Nontrivial solutions for p-Laplacian systems

D.D. Hai ${ }^{\text {a }}$, Haiyan Wang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Mississippi State University, Mississippi State, MS 39762, USA
${ }^{\text {b }}$ Department of Mathematical Sciences and Applied Computing, Arizona State University, Phoenix, AZ 85069-7100, USA

Received 14 February 2006
Available online 22 August 2006
Submitted by Steven G. Krantz

Abstract

quasilinear system $$
\begin{aligned} & \operatorname{div}\left(\left|\nabla u_{i}\right|^{p-2} \nabla u_{i}\right)+\lambda f_{i}\left(u_{1}, \ldots, u_{n}\right)=0 \quad \text { in } \Omega, \\ & u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n, \end{aligned}
$$

The paper deals with the existence and nonexistence of nontrivial nonnegative solutions for the sublinear
where $p>1, \Omega$ is a bounded domain in $\mathbb{R}^{N}(N \geqslant 2)$ with smooth boundary, and $f_{i}, i=1, \ldots, n$, are continuous, nonnegative functions. Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right),\|\mathbf{u}\|=\sum_{i=1}^{n}\left|u_{i}\right|$, we prove that the problem has a nontrivial nonnegative solution for small $\lambda>0$ if one of $\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f_{i}(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}$ is infinity. If, in addition, all $\lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f_{i}(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}$ is zero, we show that the problem has a nontrivial nonnegative solution for all $\lambda>0$. A nonexistence result is also obtained.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Elliptic system; p-Laplacian; Schauder Fixed-Point Theorem

[^0]
1. Introduction

In this paper we consider the existence and nonexistence of nontrivial nonnegative solutions for the quasilinear elliptic system

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{i}=\lambda f_{i}\left(u_{1}, \ldots, u_{n}\right) \quad \text { in } \Omega, i=1, \ldots, n, \tag{1.1}\\
u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n
\end{array}\right.
$$

where $\Delta_{p} u_{i}=\operatorname{div}\left(\left|\nabla u_{i}\right|^{p-2} \nabla u_{i}\right), i=1, \ldots, n, p>1, \Omega$ is a bounded domain in $\mathbb{R}^{N}(N \geqslant 2)$ with smooth boundary $\partial \Omega$, and $\lambda>0$ is a parameter.

Problem (1.1) covers several important cases. When $p=2$, (1.1) becomes the semilinear elliptic system

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\lambda f_{i}\left(u_{1}, \ldots, u_{n}\right) \quad \text { in } \Omega, i=1, \ldots, n, \tag{1.2}\\
u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n
\end{array}\right.
$$

and when $n=1$, (1.1) becomes the p-Laplacian problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda f(u) \quad \text { in } \Omega, \tag{1.3}\\
u=0 \quad \text { on } \partial \Omega .
\end{array}\right.
$$

In particular, when $n=1$ and $p=2$, (1.1) becomes the usual Laplacian problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda f(u) \quad \text { in } \Omega \tag{1.4}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Problem (1.4) has received extensive investigations in the past several decades, see, e.g., [$1,2,7]$ and references therein. Lions [7] discussed, under various combinations of superlinearity or sublinearity of f at infinity, $f(0)=0$ and $f(0)>0$, the existence and nonexistence of positive solutions of (1.2). The results of [7] are also interpreted in terms of bifurcation diagrams. Recently, Hai and Shivaji [3-5] studied elliptic systems related to (1.1) and proved the existence of positive solutions to (1.1) in some sublinear cases. The results in [4,5] do not impose any sign conditions on the nonlinearities at zero. A necessary and sufficient condition for the existence of positive solutions for a class of sublinear quasilinear system was obtained in [3]. The main approach in [3] is based on the Schauder Fixed-Point Theorem and maximum principles. In several papers [9-11], Wang studied the number of nontrivial radial solutions of (1.1) on an annular domain and ball. For ODE case $(N=1)$ and annular domains, it was shown in [9] and other papers that the existence, multiplicity and nonexistence of positive solutions of (1.1) can be determined by appropriate combinations of superlinearity and sublinearity of $\mathbf{f}(u)$ at zero and infinity. When the domain is a ball, Wang [10,11] showed (1.1) has a nontrivial nonnegative solution for sublinear cases in a ball.

