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Abstract. We study the existence, multiplicity and nonexistence of
positive radial solutions to boundary value problems for the quasilinear
equation div (A(|Vu|)Vu)+ Ah(|z|) f(u) = 0 in annular domains under
general assumptions on the function A(u). Various possible behaviors
X((;‘))u at zero and infinity are considered. We shall use
fixed point theorems for operators on a Banach space.

of the quotient

1. INTRODUCTION

In this paper we consider the existence, multiplicity and nonexistence
of positive radial solutions for the quasilinear equation

div (A(|Vu|)Vu) + Ak(|z|) f(u) =0, in Ry < |z| < Ry, x € R", n>2
(1.1)

with one of the following three sets of boundary conditions,

u=0on |zr|=R; and |z| = Ry, (1.2a)
Ju/Or =0on |z =Ry and u=0on |z| = Ry, (1.2b)
u=0on |z|=R; and Ju/Or =0on |z| = Ry, (1.2c)

where 7 = |z| and 0/0r denotes differentiation in the radial direction, and
0< R < Ry < o0.

Ni and Serrin [14, 15] established some existence and non-existence the-
orems for radial ground state solutions of quasilinear equations of the form
(1.1) in R™. The function A originates from a variety of practical appli-
cations, for instance, the degenerate m-Laplace operator, namely A(|p|) =
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Ip|™=2, m > 1. When A = 1 we recall that (1.1) reduces to the classical
semilinear elliptic equation

Au+ Mk(|z|)f(u) =0, in Ry < |z| < Re, z € R", n > 2. (1.3)

(1.3)-(1.2) has been studied by Bandle, Coffman and Marcus [1], Bandle and
Peletier [2], Coffman and Kwong [3], Lin [12], Ni and Nussbaum [13] and
many others [5, 7, 9, 11, 16, 18, 19]. In particular, when f is non-negative,
Bandle, Coffman and Marcus [1], Coffman and Marcus [5] and Lin [12] have
established the existence of positive radial solutions of (1.3)-(1.2) under the
assumption that f is superlinear, i.e., lim,_,g @ = 0 and limy—,c @ = 00,
which improves various earlier existence results by many authors under some
additional assumptions on f.

On the other hand, the present author [16] has established the existence
of positive radial solutions of (1.3)-(1.2) under the assumption that f is
sublinear, i.e., lim,_.q @ = oo and lim,_, s @ = 0. In fact, we shall show
that the existence, multiplicity and nonexistence of positive radial solutions
of (1.3)-(1.2) are characterized by the asymptotic behaviors of the quotient
@ at zero and infinity.

The main purpose of this paper is to examine the quasilinear problem
(1.1)-(1.2) under general assumptions on the function A. In this paper we
introduce a new and general assumption (see H1) on the function A, which
covers the two important cases A = 1 and A(|p|) = |[p|™ 2, m > 1, i.e., the
degenerate m-Laplace operator.

Under such assumption, we are able to show that the structure of the
positive radial solution set of (1.1)-(1.2) is exactly the same as that of the two
special cases A =1 and A(|p|) = [p|™ 2, m > 1, in the sense that Theorems
1.1 and 1.2 hold for the general problem (1.1)-(1.2) and the two special cases.
We consider not only existence, but also multiplicity and nonexistence. Our
results (Theorems 1.1 and 1.2) generalize and extend the work of many
authors [1, 2, 3, 5, 7, 11, 12, 13, 16, 18, 19]. Furthermore, most of our results
are new even for the case A(|p|) = |[p|™ 2, m > 1.

Finally, our arguments in this paper are closely related to those of [16], in
which the present author uses the fixed point index for compact maps, which
is based on Leray-Schauder degree theory, to study (1.1)-(1.2) for A = 1.

Let o(t) := A(|t])t. We make the assumptions:

(H1) ¢ is an odd, increasing homeomorphism from R onto R and there
exist two increasing homeomorphisms ; and v, from (0, 00) onto
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(0, 00) such that
P1(0)p(t) < p(ot) < a(o)e(t), for all ¢ and t > 0.

