EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS IN AN ANNULUS

L.H. ERBE*

Department of Mathematics
University of Alberta
Edmonton, Alberta
Canada T6G 2G1

HAIYAN WANG

Department of Mathematics Michigan State University East Lansing, Michigan 48824

ABSTRACT. We study the equation $-\Delta u = \lambda g(|x|)f(u)$ $R_1 < |x| < R_2$, $x \in \mathbb{R}^N$, $N \ge 1$ subject to linear boundary conditions at R_1 and R_2 . Under assumptions concerning subor superlinearity of f, we establish existence, non-existence, and multiplicity results for positive solutions.

^{*}Research supported by NSERC Canada.

1. Introduction

In this paper we consider existence and nonexistence of positive radial solutions of the equation

$$-\Delta u = \lambda g(|x|)f(u), \quad R_1 < |x| < R_2 \tag{1.1}$$

where $x \in \mathbb{R}^N$, $N \ge 1$, along with linear boundary conditions at R_1 and R_2 which include

$$u = 0$$
 on $|x| = R_1$ and $|x| = R_2$ (1.2a)

$$u = 0$$
 on $|x| = R_1$ and $\frac{\partial u}{\partial r} = 0$ on $|x| = R_2$ (1.2b)

$$\frac{\partial u}{\partial r} = 0$$
 on $|x| = R_1$ and $u = 0$ on $|x| = R_2$ (1.2c)

Here r = |x| and $\frac{\partial}{\partial r}$ denotes differentiation in the radial direction, $0 < R_1 < R_2 < \infty$. Because of the radial symmetry, we seek criteria for existence (or nonexistence) of positive radial solutions of (1.1) which then must satisfy

$$-u''(r) - \frac{N-1}{r} u'(r) = \lambda g(r) f(u(r)), \quad R_1 < r < R_2.$$
 (1.3)

Further, via a standard change of variable, (1.3) may be written as an ODE on (0,1). Consequently, we shall consider the following BVP with linear boundary conditions

$$-u'' = \lambda h(t)f(u), \quad 0 < t < 1$$
 (I)

$$\alpha u(0) - \beta u'(0) = 0$$

$$\gamma u(1) + \delta u'(1) = 0$$
(II)

where $\alpha, \beta, \gamma, \delta$ are nonnegative real constants with $\rho = \gamma \beta + \alpha \gamma + \alpha \delta > 0$. We shall also assume that f(u) > 0 for u > 0 and $h(t) \ge 0$ for $t \ge 0$, with both f and h continuous on their respective domains. The BVP (1.1), (1.2) and (I), (II) has been

the subject of numerous investigations (cf. [1-17]) under various assumptions. In [7], [8], the BVP (I), (II) (with $\lambda = 1$) was investigated and various criteria for existence of one (or several) positive solutions were obtained. We introduce the notation

$$f_0 = \lim_{u \to 0+} \frac{f(u)}{u} \quad \text{and} \quad f_\infty = \lim_{u \to \infty} \frac{f(u)}{u}$$
 (1.4)

and we shall say that f is sub (super) linear at 0 in case $f_0 = +\infty$ ($f_0 = 0$). Similarly, f is sub (super) linear at ∞ in case $f_0 = 0$ ($f_\infty = \infty$). The main result of this paper may then be stated as

Theorem 1. Let f,g be continuous real valued functions defined on $[0,\infty)$ with f(u)>0 for u>0 and $g(t)\geq 0$ for $t\geq 0$ and assume $g(t)\not\equiv 0$ in some neighborhood of t=1/2. Then:

- a) if $f_0 = f_\infty = 0$ there exists $\lambda_1 > 0$ such that (I), (II) has at least two distinct positive solutions for $\lambda \geq \lambda_1$.
- b) if $f_0 = f_\infty = \infty$ there exists $\lambda_2 > 0$ such that (I), (II) has at least two distinct positive solutions for $0 < \lambda \le \lambda_2$.
- c) if $f_0=0$ or $f_\infty=0$ there exists $\lambda_3>0$ such that (I), (II) has at least one positive solution for $\lambda\geq\lambda_3$.
- d) if $f_0 = \infty$ or $f_\infty = \infty$ there exists $\lambda_4 > 0$ such that (I), (II) has at least one positive solution for $0 < \lambda \le \lambda_4$.
- e) if $f(u) \ge cu$ for $u \ge 0$ and some constant c > 0, there exists $\lambda_5 > 0$ such that (I), (II) has no positive solution for $\lambda \ge \lambda_5$.
- f) if $f(u) \le cu$ for $u \ge 0$ and some constant c > 0, there exists $\lambda_6 > 0$ such that (I), (II) has no positive solution for $0 < \lambda \le \lambda_6$.

