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Abstract

The paper deals with the existence and nonexistence of nontrivial nonnegative solutions for the sublinear
quasilinear system

div
(|∇ui |p−2∇ui

) + λfi(u1, . . . , un) = 0 in Ω,

ui = 0 on ∂Ω, i = 1, . . . , n,

where p > 1, Ω is a bounded domain in R
N (N � 2) with smooth boundary, and fi , i = 1, . . . , n, are

continuous, nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n
i=1 |ui |, we prove that the problem has

a nontrivial nonnegative solution for small λ > 0 if one of lim‖u‖→0
fi(u)

‖u‖p−1 is infinity. If, in addition, all

lim‖u‖→∞ fi(u)

‖u‖p−1 is zero, we show that the problem has a nontrivial nonnegative solution for all λ > 0.

A nonexistence result is also obtained.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Elliptic system; p-Laplacian; Schauder Fixed-Point Theorem

* Corresponding author.
E-mail addresses: dang@math.msstate.edu (D.D. Hai), wangh@asu.edu (H. Wang).

0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.07.072



Aut
ho

r's
   

pe
rs

on
al

   
co

py

D.D. Hai, H. Wang / J. Math. Anal. Appl. 330 (2007) 186–194 187

1. Introduction

In this paper we consider the existence and nonexistence of nontrivial nonnegative solutions
for the quasilinear elliptic system{−�pui = λfi(u1, . . . , un) in Ω, i = 1, . . . , n,

ui = 0 on ∂Ω, i = 1, . . . , n,
(1.1)

where �pui = div(|∇ui |p−2∇ui), i = 1, . . . , n, p > 1, Ω is a bounded domain in R
N (N � 2)

with smooth boundary ∂Ω , and λ > 0 is a parameter.
Problem (1.1) covers several important cases. When p = 2, (1.1) becomes the semilinear

elliptic system{−�ui = λfi(u1, . . . , un) in Ω, i = 1, . . . , n,

ui = 0 on ∂Ω, i = 1, . . . , n,
(1.2)

and when n = 1, (1.1) becomes the p-Laplacian problem{−�pu = λf (u) in Ω,

u = 0 on ∂Ω.
(1.3)

In particular, when n = 1 and p = 2, (1.1) becomes the usual Laplacian problem{−�u = λf (u) in Ω,

u = 0 on ∂Ω.
(1.4)

Problem (1.4) has received extensive investigations in the past several decades, see, e.g.,
[1,2,7] and references therein. Lions [7] discussed, under various combinations of superlinearity
or sublinearity of f at infinity, f (0) = 0 and f (0) > 0, the existence and nonexistence of pos-
itive solutions of (1.2). The results of [7] are also interpreted in terms of bifurcation diagrams.
Recently, Hai and Shivaji [3–5] studied elliptic systems related to (1.1) and proved the existence
of positive solutions to (1.1) in some sublinear cases. The results in [4,5] do not impose any
sign conditions on the nonlinearities at zero. A necessary and sufficient condition for the exis-
tence of positive solutions for a class of sublinear quasilinear system was obtained in [3]. The
main approach in [3] is based on the Schauder Fixed-Point Theorem and maximum principles.
In several papers [9–11], Wang studied the number of nontrivial radial solutions of (1.1) on an
annular domain and ball. For ODE case (N = 1) and annular domains, it was shown in [9] and
other papers that the existence, multiplicity and nonexistence of positive solutions of (1.1) can
be determined by appropriate combinations of superlinearity and sublinearity of f(u) at zero and
infinity. When the domain is a ball, Wang [10,11] showed (1.1) has a nontrivial nonnegative
solution for sublinear cases in a ball.

In this paper we shall study (1.1) in general domains. We shall show that (1.1) has at least one
nontrivial nonnegative solution under sublinear assumptions. We also provide a nonexistence re-
sult. Our proofs make use of the Schauder Fixed-Point Theorem and weak comparison principles.
Variational methods have been frequently used for Hamiltonian systems and gradient systems.
However, there is apparently no possibility of using variational methods for the n-dimensional
quasilinear elliptic system (1.1), and one has to use topological methods.

