int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}\left(f_{\infty}\right)}\right),
$$

there exists an $0<\varepsilon<f_{0}$ such that

$$
\psi_{2}\left(\frac{1}{\Gamma \psi_{2}^{-1}\left(f_{0}-\varepsilon\right)}\right)<\lambda<\psi_{1}\left(\frac{1}{\int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}\left(f_{\infty}+\varepsilon\right)}\right)
$$

Beginning with f_{0}, there is a $r_{1}>0$ such that $f(u) \geq\left(f_{0}-\varepsilon\right) \varphi(u)$ for $0 \leq u \leq r_{1}$. Note that $\left(f_{0}-\varepsilon\right) \varphi(u)=\psi_{2}\left(\psi_{2}^{-1}\left(f_{0}-\varepsilon\right)\right) \varphi(u)$. If $u \in \partial \Omega_{r_{1}}$, then

$$
f(u(t)) \geq \psi_{2}\left(\psi_{2}^{-1}\left(f_{0}-\varepsilon\right)\right) \varphi(u(t)) \geq \varphi\left(u(t) \psi_{2}^{-1}\left(f_{0}-\varepsilon\right)\right) \quad \text { for } \quad t \in[0,1] .
$$

Lemma 2.7 implies that

$$
\left\|T_{\lambda} u\right\| \geq \psi_{2}^{-1}(\lambda) \Gamma \psi_{2}^{-1}\left(f_{0}-\varepsilon\right)\|u\|>\|u\| \text { for } u \in \partial \Omega_{r_{1}} .
$$

It remains to consider f_{∞}. It follows from Lemma 2.8 that $\lim _{u \rightarrow \infty} \frac{f^{*}(u)}{\varphi(u)}=$ f_{∞}. Therefore, there is a $r_{2}>2 r_{1}$ such that

$$
f^{*}\left(r_{2}\right) \leq\left(f_{\infty}+\varepsilon\right) \varphi\left(r_{2}\right)=\psi_{1}\left(\psi_{1}^{-1}\left(f_{\infty}+\varepsilon\right)\right) \varphi\left(r_{2}\right) .
$$

Lemma 2.9 implies that, for $u \in \partial \Omega_{r_{2}}$, we have

$$
\left\|T_{\lambda} u\right\| \leq \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}\left(f_{\infty}+\varepsilon\right)\|u\|<\|u\|
$$

It follows from Lemma 2.3 that

$$
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=0 \text { and } i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=1
$$

Hence, $i\left(T_{\lambda}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=1$. Thus, T_{λ} has a fixed point in $\Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$, which is the desired positive solution of (2.3)-(2.4).

If

$$
\psi_{2}\left(\frac{1}{\Gamma \psi_{2}^{-1}\left(f_{\infty}\right)}\right)<\lambda<\psi_{1}\left(\frac{1}{\int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}\left(f_{0}\right)}\right)
$$

there exists an $0<\varepsilon<f_{\infty}$ such that

$$
\psi_{2}\left(\frac{1}{\Gamma \psi_{2}^{-1}\left(f_{\infty}-\varepsilon\right)}\right)<\lambda<\psi_{1}\left(\frac{1}{\int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}\left(f_{0}+\varepsilon\right)}\right)
$$

Since $f_{0}^{*}=f_{0}$, there exists a $r_{3}>0$ such that $f^{*}\left(r_{3}\right) \leq\left(f_{0}+\varepsilon\right) \varphi\left(r_{3}\right)$. Lemma 2.9 implies that

$$
\left.\left\|T_{\lambda} u\right\| \leq \psi_{1}^{-1}(\lambda) \int_{0}^{1} \frac{1}{p(s)} d s \psi_{1}^{-1}\left(\frac{1}{q(0)} \int_{0}^{1} h(\tau) d \tau\right) \psi_{1}^{-1}\left(f_{0}+\varepsilon\right)\right)\|u\|<\|u\|
$$