(H2) k : [R1, R2] — [0,00) is continuous and k(¢) # 0 on any subinterval
of [Rl, RQ]

(H3) f:[0,00) — [0,00) is continuous.

(H4) f(u) >0 for u > 0.

In order to state our results we introduce the notation

fo:= lim DY and foo := lim M
u u—00 p(u)

Our main results are:

Theorem 1.1. Assume (H1)-(H3) hold.
(a) If fo = 0 and foo = 00, then for all X > 0 (1.1)-(1.2) has a positive
radial solution.
(b) If fo = 00 and foo = 0, then for all A > 0 (1.1)-(1.2) has a positive

radial solution.

Theorem 1.2. Assume (H1)-(H4) hold.

(a) If fo = 0 or foo = 0, then there exists a A\g > 0 such that for all
A > X (1.1)-(1.2) has a positive radial solution.

(b) If fo = 00 or foo = 00, then there exists a A\g > 0 such that for all
0 <A< Xy (1.1)-(1.2) has a positive radial solution.

(c) If fo = foo = 0, then there exists a Ao > 0 such that for all X > Ao
(1.1)-(1.2) has two positive radial solutions.

(d) If fo = foo = 00, then there exists a Ao > 0 such that for all0 < A <
Ao (1.1)-(1.2) has two positive radial solutions.

(e) If fo < 00 and fx < 00, then there exists a Ao > 0 such that for all
0 <A< Ao (1.1)-(1.2) has no positive radial solution.

(f) If fo > 0 and fs > 0, then there exists a Ao > 0 such that for all
A > N\ (1.1)-(1.2) has no positive radial solution.

We should mention that, on an annulus, there are non-radially symmet-
ric positive solutions of (1.1)-(1.2) even when f(u) = uP, which was first
observed by Brezis and Nirenberg [4].

2. PRELIMINARIES

A radial solution of (1.1)-(1.2) can be considered as a solution of the
equation

(r”flgp(u’(r))), + X" k(r) f(u(r)) =0, in Ry <7 < Ry, (2.1)



114 HAryAN WANG

with one of the following three sets of boundary conditions,

U(Rl) = ’LL(RQ) = 0, (2.2&)
u’(Rl) = U(RQ) = 0, (2.2b)
U(Rl) = u'(RQ) =0. (2.2C)

We shall treat classical solutions of (2.1)-(2.2), namely functions u of class
C' on [Ry, Re] with ¢(u') € C*(Ry, Rg), which satisfies (2.1)-(2.2) for r €
(R1, R2). A solution w is positive if u(r) > 0 for all r € (Ry, Ra).

Applying change of variables, r = (Ry — R1)t + R1, we can transform
(2.1)-(2.2) into the form

(a(@)p(p(O))) + Ah(E)f(u) =0, 0<t<1 (2.3)
with one of the following three sets of boundary conditions,
u(0) =u(1) =0, (2.4a)
u'(0) = u(1) =0, (2.4b)
u(0) = /(1) = 0, (2.4¢)
where
alt) = ((Ro = R0+ R, plt) =
and

h(t) := (Ry — R1)((Ry — R1)t + R1)" 'k((R2 — Ri)t + Ry).
It is easy to see that (H1)-(H2) imply

p(t) and q(t) € C[0,1] with p >0 and ¢ >0 for t € 0,1]
and q(t) is nondecreasing on |0,1].
® is an odd, increasing homeomorphism from R onto R and
there exist two increasing homeomorphisms v; and 9 from
(0,00) onto (0,00) such that

Y1(0)p(t) < p(ot) < a(o)e(t), for all ¢ and t > 0.
h:[0,1] — [0,00) is continuous and does not vanish identically
on any subinterval of [0,1].