In this paper we shall study (1.1) in general domains. We shall show that (1.1) has at least one nontrivial nonnegative solution under sublinear assumptions. We also provide a nonexistence result. Our proofs make use of the Schauder Fixed-Point Theorem and weak comparison principles. Variational methods have been frequently used for Hamiltonian systems and gradient systems. However, there is apparently no possibility of using variational methods for the n-dimensional quasilinear elliptic system (1.1), and one has to use topological methods.

We now turn to the general assumptions for this paper. Let $\mathbb{R}=(-\infty, \infty), \mathbb{R}_{+}=[0, \infty)$ and $\mathbb{R}_{+}^{n}=\prod_{i=1}^{n} \mathbb{R}^{+}$. Also, for $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}$, let $\|\mathbf{u}\|=\sum_{i=1}^{n}\left|u_{i}\right|$ and $\mathbf{f}(\mathbf{u})=$ $\left(f_{1}(\mathbf{u}), \ldots, f_{n}(\mathbf{u})\right)=\left(f_{1}\left(u_{1}, \ldots, u_{n}\right), \ldots, f_{n}\left(u_{1}, \ldots, u_{n}\right)\right)$.

We make the following assumptions:
(H1) $f_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$is continuous, $i=1, \ldots, n$.
(H2) There exists $i_{0} \in\{1, \ldots, n\}$ such that

$$
\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f_{i_{0}}(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}=\infty
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}$.
(H3) For all $i \in\{1, \ldots, n\}$,

$$
\lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f_{i}(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}=0
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}$.
The main results of this paper are Theorems 1.1-1.3.
Theorem 1.1. Assume (H1) and (H2) hold. Then there is $\lambda_{0}>0$ such that (1.1) has a nontrivial nonnegative solution for $0<\lambda<\lambda_{0}$.

Theorem 1.2. Assume $(\mathrm{H} 1)-(\mathrm{H} 3)$ hold and suppose that, for i_{0} in $(\mathrm{H} 2)$,

$$
f_{i_{0}}(\mathbf{u})>0 \quad \text { for } 0<\|\mathbf{u}\|, \mathbf{u} \in \mathbb{R}_{+}^{n}
$$

Then (1.1) has a nontrivial nonnegative solution for all $\lambda>0$.
The following assumption will allow us to establish a nonexistence theorem:
(H4) For all $i \in\{1, \ldots, n\}$,

$$
\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f_{i}(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}<\infty, \quad \lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f_{i}(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}<\infty
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}$.
Theorem 1.3. Assume (H1) and (H4) hold. Then there is $\lambda_{0}>0$ such that (1.1) has no nontrivial solution for $0<\lambda<\lambda_{0}$.

We now give three examples to demonstrate these three theorems.

Example 1.

$$
\left\{\begin{array}{l}
\Delta_{p} u_{1}+\lambda e^{\left(u_{1}+\cdots+u_{n}\right)}=0 \quad \text { in } \Omega \tag{1.5}\\
\Delta_{p} u_{i}+\lambda f_{i}\left(u_{1}, \ldots, u_{n}\right) \quad \text { in } \Omega, i=2, \ldots, n \\
u_{i}=0 \text { on } \partial \Omega, i=1, \ldots, n
\end{array}\right.
$$

where $p>1, f_{i}$ are any nonnegative continuous functions. Then (1.5) has a nontrivial solution for sufficient small $\lambda>0$ according to Theorem 1.1.

