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ABSTRACT. We study the equ-.tlon —Au=XAg(lz])f(v) Ri<|z]<R:, z€eRN, N>1

bject to linear b d at R, and R;. Under sssumptions concerning sub- or
superhnemty of f, we est;bhsh exist. , non-exi , and multiplicity results for positive
solutions.
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1. Introduction

In this paper we consider existence and nonexistence of positive radial solutions of

the equation

—Au = Ag(|z)f(u), Ri<|z| <Ry (1.1) j

where z € RN, N > 1, along with linear boundary conditionsat R; and R; which ,

include

u=0 on |z|=R; and |z|=
! Ou .
u=0 on |z|=R;  and = 0 on |z|=R; (1.2b). j
) e
5:1 =0 on |ft=R, and u=0 on |z|=R, (1.2¢)

Here r=|z| and £ - denotes differentiation in the radial direction, 0 < R; < Ry <
0. Because of the radial symmetry, we seek criteria for existence {or nonexistence) of
positive radial solutions of (1.1) which then must satisfy

N-1
r

—u"(r) —

w'(r) = Ag(r)f(u(r)), Ri<r<R. (1.3)

Further, via a standard change of variable, (1.3) may be written as an ODE on (0, 1).

Consequently, we shall consider the following BVP with linear boundary conditions
—u" = A()f(u), O0<t<1 0y}

au(0) — fu'(0)=0

e8]
yu(1) + 6u'(1)=0

where a,f,7,8 are nonnegative real constants with p = B+ ay+aé > 0. We shall
also assume that f(u)>0 for u>0 and A(t) >0 for ¢>0, withboth f and

h  continuous on their respective domains. The BVP (1.1), (1.2) and (I), (II) has been

Ry (1.2a)
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the subject of numerous investigations (cf. [1-17]) under various assumptions. In [7], [8],
the BVP (I), (II) (with A =1) wasinvestigated and various criteria for existence of one
(or several) positive solutions were obtained. We introduce the notation

fo= lim = and fo = lim f)

u—0+ U u—00 U

(1.4)

and we shall say that f is sub (super) linear at 0 in case fo = 400 (fo = 0).
Similarly, f issub (super)linearat oo incase fo =0 (foo = o0). The main result

of this paper may then be stated as

Theorem 1. Let f,g be continuous real valued functions defined on [0,00) with
f(u) >0 for u>0 and g(t) >0 for t >0 and assume g(t) Z0 in some
neighborhood of t=1/2. Then:

a) if fo=foo =0 there ezists A; >0 such that (I), (II) has at least two distinct
positive solutions for A > A;. ’

b) if fo=foo =00 there ezists Xy >0 such that (I), (II) has at least two distinct
positive solutions for 0 < X\ < \,.

c)if fo=0 or foo=0 -there ezists A3 >0 such that (I), (II) has ct least one
positive solution for A > A;.

d) if fo=o00 or foo=o00 there ezists Ay >0 such that (1), (II) has ot least one
positive solution for 0< )\ <\, A ‘

e) if f(u)>cu for u>0 and some constant c >0, there ezists A5 >0 such
that (I), (II) has no positive soiution for X\ >'As. ‘ '

f) if f(u)<cu for u>0 and some constant c >0, there ezists A¢ >0 such

that (I), (II) has no positive soiution for 0 < A < Xg.

The proof of Theorem 1 is based on the following Fixed Point Theorem of cone

expansion/compression type. (See [6] for a proof and additional details.)
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Theorem 2. Let X be a Banach space, K C X a cone and assume 01,9
open subsets of X with 0€Q;, §,CQ, andlet F: Kn{ﬁz\ﬂl) — K bea

completely continuous operator such that either

(@) NFull <lul, weKNOQ and
IFull 2 Jlull, weKno,
or
@) ||Full > |lull, ve KNoQ and
IFull < llull, e KNoQy.

s

Then F has a fized point in K A @2\).

2. Notation and Proofs

The BVP (I), (II) is equivalent to the integral equation

1
u(t) = A /o k(t, $)A(s) £ (u(s))ds = Fu(t) @2.1)

where u € X :=C[0,1] and k(t,s) is the Green’s function for the problem —u" =0
subject to the boundary conditions (II) and is given explicitly by

k(t,s) =

L{lrro=mian. 0Sssis (22)

Pl (B+atiy+b6-7s), 0<t<s<l

The operator F: X — X is completely continuous and if we defize the cone K C X
by

K={ueX: u(t)>0, m}n u(t) > oflu||} (2.3)

= 3 = = mi +48 +4,
where J=[4, 3], |u|l= ‘;{1‘1’%] lu(t)] and ¢ =min {FEro Raa_ﬁ%}’ then one can
verify directly that k(t,s)/k(s,s) >0 for t€ J, s €[0,1]. Hence,for u€ X we

1 ’
min (Fu)(t) = min /o k(t, s)h(s)fu(s))ds

1
> o / k(s, s)h(s) f (u(s))ds
0
1
)|
> o ‘xg‘?:)‘c] '/; k(t, s)h(s) f (u(s))ds
= cllFul.
Consequently, Fu € K forany ue€ X.