For (2.3)-(2.4) we shall prove Theorems 2.1 and 2.2, which immediately
imply that Theorems 1.1 and 1.2 are true. In addition, Part (g) of Theorem
2.2 also holds for (1.1)-(1.2).

Although the functions p, ¢, ¢ and h are of the special forms defined
above, we remark that Theorems 2.1 and 2.2, including Lemmas 2.4-2.11,
hold even for general functions p, ¢, ¢ and h if they satisfy the property (P).
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In the following proof we only use the property (P) of p, ¢, ¢ and h and do
not rely on any special form that p, q, ¢ and h may have. Define

1 _ 1 1
p = [/0 l%ds] 1min{/o Z%dt,/% ﬁdt}>0

y(t) == g{/;p(ls)%l((ln /: h(T)dT)dS

q
- [ (o [ ),

where ¢ € [1,3]. It follows from (H1)-(H2) that I := mln%<t§g v(t) > 0.

and

Theorem 2.1. Assume (H1)-(H3) hold.
(a) If fo = 0 and foo = 00, then for all A > 0 (2.3)-(2.4) has a positive
solution.
(b) If fo = 00 and foo = 0, then for all A > 0 (2.3)-(2.4) has a positive
solution.

Theorem 2.2. Assume (H1)-(H4) hold.

(a) If fo = 0 or foo = 0, then there exists a A\g > 0 such that for all
A > Ao (2.3)-(2.4) has a positive solution.

(b) If fo = 00 or foo = 00, then there exists a A\g > 0 such that for all
0 <A< Ao (2.3)-(2.4) has a positive solution.

(¢) If fo = foo = 0, then there exists a N\g > 0 such that for all X > )Xo
(2.3)-(2.4) has two positive solutions.

(d) If fo = foo = 00, then there exists a A\g > 0 such that for all 0 < \ <
Ao (2.3)-(2.4) has two positive solutions.

(e) If fo < 0o and foo < 00, then there exists a A\g > 0 such that for all
0 <A< Ao (2.3)-(2.4) has no positive solution.

(f) If fo > 0 and fs > 0, then there exists a Ao > 0 such that for all
A > X (2.3)-(2.4) has no positive solution.

(g) If 0 < fo <00, 0 < foo < 00 and either

1 1
A
Pt < M T s o e )
Yot ) < A< ¥ )

[y (foo) fO ﬁdmﬁ 2(0) fo T)dT)Yy (fO)
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then (2.3)-(2.4) has a positive solution.

The following well-known result of the fixed point index is crucial in our
arguments.

Lemma 2.3. ([6, 8, 10]). Let E be a Banach space and K a cone in E.
For r > 0, define K, := {u € K : ||z|| < r}. Assume that T : K, — K is
completely continuous such that Tx # x for x € 0K, :={u € K : ||z|| =r}.
() If |Tz|| > ||x| for z € OK,, then i(T, K,, K) = 0.
(ii) If [|Tz|| < ||z|| for x € OK,, then i(T, K,, K) = 1.

In order to apply Lemma 2.3 to (2.3)-(2.4), let X be the Banach space
C10,1] with [[ul| = supyc[ 1) [u(?)|. Define K be a cone in X by

K:={ueX:u(t)>0, min u(t)> pllul}.
1<i<3
Also, define, for r a positive number, Q, by Q, := {u € K : ||u|| < r}. Note
that 0Q, = {u e K : |lul]| =r}.
Let the map Ty : K — X be defined by

Jo 55597 G A ST () flulr))dr)ds, 0<t<o,
S 507 G A S W) fu(r))dr)ds, o <t <1,

where 0 = 0 for (2.3)-(2.4b) and o = 1 for (2.3)-(2.4c). For (2.3)-(2.4a)
o € (0,1) is a solution of the equation

Z:\(t) = Za(t), (2.5)

T,\u(t) =

where

—tiflitv'uv'v's
20 = [ el [ s uanas, 0<e<t,

and

B 1 1 . 1 s
Zs(t) —/t @gp (@)\/t () f(u(r))dr)ds, 0<t<1.