Example 2.

$$
\left\{\begin{array}{l}
\Delta_{p} u_{i}+\lambda\left(u_{1}+\cdots+u_{n}\right)^{p_{i}}=0 \quad \text { in } \Omega, i=1, \ldots, n, \tag{1.6}\\
u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n,
\end{array}\right.
$$

where $p>1,0<p_{1}, p_{2}, \ldots, p_{n}<p-1$. Then (1.6) has a nontrivial solution for all $\lambda>0$ according to Theorem 1.2.

Example 3.

$$
\left\{\begin{array}{l}
\Delta_{p} u_{i}+\lambda\left(u_{1}+\cdots+u_{n}\right)^{p-1} e^{-\left(u_{1}+\cdots+u_{n}\right)}=0 \quad \text { in } \Omega, i=1, \ldots, n, \tag{1.7}\\
u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n,
\end{array}\right.
$$

where $p>1$. Then (1.7) has no nonnegative nontrivial solution for all sufficient small $\lambda>0$ according to Theorem 1.3.

2. Preliminaries

We recall some basic results for the p-Laplacian. We refer to $\lambda_{1}>0$ as the first eigenvalue and ϕ_{1} as the principal eigenfunction of the p-Laplacian on Ω, i.e.,

$$
\left\{\begin{array}{l}
-\Delta_{p} \phi_{1}=\lambda_{1}\left|\phi_{1}\right|^{p-2} \phi_{1} \quad \text { in } \Omega \tag{2.1}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

It is known that ϕ_{1} belongs to $C^{1+\alpha}(\bar{\Omega})$ for some $0<\alpha<1$ and has one sign and we assume that $\phi_{1}>0$ in Ω.

Lemma 2.1. Let $\phi \in C^{1}(\bar{\Omega})$ be the solution of

$$
\left\{\begin{array}{l}
-\Delta_{p} u=1 \quad \text { in } \Omega, \tag{2.2}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Then there exists a constant $c>0$ such that $\phi \geqslant c \phi_{1}>0$ in Ω.
Proof. For constant $c>0$, it is easy to see that $-\Delta_{p}\left(\frac{\phi}{c}\right)=\frac{1}{c^{p-1}}$. Now we choose $c>0$ so that $\frac{1}{c^{p-1}} \geqslant \lambda_{1} \phi_{1}$ in Ω. Thus $-\Delta_{p}\left(\frac{\phi}{c}\right) \geqslant-\Delta_{p}\left(\phi_{1}\right)$ in Ω. It follows from the weak comparison principle [8] that $\phi \geqslant c \phi_{1}>0$ in Ω.

3. Proof of Theorem 1.1

Let E be the Banach space $\prod_{i=1}^{n} C(\bar{\Omega})$ with norm $\|\mathbf{v}\|=\sum_{i=1}^{n}\left\|v_{i}\right\|_{\infty}$ for $\mathbf{v}=$ $\left(v_{1}, \ldots, v_{n}\right) \in E$. For each $\left(v_{1}, \ldots, v_{n}\right) \in E$, define $\left(u_{1}, \ldots, u_{n}\right)=A_{\lambda}\left(v_{1}, \ldots, v_{n}\right)$ by

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{i}=\lambda f_{i}\left(v_{1}, \ldots, v_{n}\right) \quad \text { in } \Omega, i=1, \ldots, n, \tag{3.1}\\
u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n
\end{array}\right.
$$

Then $A_{\lambda}: E \rightarrow E$ is well defined, completely continuously, and fixed points of A_{λ} are solutions of (1.1) (see, e.g., [2,6]). Since we have

$$
\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f_{i_{0}}(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}=\infty
$$

for $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}$, we can choose $\delta>0$ so that

$$
f_{i_{0}}(\mathbf{u})>0 \quad \text { for } 0<\|\mathbf{u}\| \leqslant n \delta, \quad \mathbf{u} \in \mathbb{R}_{+}^{n} .
$$

Let $\lambda_{0}=\frac{\delta^{p-1}}{M\|\phi\|_{\infty}^{p-1}}$ and

$$
M=\sup \left\{f_{j}(\mathbf{u}):\|\mathbf{u}\| \leqslant n \delta, 1 \leqslant j \leqslant n, \mathbf{u} \in \mathbb{R}_{+}^{n}\right\}>0
$$