Proof of Theorem la. For u € K, we have
1
(P =2 [ kG IS (u(6))ds

3/4 (2.4)
> /\/1/4 k(3 ,9)h(s)f (u(s))ds.

For any p >0 we define

3/4
m(p) = min { /1 ) k(5 ,)h(s)f (u(s))ds : u € K, [[u]l = p}. (2.5)

Since h(s)#0 and f(u)>0 itfollowsfrom 2 <u(s)<p on J that m(p)>0.

Let 0<p; <p2 be arbitrary and define

A1 = max {P_l

P2
)’ mGn) @8)

From (2.4) - (2.6) and for A > ); it follows that ||Fu| > ||ju| for [lu|=p1 and
[l4]| = p2. Since fo =0 for‘any A2\ wecanchoose ¢ >0 and >0 such
that 2¢; < p; and such that f(u)<nu for 0 <u<g where

A /: k(s,3)h(s)ds < 1. 2.7
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Then for u € K and |lu]| =¢1 we have

(Fu)(t) = /\/ol E(t, s)h(s) f (u(s))ds
1
<A /o E(s, $)h(s) (u(s)) ds

1
< Anlu / K(s, $)h(s)ds < [[ull

Thus, |[|[Ful < |lull for u € K and |ufl = ¢1. Also, since foo = 0 we may
choose ¢z > 2p2 such that f(u) <nu for u> g, where 7 satisfies (2.7). Now
if f is bounded,say f(u) < N forall u € (0,90), then we may also suppose that
N fol k(s,3)h(s)ds < gz. Thenfor u €K~gd llull = ¢2 we have
1
(Fu)(®) = A [ Kt A (u(s))ds

1
< N/\/ k(s,s)h(s)ds < g2 = |Jul|
0

so ||Ful| <|lu| for u€ K and |ul| = g,.
If f isunbounded then ¢y >2p; ischosen sothat f(u)< f(g2) for

0<u<g. Thenfor u€ K and |ul]|=g¢; wehave

(Fu)() = A /o k(t, 3)h(s) (u(s))ds
< /\f(qg)/o1 k(s, s)h(s)ds
< wnes [ ks, h(s)ds <

and so again we have ||Fu|l < |lu| for u€ K and [u||=gq;. If we now set

U ={ueX: |ju|<a}
Qz={U€X: ”u||<p1}

UG ={ueX: |ul <p}
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Q={ueX: |ul <qg}

then we conclude from Theorem 2 that F has a fixed point u; € K N (Q2\) and
uz € Kn(-ﬁ4\93) -with a < "ulll <m and p2 < “u2" < ¢2. Since P11 < p2, U1,u2

are distinct and are both positive for 0 <t < 1.
Proof of Theorem 1b. For any u € K we have
1 1
(Fu)(t) = A / k(t, $)h(s) f (u(s))ds < A / k(s, 5)h(s) f (u(s)) ds. (2.8)
) 0

Let 0<p; <p; begivenandlet M; = max {f(u): 0<u<p}, :=1,2. Then

- we have, from (2.8)

(Fu)(t) < (/\/0 k(s,s)h(s)ds)M;, llull = 1
and

1
(PO < (A [ ks )h(sds)Ma, Jull = po
]

Therefore, we may choose A2 > 0 such that for 0 < A < )X, wehave (Fu)(t) <p
and (Fu)(t) <p: for |lu| =p1 and |u]| =p2, respectively. If we set

Q={ueX: |u|<p}

Q={ueX: |u <ps}
then ||Fu|l <|uf] for A< X, and u€ KN3Q; and ||Fu| < |jul] for A <A
and u € KN3aNs.

Now since fo =00, thereexists ¢ < 3p1 suchthat f(u)>Mu for

0<u<q where M >0 satisfies

3/4
AoM > / k(L )h(s)ds > 1. (2.9)
1/4
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Thenfor u€ K and |ul|=¢1 we have

(Fu)(%) = /\/; k(% ,s)h(s)f(u(s):ds
> /\/3/4 k(3 ,9)h(s)f(u(s))ds
1/4

3/4
> ho( [ | KGR >

so letting Q) ={u € X : ||u]| <q1} we have

I1Full > lull; we KnéQ,.
s

Similarly, since fo, = 00, it follows that there is ¢ > 0 such that f(u) > Mu for
u>gq where M satisfies (2.9). If we now put ¢; =max {2p;, 4}, theafor ue K
and |ju]| =¢2 we have m]in u(t) > oljull > ¢ and
1
(Fu)§) =2 [ k(3 he) (u(s)ds
3/4
> /\/ k(3 ,s)h(s)f (u(s))ds
1/4
3/4
> MA/ k(3 ,s)h(s)u(s)ds
1/4