Note that (2.5) has at least one solution in (0, 1). In fact, if A(7) f(u(7)) =0
on [0,1], we may choose any o € (0,1). If there is a 7 € (0,1) such that
h(7)f(u(r)) > 0, then Z;(0) — Z2(0) < 0 and Z;(1) — Z2(1) > 0. Since
Z1(t) — Z5(t) is nondecreasing continuous function defined on [0,1], (2.5) has
at least one solution in (0,1). Moreover, if o1 and o2 € (0, 1) are solutions of
(2.5), it is not difficult to show that h(7)f(u(7)) = 0 on [01,02]|. Therefore,

Tyu(t) is independent of the choice of o € [01, 02] and then the operator is
well defined.
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Lemma 2.4. Assume (H1)-(H2) hold. Let u and v € X with u(t) > 0 and
v(t) <0 forte[0,1]. If (¢(t)p(p(t)u’)) = v, then

w2 [ sas i [, [ Lastall te o1

In particular,

Proof. Since q(t)p(p(t)u/(t)) is nonincreasing, it follows, from ¢! is in-

creasing and ¢(t) is nondecreasing, that p(t)u’(t) is nonincreasing. Hence,
for 0 <ty <t<it; <1,

u(t) — ulty) = /t ﬁp(s)u'(s)dsz /t ]%dsp(t)u’(t)

and

u(ty) — u(t) = /t C s (s)ds < /t L s,

p(s) p(s)
from which, we have

"l -1 tlisu tisu
) 2 [l [ s+ [ esdsun)

Considering the above inequality on [0, 0] and [0, 1], we have

R
u(t)z[/o ot /OwdsHuH for tel0,o0],

and
W21 L [l o e o)
u(t) > ——ds|™ ——ds||u or tclol,
o p(s) ¢ p(s)
where o € [0, 1] such that u(o) = ||u||. Hence,

u(t)z[/o —ds mln{/ /%ds}HuH te0,1. O

We remark that, according to Lemma 2.4, any non-negative solution of
(2.3)-(2.4) is positive unless it is identical to zero.

Lemma 2.5. Assume (H1)-(H3) hold. Then T)\(K) C K and the map
Ty : K — K 1is completely continuous.
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Proof. Lemma 2.4 implies that T)\(K) C K. It is not difficult to verify that
T) is compact and continuous. ]

Now it is not difficult to show that (2.3)-(2.4) is equivalent to the fixed
point equation
Thu=u in K.

Lemma 2.6. Assume (H1) holds. Then for all o,t € (0,00)
¥y (o)t <@ op(t)) < v (o)t

Proof. Since o = 91 (7 (0)) = ¥2(¥5 ' (0)) and (9~ (op(t))) = ap(t), it
follows that

V213 (0)e(t) = (e~ (o(t)) = Y1 (U7 (0)o(t).
On the other hand, we have by (H1)
Y1(¥7 H(0))e(t) < p(y (o)) and Pa(vy ' (0))(t) = @(¥3 (o)1)

Hence,

Py (o)1) < 9™ op(t)) < (¥ (o)1)
is increasing, we obtain

U0t <@ (op(®) <url(o)t. O
Lemma 2.7. Assume (H1)-(H3) hold and letn > 0. Ifu € K and f(u(t)) >
p(u(t)n) fort € [+, 3], then
1Tl = w3 (ATl

Proof. Note that from the definition of Thu that Thu(c) is the maximum
value of Thu on [0,1]. If o € [L, 3], it follows from Lemma 2.4 and Lemma 2.6

Since ¢!