We now only consider $0<\lambda<\lambda_{0}$. Define a function $f_{i_{0}}^{\min }:[0, n \delta] \rightarrow[0, \infty)$ by

$$
f_{i_{0}}^{\min }(t)=\min \left\{f_{i_{0}}(\mathbf{u}): \mathbf{u} \in \mathbb{R}_{+}^{n} \text { and } t \leqslant\|\mathbf{u}\| \leqslant n \delta\right\} .
$$

In view of Lemma A. 1 in Appendix A, condition (H2) implies

$$
\lim _{t \rightarrow 0^{+}} \frac{f_{i_{0}}^{\min }(t)}{t^{p-1}}=\infty
$$

Therefore, for each $0<\lambda<\lambda_{0}$, there exists a positive $\epsilon_{1}<\delta$ such that

$$
f_{i_{0}}^{\min }(\alpha) \geqslant \frac{\lambda_{1}}{\lambda} \alpha^{p-1}
$$

if $0<\alpha \leqslant \epsilon_{1}$. Now choose an $\epsilon>0$ such that $\lambda \epsilon\left\|\phi_{1}\right\|_{\infty}<\epsilon_{1}$. We define a subset K of E by

$$
K=\left\{\left(u_{1}, \ldots, u_{n}\right) \in E: 0 \leqslant u_{i} \leqslant \delta \text { for all } i \neq i_{0}, \lambda \in \phi_{1} \leqslant u_{i_{0}} \leqslant \delta \text { in } \Omega\right\}
$$

for each $0<\lambda<\lambda_{0}$. Note that $\lambda \epsilon \phi_{1} \leqslant \lambda \epsilon\left\|\phi_{1}\right\|_{\infty}<\epsilon_{1}<\delta$ in Ω. It is easy to verify that K is a closed, bounded, convex subset of E. We claim that $A_{\lambda}: K \rightarrow K$. Let $\left(u_{1}, \ldots, u_{n}\right)=$ $A_{\lambda}\left(v_{1}, \ldots, v_{n}\right)$ for $\left(v_{1}, \ldots, v_{n}\right) \in K$. First, by the maximum principle [8], $u_{i} \geqslant 0$ in Ω, $i=1, \ldots, n$. On the other hand, since $\left\|v_{i}\right\|_{\infty} \leqslant \delta, i=1, \ldots, n$, we have

$$
\begin{equation*}
-\Delta_{p} u_{i}=\lambda f_{i}\left(v_{1}, \ldots, v_{n}\right) \leqslant \lambda M \quad \text { in } \Omega, i=1, \ldots, n, \tag{3.2}
\end{equation*}
$$

which implies, by the comparison principle [8], that

$$
u_{i} \leqslant(\lambda M)^{\frac{1}{p-1}} \phi \leqslant(\lambda M)^{\frac{1}{p-1}}\|\phi\|_{\infty} \leqslant \delta, \quad i=1, \ldots, n .
$$

Finally, in view of the definition of $f_{i_{0}}^{\min }$, we have

$$
-\Delta_{p} u_{i_{0}}=\lambda f_{i_{0}}\left(v_{1}, \ldots, v_{n}\right) \geqslant \lambda f_{i_{0}}^{\min }\left(\lambda \epsilon \phi_{1}\right) .
$$

By the choice of ϵ, for each $0<\lambda<\lambda_{0}$, we have

$$
-\Delta_{p} u_{i_{0}} \geqslant \lambda \frac{\lambda}{\lambda}\left(\lambda \epsilon \phi_{1}\right)^{p-1}=\lambda_{1}\left(\lambda \epsilon \phi_{1}\right)^{p-1} .
$$

Again the comparison principle [8] implies that

$$
u_{i_{0}} \geqslant \lambda \epsilon \phi_{1} \quad \text { in } \Omega .
$$

Hence, $\left(u_{1}, \ldots, u_{n}\right) \in K$ and $A_{\lambda}: K \rightarrow K$. By the Schauder Fixed-Point Theorem, A_{λ} has a fixed point in K, which is the desired nontrivial solution of (1.1).