We now turn to the general assumptions for this paper. Let R = (−∞,∞), R+ = [0,∞)

and R
n+ = ∏n

i=1 R
+. Also, for u = (u1, . . . , un) ∈ R

n+, let ‖u‖ = ∑n
i=1 |ui | and f(u) =

(f1(u), . . . , fn(u)) = (f1(u1, . . . , un), . . . , fn(u1, . . . , un)).
We make the following assumptions:
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(H1) fi : Rn+ → R+ is continuous, i = 1, . . . , n.

(H2) There exists i0 ∈ {1, . . . , n} such that

lim‖u‖→0

fi0(u)

‖u‖p−1
= ∞,

where u = (u1, . . . , un) ∈ R
n+.

(H3) For all i ∈ {1, . . . , n},
lim‖u‖→∞

fi(u)

‖u‖p−1
= 0,

where u = (u1, . . . , un) ∈ R
n+.

The main results of this paper are Theorems 1.1–1.3.

Theorem 1.1. Assume (H1) and (H2) hold. Then there is λ0 > 0 such that (1.1) has a nontrivial
nonnegative solution for 0 < λ < λ0.

Theorem 1.2. Assume (H1)–(H3) hold and suppose that, for i0 in (H2),

fi0(u) > 0 for 0 < ‖u‖, u ∈ R
n+.

Then (1.1) has a nontrivial nonnegative solution for all λ > 0.

The following assumption will allow us to establish a nonexistence theorem:

(H4) For all i ∈ {1, . . . , n},
lim‖u‖→0

fi(u)

‖u‖p−1
< ∞, lim‖u‖→∞

fi(u)

‖u‖p−1
< ∞,

where u = (u1, . . . , un) ∈ R
n+.

Theorem 1.3. Assume (H1) and (H4) hold. Then there is λ0 > 0 such that (1.1) has no nontrivial
solution for 0 < λ < λ0.

We now give three examples to demonstrate these three theorems.

Example 1.⎧⎨
⎩

�pu1 + λe(u1+···+un) = 0 in Ω,

�pui + λfi(u1, . . . , un) in Ω, i = 2, . . . , n,

ui = 0 on ∂Ω, i = 1, . . . , n,

(1.5)

where p > 1, fi are any nonnegative continuous functions. Then (1.5) has a nontrivial solution
for sufficient small λ > 0 according to Theorem 1.1.

Example 2.{
�pui + λ(u1 + · · · + un)

pi = 0 in Ω, i = 1, . . . , n,

ui = 0 on ∂Ω, i = 1, . . . , n,
(1.6)

where p > 1, 0 < p1,p2, . . . , pn < p − 1. Then (1.6) has a nontrivial solution for all λ > 0
according to Theorem 1.2.
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Example 3.{
�pui + λ(u1 + · · · + un)

p−1e−(u1+···+un) = 0 in Ω, i = 1, . . . , n,

ui = 0 on ∂Ω, i = 1, . . . , n,
(1.7)

where p > 1. Then (1.7) has no nonnegative nontrivial solution for all sufficient small λ > 0
according to Theorem 1.3.

2. Preliminaries

We recall some basic results for the p-Laplacian. We refer to λ1 > 0 as the first eigenvalue
and φ1 as the principal eigenfunction of the p-Laplacian on Ω , i.e.,{−�pφ1 = λ1|φ1|p−2φ1 in Ω,

u = 0 on ∂Ω.
(2.1)

It is known that φ1 belongs to C1+α(Ω) for some 0 < α < 1 and has one sign and we assume
that φ1 > 0 in Ω .

Lemma 2.1. Let φ ∈ C1(Ω) be the solution of{−�pu = 1 in Ω,

u = 0 on ∂Ω.
(2.2)

Then there exists a constant c > 0 such that φ � cφ1 > 0 in Ω .