that 41
1 71 _ 1 o
Tl > 5 / o o [ heGutmards
%L o [ 7) f(u(7))dr)ds
+/a p(s)(p (q(l))\/a h(7) f(u(r))d )d}
1 | _ 1 o -
> 5[/}1 @(p 1(@/5 h(T)e (15 I(A))@(U(T)n)dr)ds
S 1 e .
—l-/U m@ 1(@/0 h(7)¢2(¢21()‘))80(U(7')77)d7')d5]
1 7 1 _ 1 o ~
251, ey ) Hetes vty
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+ [ % 597 [ et pnlal)ar)ds]
=51, s G [ mans Qomlulas

+ /f %w;l(ﬁ /: h(T)dT)wz_l(A)anUI!dS}
_ 43" gl [ [ hne

N
[

+/j Lo /:h(T)dT)dS] > Py (A Tnllul.

For o > %, it is easy to see

3

E / 4 ﬁwix / * h(r) f(u(r))dr)ds.

On the other hand, we have

3
11 1 s 1
Thu 2/ —— ! —)\/ h(T)f(u(r))dr)ds for o < =.
Tl 2 [, o7 Gy [, Wt ;
Therefore, similar arguments show that
3 1
| Tyul| > ¥ ' (NTy|lul| if o> 10 0<y O

Define a new function

£*(u) == max {£(1)}.

0<t<u

Note that f; = lim, o %(u”)) and f3 = lim,

Lemma 2.8. Assume (H1)-(H3) hold. Then f§ = fo and fi = feo.

Proof. It is easy to see that f; = fo. For the second part, we consider two
cases, (a) f(u) is bounded and (b) f(u) is unbounded. For the case (a), it
follows, from lim, .~ ¢(u) = oo, that fi = 0 = fs. For the case (b), for
any 0 > 0, let M := Org&xé{f(t)} and N5 := min{u : u > 0, f(u) > M} > 0,

then
max {£(£)} = (V).

0<t<Njy
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Thus, for any § > 0, there exists a N5 > § such that

fH(u) = max{oggvé{f(t)}, Nf%%éu{f ()} = ngggu{f (t)} for u> Nj.

Hence, it follows, from the definitions of fo and f%, that fi = fo. O

Lemma 2.9. Assume (H1)-(H3) hold and let r > 0. If there exists an e > 0
such that f*(r) < y1(e)p(r), then

1 1
| Tyu gw;l(A)/O ]% ﬁ/g h(r)dr)e||u| for u e o9,

Proof. From the definition of Ty, Lemma 2.4 and Lemma 2.6, for u € 0f),,
we have

dsibyH(

P ORRIO)
1 1 1
< / s s / W(r)dro(U (Ver))

1 1 3 1 1 3
< | st [ nmanir el 0
The following two lemmas are weak forms of Lemmas 2.7 and 2.9.

Lemma 2.10. Assume (H1)-(H4) hold. If u € 0Q,, r > 0, then

~Lam, )T
| Tyul| > ¢~ (M)
0

)

where M, = p;%r%r{f(t)} > 0.
Proof. Since Af(u(t)) > M, = (o~ 1 (Mh,)) for t € [, 3], it is easy to see
that this lemma can be shown in a similar manner as in Lemma 2.7. |

Lemma 2.11. Assume (H1)-(H4) hold. If u € 0, r > 0, then

L8_1L 1 T)dT
s (s [ har).

1
Tl < o7 (03) [ 0
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where M, = ongl?éﬂ{f(t)} > 0.

Proof. Since Af(u(t)) < AM, = o(o Y (AM,)) for t € [0,1], it is easy to see
that this lemma can be shown in a similar manner as in Lemma 2.9. |

3. PROOF OoF THEOREM 2.1

Proof. Part (a). It follows from Lemma 2.8 that fj = 0. Therefore, we can
choose r; > 0 so that f*(r1) < ¢1(e)p(r1), where the constant € > 0 satisfies

1 1 1 1
—1 —1
ey /\/—dsw —/hsds < 1.