4. Proof of Theorem 1.2

Let E and A_{λ} be defined as in the proof of Theorem 1.1. For each $i=1, \ldots, n$, we define a function $f_{i}^{\max }:[0, \infty] \rightarrow[0, \infty)$ by

$$
f_{i}^{\max }(t)=\max \left\{f(\mathbf{u}): \mathbf{u} \in \mathbb{R}_{+}^{n} \text { and }\|\mathbf{u}\| \leqslant t\right\} .
$$

In view of Lemma A. 2 in Appendix A, the fact that

$$
\lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f_{i}(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}=0, \quad i=1, \ldots, n, \mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}
$$

implies

$$
\lim _{t \rightarrow \infty} \frac{f_{i}^{\max }(t)}{t^{p-1}}=0, \quad i=1, \ldots, n
$$

We can choose a sufficient large $\delta>0$ so that

$$
\frac{f_{i}^{\max }(n \delta)}{(n \delta)^{p-1}}<\sigma, \quad i=1, \ldots, n
$$

where $\sigma>0$ satisfying

$$
n(\lambda \sigma)^{\frac{1}{p-1}}\|\phi\|_{\infty} \leqslant 1
$$

With this δ, we define a function $f_{i_{0}}^{\min }:[0, n \delta] \rightarrow[0, \infty)$ by

$$
f_{i_{0}}^{\min }(t)=\min \left\{f_{i_{0}}(\mathbf{u}): \mathbf{u} \in \mathbb{R}_{+}^{n} \text { and } t \leqslant\|\mathbf{u}\| \leqslant n \delta\right\} .
$$

In view of Lemma A. 1 in Appendix A, condition (H2) implies

$$
\lim _{t \rightarrow 0^{+}} \frac{f_{i_{0}}^{\min }(t)}{t^{p-1}}=\infty
$$

It is easy to see that there exists a positive $\epsilon_{1}<\delta$ such that

$$
f_{i_{0}}^{\min }(\alpha) \geqslant \frac{\lambda_{1}}{\lambda} \alpha^{p-1}
$$

if $0<\alpha \leqslant \epsilon_{1}$. Now choose a positive ϵ such that $\lambda \epsilon\left\|\phi_{1}\right\|_{\infty}<\epsilon_{1}$.
We now define a subset K of E by

$$
K=\left\{\left(u_{1}, \ldots, u_{n}\right) \in E: 0 \leqslant u_{i} \leqslant \delta \text { for all } i \neq i_{0}, \lambda \in \phi_{1} \leqslant u_{i_{0}} \leqslant \delta \text { in } \Omega\right\} .
$$

Note that $\lambda \epsilon \phi_{1} \leqslant \lambda \epsilon\left\|\phi_{1}\right\|_{\infty}<\epsilon_{1}<\delta$ in Ω. Then K is a closed, bounded, convex subset of E. We claim that $A_{\lambda}: K \rightarrow K$. Let $\left(u_{1}, \ldots, u_{n}\right)=A_{\lambda}\left(v_{1}, \ldots, v_{n}\right)$ for $\left(v_{1}, \ldots, v_{n}\right) \in K$. First, by the maximum principle [8], $u_{i} \geqslant 0$ in $\Omega, i=1, \ldots, n$. On the other hand, since $\left\|v_{i}\right\|_{\infty} \leqslant \delta$, $i=1, \ldots, n$, we have, for $i=1, \ldots, n$,

$$
\begin{equation*}
-\Delta_{p} u_{i}=\lambda f_{i}\left(v_{1}, \ldots, v_{n}\right) \leqslant \lambda f_{i}^{\max }(n \delta) \leqslant \lambda \sigma n^{p-1} \delta^{p-1} \quad \text { in } \Omega, \tag{4.1}
\end{equation*}
$$

which implies, by the comparison principle [8], that

$$
u_{i} \leqslant(\lambda \sigma)^{\frac{1}{p-1}} n \delta \phi \leqslant \delta, \quad i=1, \ldots, n .
$$