> ([ 6 ISl 2
Therefore, if we define 4
Q={veX: |u <q}
then ||Full> |lu|| for u€ KN&Q,. Thus, if we apply the Fixed Point as in the proof

of part a), we conclude the existence of u; € K N (§2\) and uz € K N (Q4\s)

which are positive solutions of (I), (II) with 0 < ¢; < ||| < p1 < p2 < ||ua|| < gz.
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Proof of Theorem Ic and 1d. The proofs of parts c) and d) are similar to those for a) and
b). If we consider Q; and (2 in the proof of a), then it follows that c) is true for
fo = 0. Similarly, ) is true for fo =0 by considering Q3 and 4. Likewise, d)
follows from the proof of b).

Proof of Theorem le. Suppose v(t) is a positive solution of (I), (II). Therefore, since
veEK

v(d)= /\/0 k(% ,s)h(s)f(v(s))ds
3ja
> A ‘/1/4 k(% ,s)h(s)f (v(s))ds
3/4
> AC./1 k(3 s)h(s)v(s)ds

/4

3/4
> /\co(/ k(L ,s)R(s)ds)|lv|.

1/4

Hence, if A is sufficiently large so that
3/4
/\ccr/ k(3 ,5)h(s)ds > 1
1/4
then we have v(}) > ||v||, which is a contradiction. This proves part €).
Proof of Theorem 1f. Suppose wv(t) is a positive solution of (I), (II). Then we have
1
v(t) = /\/ k(t, s)h(s)f (v(s))ds
0
1
<o / k(s, $)h(s)o(s)ds
)
1
< c)\(/ k(s, s)h(s)ds)[v||.
0

Thus, if A is sufficiently small so that

cA /1 k(s,s)h(s)ds < 1
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then we have v(t) < |lv|l for 0<t<1, which isa contradiction. This proves part f). 16. Haiyan Wang, On the ezist of positi lutions for semili elliptic tions in the i}
J. Differential Equations (to appear). ’
17. Haiyan Wang, Ezist of positi lutions fcr nonli elliptic equalions in the lus, preprint.
REFERENCES
1. D. Arcoya, Posits lutions for ilinear Dirichlet problems in an annulus, J. Differential Equations
94 (1991), 217-227.
2. C. Bandle, C.V. Coffman and M. Marcus, Nonlinear elliptic probl in lar d. ins, J. Differ-

ential Equations 69 (1987), 322-345.

3. C. Bandle and M.K. Kwong, Semilinear elliptic problems in annular domains, J. Appl. Phys. (ZAMP)
40 (1989), 245-257.

4. C.V. Coffman and M. Marcus, Ezist, and uniqué: results for semilinear Dirichlet problems in
Annuli, Arch. Rational Mech. Anal. 108 (1989), 293-307.

5. E.N. Dancer, Global breaking of symmetry of positive solutions in two dimensional equations, Differ-
ential and Integral Equations 5 (1992), 903-913.

6. K. Deimling, Nonli Functional Analysis, Springer, 1985.

7. L.H. Erbe and H. Wang, On the ezist of positi lutions of ordinary differential equations, Proc.
Amer. Math. Soc. (to appear).

8. L.H. Erbe, S. Hu and H. Wang, Multiple positi lutions of some boundary value problems, J. Math.
Anal. Appl. (to appear).

9. Xabier Garaizar, Ezist. of positive radial solutions for il elliptic equationsin the I
J. Differential Equations 70 (1987), 69-72.

10. J. Kazdan and F. Warner, Remarks on some quasili elliptic equations, Comm. Pure Appl. Math.
28 (1975), 567-597.

11. S.S. Lin, On non-radially sy iric bifurcation in the lus, J. Differential Equations 80 (1989),
251-279.
12. S.S. Lin, On the exzist of positive radial soluts for ili elliptic equati n l

domains, J. Differential Equations 81 (1989), 221-233.

13. P.L. Lions, On the ezistence of posits luti of ils elliptic equations, SIAM Review 24
(1982), 441-467.

14. F. Pacard, Radial and non-radial solutions of —Au = Af(u) on an annulus.of R*, n > 3, J. Differ-
ential Equations 101 (1993), 103-138.

15. Jairo Santanilla, Ezist and n istence of positive radial solutions for some semilinear elliptic

problems in lar d ins, Nonli Analysis, TMA 16 (1991), 861-879.