1()0]7(5) 1((1(0)0())
We have by Lemma 2.9 that

1 1 1
| Toul| gw—l(A)/ —dsw—l(—/ h(r)dr)el|ul| < |[ul| for uw e OQ,.
! o p(s) ' q(0) Jo '
Now, since foo = oo, there is an H > 0 such that f(u) > 12(n)p(u) for
u > H , where 77 > 0 is chosen so that

by (AT > 1.

Let ro = max{2ry, %} If u € 09y, then

which implies that

13
Fu0) = Ba(p(u(t) > plulty) for te[7,5]
It follows from Lemma 2.7 that
ITvull > 5 W Tnllull > Jull for € 99,

By Lemma 2.3, i(Ty,Q,, K) = 1 and i(T, Q2y,, K) = 0. It follows from the
additivity of the fixed point index that (T, Q, \ Qp,, K) = —1. Thus,
i(Ty, Qry \ Qpy, K) # 0, which implies Ty has a fixed point u € Q,, \ Qy,
according to the existence property of the fixed point index. The fixed point
u € Q, \ Q, is the desired positive solution of (2.3)-(2.4).

Part (b). If fo = oo, there is a 71 > 0 such that f(u) > ¥2(n)¢(u) for
0 < u < rq, where ) > 0 is chosen so that 5 *(\)T'np > 1. If u € 99, then

fu(t)) = a(n)e(u(t)) = ¢(u(t)n) for t € 0,1].
Lemma 2.7 implies that
IToull > w3 ' Nl > llull - for u € 89y,
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We now determine €2,,. Since fi = fo = 0, there is a r9 > 271 such that
f*(r2) < 1(e)p(ra2), where the constant € > 0 satisfies

“Lx — dsy7 (—— | h(s)d )
W) [ s (s [ b <
Thus, we have by Lemma 2.9
1 1 1 1
1Tyl < L) /0 S (s /O h(r)dr)ellul < llul for e A9,

By Lemma 2.3, i(Ty, €, K) = 0 and i(T},$;,, K) = 1. It follows from the
additivity of the fixed point index that i(T, 2y, \ €, K) = 1. Thus, T\ has
a fixed point in Q,, \ €2,,, which is the desired positive solution of (2.3)-(2.4).

4. PROOF OF THEOREM 2.2

Proof. Part (a). Choose a number r; > 0. By Lemma 2.10, we infer that
there exists a Ag > 0 such that

| Tawl] > [Jul|, for ue€ 0, A > Xo.

If f§ = fo =0, we can choose 0 < ry < ry so that f*(r2) < ¢1(e)p(r2),
where the constant £ > 0 satisfies

1 1 1
5¢1A/ —dswl—/ h(s)ds) < 1.
C P G fy MO
Thus, we have by Lemma 2.9 that
1 1 1 1
Thull < _1/\/—ds _1—/h7d75u<u for u € 909Q,.,.
HAH_%()Dp(S) h (q(o)0 (T)d7)el|ull < |luf >

If f% = foo =0, there is an r3 > 2r; such that f*(rs) < ¢1(e)e(rs), where
the constant € > 0 satisfies
1 1 1 1
~1 ~1
e (/\/ dsiy( /hsds < 1.
! )OP(S) 1(1(0)0 (s)ds)

Thus, we have
1

1 1/t
Tyl §¢1(A)/ dwl(—/ h(r)dr)elull < [lul| for ue aQ,,.
! o p(s) 1 q(0) Jo ’
It follows from Lemma 2.3 that
i(To, ey, K) =0, i(Ty,Qy, K) =1 and i(Th, Uy, K) = 1.
Thus, i(Tx, 2, \ Qy, K) = —1 and i(Ty, Qs \ Oy, K) = 1. Hence, Ty has

a fixed point in Q. \ Q, or Q. \ Q. according to fo = 0 or fo = 0,
respectively. Consequently, (2.3)-(2.4) has a positive solution for A > A.
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Part (b). Choose a number 71 > 0. By Lemma 2.11 we infer that there
exists a A\g > 0 such that