Finally, in view of the definition of $f_{i_{0}}^{\min }$ and the choice of ϵ, ϵ_{1}, we have

$$
-\Delta_{p} u_{i_{0}} \geqslant \lambda f_{i_{0}}\left(v_{1}, \ldots, v_{n}\right) \geqslant \lambda f_{i_{0}}^{\min }\left(\lambda \epsilon \phi_{1}\right) \geqslant \lambda_{1}\left(\lambda \in \phi_{1}\right)^{p-1}
$$

Again the comparison principle [8] implies that

$$
u_{i_{0}} \geqslant \lambda \epsilon \phi_{1} \quad \text { in } \Omega .
$$

Hence, $\left(u_{1}, \ldots, u_{n}\right) \in K$ and $A_{\lambda}: K \rightarrow K$. By the Schauder Fixed-Point Theorem, A_{λ} has a fixed point in K, which is the desired nontrivial solution of (1.1).

5. Proof of Theorem 1.3

It follows from (H1) and (H4) that there exists a constant $C>0$ such that

$$
f_{i}(\mathbf{u}) \leqslant C\left(\sum_{i=1}^{n} u_{i}\right)^{p-1} \quad \text { in } \Omega, i=1, \ldots, n, \mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n} .
$$

Choose $\lambda_{0}>0$ so that

$$
\left(\lambda_{0} C\right)^{\frac{1}{p-1}}\|\phi\|_{\infty}<\frac{1}{n}
$$

Now assume $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \in K$ is a nontrivial solution of (1.1). We will show that this leads to a contradiction if $0<\lambda<\lambda_{0}$. Indeed, for $0<\lambda<\lambda_{0}$ and $i=1, \ldots, n$,

$$
-\Delta_{p} v_{i}=\lambda f_{i}\left(v_{1}, \ldots, v_{n}\right) \leqslant \lambda C\left(\sum_{i=1}^{n} v_{i}\right)^{p-1} \leqslant \lambda C\left(\sum_{i=1}^{n}\left\|v_{i}\right\|_{\infty}\right)^{p-1}
$$

Hence, by the comparison principle, we have

$$
v_{i} \leqslant(\lambda C)^{\frac{1}{p-1}} \sum_{i=1}^{n}\left\|v_{i}\right\|_{\infty} \phi<\alpha \sum_{i=1}^{n}\left\|v_{i}\right\|_{\infty}
$$

where $\alpha=\left(\lambda_{0} C\right)^{\frac{1}{p-1}}\|\phi\|_{\infty}$. Thus

$$
\sum_{i=1}^{n}\left\|v_{i}\right\|_{\infty} \leqslant n \alpha \sum_{i=1}^{n}\left\|v_{i}\right\|_{\infty}
$$

which is a contradiction since $n \alpha<1$.

Appendix A

In this appendix we provide two lemmas, which simplify the proofs of our existence theorems. More importantly, they help to relax the monotonicity assumptions on the nonlinearities.

Let $\delta>0, f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$be continuous. We define two new functions: $f^{\min }(t):[0, \delta] \rightarrow \mathbb{R}_{+}$ and $f^{\max }(t): \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by

$$
f^{\min }(t)=\min \left\{f(\mathbf{u}): \mathbf{u} \in \mathbb{R}_{+}^{n} \text { and } t \leqslant\|\mathbf{u}\| \leqslant \delta\right\}
$$

and

$$
f^{\max }(t)=\max \left\{f(\mathbf{u}): \mathbf{u} \in \mathbb{R}_{+}^{n} \text { and }\|\mathbf{u}\| \leqslant t\right\}
$$

It is clear that both $f^{\min }$ and $f^{\max }$ are nondecreasing. Now we are able to prove the following two lemmas.