Proof. For constant c > 0, it is easy to see that −�p(
φ
c
) = 1

cp−1 . Now we choose c > 0 so
that 1

cp−1 � λ1φ1 in Ω . Thus −�p(
φ
c
) � −�p(φ1) in Ω . It follows from the weak comparison

principle [8] that φ � cφ1 > 0 in Ω . �
3. Proof of Theorem 1.1

Let E be the Banach space
∏n

i=1 C(Ω) with norm ‖v‖ = ∑n
i=1 ‖vi‖∞ for v =

(v1, . . . , vn) ∈ E. For each (v1, . . . , vn) ∈ E, define (u1, . . . , un) = Aλ(v1, . . . , vn) by{−�pui = λfi(v1, . . . , vn) in Ω, i = 1, . . . , n,

ui = 0 on ∂Ω, i = 1, . . . , n.
(3.1)

Then Aλ :E → E is well defined, completely continuously, and fixed points of Aλ are solu-
tions of (1.1) (see, e.g., [2,6]). Since we have

lim‖u‖→0

fi0(u)

‖u‖p−1
= ∞,

for u = (u1, . . . , un) ∈ R
n+, we can choose δ > 0 so that

fi0(u) > 0 for 0 < ‖u‖ � nδ, u ∈ R
n+.

Let λ0 = δp−1

M‖φ‖p−1∞
and

M = sup
{
fj (u): ‖u‖ � nδ, 1 � j � n, u ∈ R

n+
}

> 0.

We now only consider 0 < λ < λ0. Define a function f min
i0

: [0,nδ] → [0,∞) by

f min
i0

(t) = min
{
fi0(u): u ∈ R

n+ and t � ‖u‖ � nδ
}
.
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In view of Lemma A.1 in Appendix A, condition (H2) implies

lim
t→0+

f min
i0

(t)

tp−1
= ∞.

Therefore, for each 0 < λ < λ0, there exists a positive ε1 < δ such that

f min
i0

(α) � λ1

λ
αp−1

if 0 < α � ε1. Now choose an ε > 0 such that λε‖φ1‖∞ < ε1. We define a subset K of E by

K = {
(u1, . . . , un) ∈ E: 0 � ui � δ for all i �= i0, λεφ1 � ui0 � δ in Ω

}
for each 0 < λ < λ0. Note that λεφ1 � λε‖φ1‖∞ < ε1 < δ in Ω. It is easy to verify that K

is a closed, bounded, convex subset of E. We claim that Aλ :K → K . Let (u1, . . . , un) =
Aλ(v1, . . . , vn) for (v1, . . . , vn) ∈ K . First, by the maximum principle [8], ui � 0 in Ω ,
i = 1, . . . , n. On the other hand, since ‖vi‖∞ � δ, i = 1, . . . , n, we have

−�pui = λfi(v1, . . . , vn) � λM in Ω, i = 1, . . . , n, (3.2)

which implies, by the comparison principle [8], that

ui � (λM)
1

p−1 φ � (λM)
1

p−1 ‖φ‖∞ � δ, i = 1, . . . , n.

Finally, in view of the definition of f min
i0

, we have

−�pui0 = λfi0(v1, . . . , vn) � λf min
i0

(λεφ1).

By the choice of ε, for each 0 < λ < λ0, we have

−�pui0 � λ
λ1

λ
(λεφ1)

p−1 = λ1(λεφ1)
p−1.

Again the comparison principle [8] implies that

ui0 � λεφ1 in Ω.

Hence, (u1, . . . , un) ∈ K and Aλ :K → K . By the Schauder Fixed-Point Theorem, Aλ has a
fixed point in K , which is the desired nontrivial solution of (1.1).

4. Proof of Theorem 1.2

Let E and Aλ be defined as in the proof of Theorem 1.1. For each i = 1, . . . , n, we define a
function f max

i : [0,∞] → [0,∞) by

f max
i (t) = max

{
f (u): u ∈ R

n+ and ‖u‖ � t
}
.