| Toul| < [Jull, for ue d,,0 <A< Ap.
If fo = oo, thereis a 0 < ro < 71 such that f(u) > a(n)e(u) for 0 < u < ry,
where 17 > 0 is chosen so that
vy (A > 1.
Then

fu(t)) = ba(n)e(u(t)) = p(u(t)n) for ue dQy,, tel0,1].
Lemma 2.7 implies that

1Tl = w3 O nllull > [lu] for u € Oy,

If foo = 00, there is an H > 0 such that f(u) > ¢ (n)e(u) for u > H, where
1 > 0 is chosen so that

byt (N > 1.
Let r3 = max{2ry, %} If u € 092y, then

min_ u(t) > pllul| > H,
<t<3

1 3
1="=1

and hence,

F(u(t) > valmeu(®) > plu(tin) for t€ 3,5
It follows from Lemma 2.7 that
I Tsull > w5 ) Pallull > ull for u € 90,
It follows from Lemma 2.3 that
i(Tx, Q) , K) =1, i(T),Q,,K) =0 and i(T),Q,, K) =0,

and hence, i(Ty, Q. \ Qp,y, K) = 1 and i(T, 2y \ Qpy, K) = —1. Thus, T
has a fixed point in Q,, \ ©, or Q,, \ £, according to fy = 00 or foo = 00,
respectively. Consequently, (2.3)-(2.4) has a positive solution for 0 < A < Ag.

Part (¢). Choose two numbers 0 < r3 < r4. By Lemma 2.10 we infer that
there exists a Ao > 0 such that

| Tau|| > [Jul|l, for ue 0y, X > X, (i=3,4).

Since fo =0 and f = 0, it follows from the proof of Theorem 2.2 (a) that
we can choose m < r3/2 and ry > 2r4 such that

| Taul| < ||u|| for we oy, (i=1,2).
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It follows from Lemma 2.3 that

(T, %, K) =1, i(Th,Qp,, K) =1,

(T, g, K) =0, i(T),Q,, K)=0
and hence, i(Ty,Q; \ @, K) = —1 and i(Tx,Qp, \ Q,,K) = 1. Thus,
T\ has two fixed points u(t) and ug(t) such that ui(t) € Q. \ Q,, and

ua(t) € Qp, \ ., which are the desired distinct positive solutions of (2.3)-
(2.4) for A > \g satisfying

r1 < Jlug|l <73 <7y < lug|l < 7o

Part (d). Choose two numbers 0 < r3 < r4. By Lemma 2.11 we infer that
there exists a A\g > 0 such that

IThull < Jull, for u€ 0 < A< Ao, (i =3,4).

Since fy = oo and fo, = o0, it follows from the proof of Theorem 2.2 (b)
that we can choose r; < r3/2 and 9 > 274 such that

| Taull > |Jul| for we oy, (i=1,2).
It follows from Lemma 2.3 that

(T, , K) =0, i(Tx,Q,,K)=0,

iW(Th, gy, K) =1, i(T),Q,, K) =1

and hence, i(Ty, 2 \ Qr, K) = 1 and i(Ty, 2, \ Oy, K) = —1. Thus,
Ty has two fixed points u1(t) and ug(t) such that ui(t) € Q. \ Q,, and
uz(t) € Q, \ Q,, which are the desired distinct positive solutions of (2.3)-
(2.4) for 0 < X < Ag satisfying

r < H’U,lH <rg <rg < HUQH < Tro9.

Part (e) Since fp < 0o and fs < 00, there exist positive numbers &1, 9, r1
and r9 such that r; < ry and

flu) <erp(u) for we(0,r],
f(u) < eap(u) for wu € [re,00).

o f(u)
Let g3 := max{€1’€2’r1r£3§r2{¢{“}}} > 0. Thus, we have

f(u) <egp(u) for u € [0,00).
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Assume v(t) is a positive solution of (2.3)-(2.4). We Wlll show that this leads
to a contradiction for 0 < A < Ao := ¥1(— TThiar )) Since
Yes 0) 0

Thv(t) = v(t) for t € [0,1],

|
ol = Imel < [ e o [ otmanys

1 .
< /O RIS /O h(r)esdrin (b (W) e(lo])

Jo 57

p(s) q(0)
1L spt L 1 T T . v

< [ s o [ hesdret )lel)
19 1 1 .