Lemma A.1. If

$$
f(\mathbf{u})>0 \quad \text { for } 0<\|\mathbf{u}\|, \quad \mathbf{u} \in \mathbb{R}_{+}^{n}
$$

and

$$
\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}=\infty, \quad \mathbf{u} \in \mathbb{R}_{+}^{n}
$$

then

$$
\lim _{t \rightarrow 0^{+}} \frac{f^{\min }(t)}{t^{p-1}}=\infty
$$

Proof. Let $M>0$. Since

$$
\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}=\infty
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}_{+}^{n}$, there is $\delta_{1} \in(0, \delta)$ such that

$$
\frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}>M
$$

for $0<\|\mathbf{u}\|<\delta_{1}$ and $\mathbf{u} \in \mathbb{R}_{+}^{n}$. Now let

$$
\bar{\delta}=\min \left\{\delta_{1},\left(\frac{U}{M}\right)^{\frac{1}{p-1}}\right\}>0,
$$

where $U=\min \left\{f(\mathbf{u}): \delta_{1} \leqslant\|\mathbf{u}\| \leqslant \delta, \mathbf{u} \in \mathbb{R}_{+}^{n}\right\}$.
We now claim that

$$
\frac{f^{\min }(t)}{t^{p-1}}>M
$$

for $0<t<\bar{\delta}$. Indeed, for $t \in(0, \bar{\delta})$, there is a $\mathbf{u}_{t} \in \mathbb{R}_{+}^{n}$ and $t \leqslant\left\|\mathbf{u}_{t}\right\| \leqslant \delta$ such that $f^{\min }(t)=$ $f\left(\mathbf{u}_{t}\right)$. If $\left\|\mathbf{u}_{t}\right\|<\delta_{1}$, we have

$$
\frac{f^{\min }(t)}{t^{p-1}}=\frac{f\left(\mathbf{u}_{\mathbf{t}}\right)}{t^{p-1}} \geqslant \frac{f\left(\mathbf{u}_{\mathbf{t}}\right)}{\left\|\mathbf{u}_{\mathbf{t}}\right\|^{p-1}}>M
$$

On the other hand, if $\left\|\mathbf{u}_{t}\right\| \geqslant \delta_{1}$, then

$$
\frac{f^{\min }(t)}{t^{p-1}}=\frac{f\left(\mathbf{u}_{\mathbf{t}}\right)}{t^{p-1}} \geqslant \frac{U}{t^{p-1}}>\frac{U}{\bar{\delta}^{p-1}}>M .
$$

This proves the claim and so does the lemma.
A more general form of the following lemma was proved in Wang [9]. We give a proof here for completeness.

Lemma A.2. [9] Let $\mathbf{u} \in \mathbb{R}_{+}^{n}$ and assume $\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}$ and $\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}$ exist (can be infinity). Then

$$
\lim _{t \rightarrow 0^{+}} \frac{f^{\max }(t)}{t^{p-1}}=\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}
$$

and

$$
\lim _{t \rightarrow \infty} \frac{f^{\max }(t)}{t^{p-1}}=\lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}} .
$$

Proof. It is easy to show that $\lim _{t \rightarrow 0^{+}} \frac{f^{\max }(t)}{t^{p-1}}=\lim _{\|\mathbf{u}\| \rightarrow 0} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}$. For the second part, we consider the two cases, (a) $f(\mathbf{u})$ is bounded and (b) $f(\mathbf{u})$ is unbounded. For case (a), it follows that $\lim _{t \rightarrow \infty} \frac{f^{\max }(t)}{t^{p-1}}=0=\lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}$. For case (b), for any $\delta>0$, let $M=f^{\max }(\delta)$ and

$$
N_{\delta}=\inf \left\{\|\mathbf{u}\|: \mathbf{u} \in \mathbb{R}_{+}^{n},\|\mathbf{u}\| \geqslant \delta, f(\mathbf{u}) \geqslant M\right\} \geqslant \delta
$$

then

$$
\max \left\{f(\mathbf{u}):\|\mathbf{u}\| \leqslant N_{\delta}, \mathbf{u} \in \mathbb{R}_{+}^{n}\right\}=M=\max \left\{f(\mathbf{u}):\|\mathbf{u}\|=N_{\delta}, \mathbf{u} \in \mathbb{R}_{+}^{n}\right\} .
$$