for $u \in \partial \Omega_{r_{3}}$. Next, considering f_{∞}, there is an $\hat{H}>0$ such that $f(u) \geq$ $\left(f_{\infty}-\varepsilon\right) \varphi(u)$ for $u \geq \hat{H}$. Let $r_{4}=\max \left\{2 r_{3}, \frac{\hat{H}}{\rho}\right\}$. If $u \in \partial \Omega_{r_{4}}$, then

$$
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq \rho\|u\| \geq \hat{H}
$$

and hence,

$$
f(u(t)) \geq\left(f_{\infty}-\varepsilon\right) \varphi(u(t)) \geq \varphi\left(u(t) \psi_{2}^{-1}\left(f_{\infty}-\varepsilon\right)\right) \quad \text { for } \quad t \in\left[\frac{1}{4}, \frac{3}{4}\right] .
$$

Lemma 2.7 implies that

$$
\left\|T_{\lambda} u\right\| \geq \psi_{2}^{-1}(\lambda) \Gamma \psi_{2}^{-1}\left(f_{\infty}-\varepsilon\right)\|u\|>\|u\| \quad \text { for } \quad u \in \partial \Omega_{r_{4}} .
$$

Again it follows from Lemma 2.3 that

$$
i\left(T_{\lambda}, \Omega_{r_{3}}, K\right)=1 \text { and } i\left(T_{\lambda}, \Omega_{r_{4}}, K\right)=0
$$

Hence, $i\left(T_{\lambda}, \Omega_{r_{4}} \backslash \bar{\Omega}_{r_{3}}, K\right)=-1$. Thus, T_{λ} has a fixed point in $\Omega_{r_{4}} \backslash \bar{\Omega}_{r_{3}}$, which is the desired positive solution of (2.3)-(2.4).

References

[1] C. Bandle, C.V. Coffman, and M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations, 69 (1987), 322-345.
[2] C. Bandle and L. A. Peletier, Nonlinear elliptic problems with critical exponent in shrinking annuli, Math. Ann., 280 (1988), 1-19.
[3] C.V. Coffman and M. Kwong, Semilinear elliptic problems in annular domains, Z. Angew. Math. Phys., 40 1989, 245-257.
[4] H. Berzis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
[5] C.V. Coffman and M. Marcus, Existence and uniqueness results for semilinear Dirichlet problems in annuli, Arch. Rational Mech. Anal., 108 (1989), 293-307.
[6] K, Deimling, "Nonlinear Functional Analysis," Springer, Berlin, 1985.
[7] X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations, 70 (1987), 69-92.
[8] D. Guo and V. Lakshmikantham, "Nonlinear Problems in Abstract Cones," Academic Press, Orlando, FL, 1988.
[9] M. Kwong and L. Zhang, Uniqueness of the positive solutions of $\Delta u+f(u)=0$, in an annulus, Differential and Integral Equations, 4 (1991), 583-599.
[10] M. Krasnoselskii, "Positive Solutions of Operator Equations," Noordhoff, Groningen, 1964.
[11] S.S. Lin and F. M. Pai, Existence and multiplicity of positive radial solutions for semilinear elliptic equations in annular domains, SIAM J. Math. Anal., 22 (1991), 1500-1515.
[12] S.S. Lin, On the existence of positive radial solutions for semilinear elliptic equations in annular domains, J. Differential Equations, 81 (1989), 221-233.
[13] W.-M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u, r)=0$, Comm. Pure Appl. Math., 38 (1985), 67-108.
[14] W.-M. Ni and J. Serrin, Non-existence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math., 39 (1986), 379-399.
[15] W.-M. Ni and J. Serrin, Nonexistence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo Suppl., 5 (1986), 171-185.
[16] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations, 109 (1994), 1-7.
[17] J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc., 125 (1997), 2275-2283.
[18] S. Yadava, Uniqueness of positive radial solutions of the Dirichlet problems $-\Delta u=$ $u^{p} \pm u^{q}$, in an annulus, J. Differential Equations, 139 (1997), 194-217.
[19] S. Yadava, Existence and exact multiplicity of positive radial solutions of semilinear elliptic problems in annuli, Adv. Differential Equations, 6 (2001), 129-154.