< /0 s (e /0 BT Vo]l < o,

which is a contradiction.
Part (f). Since fp > 0 and fo > 0, it follows that there exist positive
numbers 71, 12, 1 and 79 such that r; < ro and

f(u) = me(u) for wel0,m],

f(u) = mp(u) for u € [ry,00).

Let 73 := min{rp, 72, min (L {u}}} > 0. Thus, we have

f(u) > n3p(u) for u e [0,00).
Since n3p(u) = va(1b; ' (13))e(u), (H1) implies that
Flu) = m3p(u) > (" (n3)u) for u € [0,00).

Assume v(t) is a positive solution of (2.3)-(2.4). We will show that this
leads to a contradiction for A > X\g := ¢2(ﬁ) Since Thv(t) = v(t) for
3

t € [0, 1], it follows from Lemma 2.7 that

ol = [Tl > b3 " (AT (n3)l|o]] > [Jo]l,
which is a contradiction.
Part (g). If

1 1
77Z1 <A< w )
2(F1/)2 (fO)) ' fo 2(s) d37r/}1 q(O) fo d7)¢1 (foo))

there exists an 0 < € < fy such that

1 1
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Beginning with fy, there is a r1 > 0 such that f(u) > (fo — ¢)¢(u) for
0 < u < ry. Note that (fo — &)p(u) = (s (fo — €))e(u). If u € Q,,,
then
Fu(t)) = 23 (fo = €))e(u(t)) > p(ut)y(fo —¢)) for te(0,1].
Lemma 2.7 implies that
IToull = 3 (VT3 (fo — &)llull > fJu]l for u e 0%,.

frw) _

It remains to consider fo,. It follows from Lemma 2.8 that lim, . “Sla)

fso- Therefore, there is a ro > 2r1 such that

F¥(r2) < (foo + €)(r2) = 1(¥7  (foo + €))p(r2)-

Lemma 2.9 implies that, for u € 0€2,,, we have

1 1
Ty < 7 () /O ﬁdwﬁ(ﬁ /0 B(r)dr )y (oo + ) ] < [l

It follows from Lemma 2.3 that
i(T)\, eraK) =0 and i(T)\, QTQ, K) =1.

Hence, i(Tx, 2, \Qy,, K) = 1. Thus, Ty has a fixed point in €., \ €,,, which
is the desired positive solution of (2.3)-(2.4).
If

1
o ALY
(FT/JQ (foo)) l(fol Iﬁdsﬂ)l fo T)dT )y (fO)

there exists an 0 < € < fo such that

1 1

Since f§ = fo, there exists a 3 > 0 such that f*(Tg) < (f0+€)g0(r3). Lemma
2.9 implies that

),

1 1
ITyull < 977 (V) /0 %dswﬂﬁ /0 B(r)dr)or (fo + €))lull < Jlul

for u € 09,,. Next, considering f, there is an H > 0 such that f (u) >
(foo — €)(u) for u > H. Let ry = max{2rs, %} If u € 09),,, then

min_u(t) > pllufl > H
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and hence,

Fl®) 2 (foo — p(ult) 2 @tz (foo — ) for te[3,5]

Lemma 2.7 implies that

ITvull > w3 T (oo — ) lull > Jull for € 99,

Again it follows from Lemma 2.3 that

(T, g, K) =1 and i(Ty, Qy,, K) = 0.

Hence, i(T\, 2, \ Qy, K) = —1. Thus, Ty has a fixed point in Q,, \ Q,,,

which is the desired positive solution of (2.3)-(2.4). O
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