Thus, for any $\delta>0$, there exists $N_{\delta} \geqslant \delta$ such that

$$
f^{\max }(t)=\max \left\{f(\mathbf{u}): N_{\delta} \leqslant\|\mathbf{u}\| \leqslant t, \mathbf{u} \in \mathbb{R}_{+}^{n}\right\} \quad \text { for } t>N_{\delta} .
$$

Now, suppose that $\lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}=\alpha<\infty$. In other words, for any $\varepsilon>0$, there is $\delta>0$ such that

$$
\begin{equation*}
\alpha-\varepsilon<\frac{f^{i}(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}<\alpha+\varepsilon \quad \text { for } \mathbf{u} \in \mathbb{R}_{+}^{n},\|\mathbf{u}\|>\delta \tag{A.1}
\end{equation*}
$$

Thus, for $t>N_{\delta}$, there exist $\mathbf{u}_{1}, \mathbf{u}_{2} \in \mathbb{R}_{+}^{n}$ such that $\left\|\mathbf{u}_{1}\right\|=t, t \geqslant\left\|\mathbf{u}_{2}\right\| \geqslant N_{\delta}$ and $f\left(\mathbf{u}_{2}\right)=$ $f^{\text {max }}(t)$. Therefore,

$$
\begin{equation*}
\frac{f\left(\mathbf{u}_{1}\right)}{\left\|\mathbf{u}_{1}\right\|^{p-1}} \leqslant \frac{f^{\max }(t)}{t^{p-1}}=\frac{f\left(\mathbf{u}_{2}\right)}{t^{p-1}} \leqslant \frac{f\left(\mathbf{u}_{2}\right)}{\left\|\mathbf{u}_{2}\right\|^{p-1}} \tag{A.2}
\end{equation*}
$$

Now (A.1) and (A.2) yield that

$$
\begin{equation*}
\alpha-\varepsilon<\frac{f^{\max }(t)}{t^{p-1}}<\alpha+\varepsilon \quad \text { for } t>N_{\delta} \tag{A.3}
\end{equation*}
$$

Hence $\lim _{t \rightarrow \infty} \frac{f^{\max }(t)}{t^{p-1}}=\alpha$. Similarly, we can show

$$
\lim _{t \rightarrow \infty} \frac{f^{\max }(t)}{t^{p-1}}=\lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}
$$

if $\lim _{\|\mathbf{u}\| \rightarrow \infty} \frac{f(\mathbf{u})}{\|\mathbf{u}\|^{p-1}}=\infty$.

References

[1] P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasi-linear elliptic problems, Nonlinear Anal. 44 (2001) 189-204.
[2] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977.
[3] D.D. Hai, Existence and uniqueness of solutions for quasilinear elliptic systems, Proc. Amer. Math. Soc. 133 (2004) 223-228.
[4] D.D. Hai, R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 137-141.
[5] D.D. Hai, R. Shivaji, An existence result for a class of p-Laplacian systems, Nonlinear Anal. 56 (2004) 1007-1010.
[6] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) 1203-1219.
[7] P.L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982) 441-467.
[8] S. Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Sc. Norm. Super Pisa Cl. Sci. (4) 14 (1987) 403-421.
[9] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003) 287-306.
[10] H. Wang, An existence theorem for quasilinear systems, Proc. Edinb. Math. Soc. 49 (2006) 505-511.
[11] H. Wang, Existence and Nonexistence of Positive Solutions for Quasilinear Systems, Boundary Value Problems, in press.

[^0]: * Corresponding author.

 E-mail addresses: dang @math.msstate.edu (D.D. Hai), wangh@asu.edu (H. Wang).