In view of Lemma A.2 in Appendix A, the fact that

lim‖u‖→∞
fi(u)

‖u‖p−1
= 0, i = 1, . . . , n, u = (u1, . . . , un) ∈ R

n+,

implies

lim
t→∞

f max
i (t)

tp−1
= 0, i = 1, . . . , n.
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We can choose a sufficient large δ > 0 so that

f max
i (nδ)

(nδ)p−1
< σ, i = 1, . . . , n,

where σ > 0 satisfying

n(λσ)
1

p−1 ‖φ‖∞ � 1.

With this δ, we define a function f min
i0

: [0,nδ] → [0,∞) by

f min
i0

(t) = min
{
fi0(u): u ∈ R

n+ and t � ‖u‖ � nδ
}
.

In view of Lemma A.1 in Appendix A, condition (H2) implies

lim
t→0+

f min
i0

(t)

tp−1
= ∞.

It is easy to see that there exists a positive ε1 < δ such that

f min
i0

(α) � λ1

λ
αp−1

if 0 < α � ε1. Now choose a positive ε such that λε‖φ1‖∞ < ε1.
We now define a subset K of E by

K = {
(u1, . . . , un) ∈ E: 0 � ui � δ for all i �= i0, λεφ1 � ui0 � δ in Ω

}
.

Note that λεφ1 � λε‖φ1‖∞ < ε1 < δ in Ω. Then K is a closed, bounded, convex subset of E.
We claim that Aλ :K → K . Let (u1, . . . , un) = Aλ(v1, . . . , vn) for (v1, . . . , vn) ∈ K . First, by
the maximum principle [8], ui � 0 in Ω , i = 1, . . . , n. On the other hand, since ‖vi‖∞ � δ,
i = 1, . . . , n, we have, for i = 1, . . . , n,

−�pui = λfi(v1, . . . , vn) � λf max
i (nδ) � λσnp−1δp−1 in Ω, (4.1)

which implies, by the comparison principle [8], that

ui � (λσ )
1

p−1 nδφ � δ, i = 1, . . . , n.

Finally, in view of the definition of f min
i0

and the choice of ε, ε1, we have

−�pui0 � λfi0(v1, . . . , vn) � λf min
i0

(λεφ1) � λ1(λεφ1)
p−1.

Again the comparison principle [8] implies that

ui0 � λεφ1 in Ω.

Hence, (u1, . . . , un) ∈ K and Aλ :K → K . By the Schauder Fixed-Point Theorem, Aλ has a
fixed point in K , which is the desired nontrivial solution of (1.1).

5. Proof of Theorem 1.3

It follows from (H1) and (H4) that there exists a constant C > 0 such that

fi(u) � C

(
n∑

i=1

ui

)p−1

in Ω, i = 1, . . . , n, u = (u1, . . . , un) ∈ R
n+.
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Choose λ0 > 0 so that

(λ0C)
1

p−1 ‖φ‖∞ <
1

n
.

Now assume v = (v1, . . . , vn) ∈ K is a nontrivial solution of (1.1). We will show that this leads
to a contradiction if 0 < λ < λ0. Indeed, for 0 < λ < λ0 and i = 1, . . . , n,

−�pvi = λfi(v1, . . . , vn) � λC

(
n∑

i=1

vi

)p−1

� λC

(
n∑

i=1

‖vi‖∞

)p−1

.

Hence, by the comparison principle, we have

vi � (λC)
1

p−1

n∑
i=1

‖vi‖∞φ < α

n∑
i=1

‖vi‖∞,

where α = (λ0C)
1

p−1 ‖φ‖∞. Thus

n∑
i=1

‖vi‖∞ � nα

n∑
i=1

‖vi‖∞,

which is a contradiction since nα < 1.

Appendix A

In this appendix we provide two lemmas, which simplify the proofs of our existence theorems.
More importantly, they help to relax the monotonicity assumptions on the nonlinearities.

Let δ > 0, f : Rn+ → R+ be continuous. We define two new functions: f min(t) : [0, δ] → R+
and f max(t) : R+ → R+ by

f min(t) = min
{
f (u): u ∈ R

n+ and t � ‖u‖ � δ
}

and

f max(t) = max
{
f (u): u ∈ R

n+ and ‖u‖ � t
}
.

It is clear that both f min and f max are nondecreasing. Now we are able to prove the following
two lemmas.

Lemma A.1. If

f (u) > 0 for 0 < ‖u‖, u ∈ R
n+,

and

lim‖u‖→0

f (u)

‖u‖p−1
= ∞, u ∈ R

n+,

then

lim
t→0+

f min(t)

tp−1
= ∞.
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Proof. Let M > 0. Since

lim‖u‖→0

f (u)

‖u‖p−1
= ∞,

where u = (u1, . . . , un) ∈ R
n+, there is δ1 ∈ (0, δ) such that

f (u)

‖u‖p−1
> M

for 0 < ‖u‖ < δ1 and u ∈ R
n+. Now let

δ = min

{
δ1,

(
U

M

) 1
p−1

}
> 0,

where U = min{f (u): δ1 � ‖u‖ � δ, u ∈ R
n+}.

We now claim that

f min(t)

tp−1
> M

for 0 < t < δ. Indeed, for t ∈ (0, δ), there is a ut ∈ R
n+ and t � ‖ut‖ � δ such that f min(t) =

f (ut). If ‖ut‖ < δ1, we have

f min(t)

tp−1
= f (ut)

tp−1
� f (ut)

‖ut‖p−1
> M.

On the other hand, if ‖ut‖ � δ1, then

f min(t)

tp−1
= f (ut)

tp−1
� U

tp−1
>

U

δp−1
> M.

This proves the claim and so does the lemma. �
A more general form of the following lemma was proved in Wang [9]. We give a proof here

for completeness.

Lemma A.2. [9] Let u ∈ R
n+ and assume lim‖u‖→0

f (u)

‖u‖p−1 and lim‖u‖→0
f (u)

‖u‖p−1 exist (can be
infinity). Then

lim
t→0+

f max(t)

tp−1
= lim‖u‖→0

f (u)

‖u‖p−1

and

lim
t→∞

f max(t)

tp−1
= lim‖u‖→∞

f (u)

‖u‖p−1
.

Proof. It is easy to show that limt→0+ f max(t)

tp−1 = lim‖u‖→0
f (u)

‖u‖p−1 . For the second part, we con-
sider the two cases, (a) f (u) is bounded and (b) f (u) is unbounded. For case (a), it follows that
limt→∞ f max(t)

tp−1 = 0 = lim‖u‖→∞ f (u)

‖u‖p−1 . For case (b), for any δ > 0, let M = f max(δ) and

Nδ = inf
{‖u‖: u ∈ R

n+, ‖u‖ � δ, f (u) � M
}

� δ,

then

max
{
f (u): ‖u‖ � Nδ, u ∈ R

n+
} = M = max

{
f (u): ‖u‖ = Nδ, u ∈ R

n+
}
.
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Thus, for any δ > 0, there exists Nδ � δ such that

f max(t) = max
{
f (u): Nδ � ‖u‖ � t, u ∈ R

n+
}

for t > Nδ.

Now, suppose that lim‖u‖→∞ f (u)

‖u‖p−1 = α < ∞. In other words, for any ε > 0, there is δ > 0 such
that

α − ε <
f i(u)

‖u‖p−1
< α + ε for u ∈ R

n+, ‖u‖ > δ. (A.1)

Thus, for t > Nδ , there exist u1,u2 ∈ R
n+ such that ‖u1‖ = t , t � ‖u2‖ � Nδ and f (u2) =

f max(t). Therefore,

f (u1)

‖u1‖p−1
� f max(t)

tp−1
= f (u2)

tp−1
� f (u2)

‖u2‖p−1
. (A.2)

Now (A.1) and (A.2) yield that

α − ε <
f max(t)

tp−1
< α + ε for t > Nδ. (A.3)

Hence limt→∞ f max(t)

tp−1 = α. Similarly, we can show

lim
t→∞

f max(t)

tp−1
= lim‖u‖→∞

f (u)

‖u‖p−1

if lim‖u‖→∞ f (u)

‖u‖p−1 = ∞. �
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