The proof of Theorem 1 is based on the following Fixed Point Theorem of cone expansion/compression type. (See [6] for a proof and additional details.)

Theorem 2. Let X be a Banach space, $K\subseteq X$ a cone and assume Ω_1,Ω_2 are open subsets of X with $0\in\Omega_1$, $\overline{\Omega}_1\subset\Omega_2$ and let $F:K\cap(\overline{\Omega}_2\backslash\Omega_1)\to K$ be a completely continuous operator such that either

(i) $\|Fu\| \le \|u\|$, $u \in K \cap \partial\Omega_1$ and $\|Fu\| \ge \|u\|$, $u \in K \cap \partial\Omega_2$

or

(ii) $||Fu|| \ge ||u||$, $u \in K \cap \partial \Omega_1$ and $||Fu|| \le ||u||$, $u \in K \cap \partial \Omega_2$.

Then F has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

2. Notation and Proofs

The BVP (I), (II) is equivalent to the integral equation

$$u(t) = \lambda \int_0^1 k(t, s)h(s)f(u(s))ds \equiv Fu(t)$$
 (2.1)

where $u \in X := C[0,1]$ and k(t,s) is the Green's function for the problem -u'' = 0 subject to the boundary conditions (II) and is given explicitly by

$$k(t,s) = \frac{1}{\rho} \begin{cases} (\gamma + \delta - \gamma t)(\beta + \alpha s), & 0 \le s \le t \le 1\\ (\beta + \alpha t)(\gamma + \delta - \gamma s), & 0 \le t \le s \le 1. \end{cases}$$
 (2.2)

The operator $F: X \to X$ is completely continuous and if we define the cone $K \subset X$ by

$$K = \{u \in X : u(t) \ge 0, \min_{\tau} u(t) \ge \sigma ||u||\}$$
 (2.3)

where $J = [\frac{1}{4}, \frac{3}{4}]$, $||u|| = \sup_{t \in [0,1]} |u(t)|$ and $\sigma = \min \{\frac{\gamma+4\delta}{4(\gamma+\delta)}, \frac{\alpha+4\beta}{4(\alpha+\beta)}\}$, then one can verify directly that $k(t,s)/k(s,s) \geq \sigma$ for $t \in J$, $s \in [0,1]$. Hence, for $u \in X$ we

have

$$\begin{split} \min_{t \in J} \left(Fu \right) &(t) = \min_{i \in J} \lambda \int_0^1 k(t,s) h(s) f(u(s)) ds \\ & \geq \lambda \sigma \int_0^1 k(s,s) h(s) f(u(s)) ds \\ & \geq \lambda \sigma \max_{t \in [0,1]} \int_0^1 k(t,s) h(s) f(u(s)) ds \\ & = \sigma \|Fu\|. \end{split}$$

Consequently, $Fu \in K$ for any $u \in X$.

Proof of Theorem 1a. For $u \in K$, we have

$$(Fu)(\frac{1}{2}) = \lambda \int_0^1 k(\frac{1}{2}, s)h(s)f(u(s))ds$$

$$\geq \lambda \int_{1/4}^{3/4} k(\frac{1}{2}, s)h(s)f(u(s))ds.$$
(2.4)

For any p > 0 we define

$$m(p) = \min \left\{ \int_{1/4}^{3/4} k(\frac{1}{2}, s) h(s) f(u(s)) ds : u \in K, \|u\| = p \right\}.$$
 (2.5)

Since $h(s) \not\equiv 0$ and f(u) > 0 it follows from $\frac{p}{4} \le u(s) \le p$ on J that m(p) > 0. Let $0 < p_1 < p_2$ be arbitrary and define

$$\lambda_1 = \max \left\{ \frac{p_1}{m(p_1)}, \frac{p_2}{m(p_2)} \right\}.$$
 (2.6)

From (2.4) – (2.6) and for $\lambda \geq \lambda_1$ it follows that $||Fu|| \geq ||u||$ for $||u|| = p_1$ and $||u|| = p_2$. Since $f_0 = 0$ for any $\lambda \geq \lambda_1$ we can choose $q_1 > 0$ and $\eta > 0$ such that $2q_1 < p_1$ and such that $f(u) \leq \eta u$ for $0 < u \leq q_1$ where

$$\eta \lambda \int_0^1 k(s,s)h(s)ds \le 1. \tag{2.7}$$

Then for $u \in K$ and $||u|| = q_1$ we have

$$(Fu)(t) = \lambda \int_0^1 k(t,s)h(s)f(u(s))ds$$

$$\leq \lambda \int_0^1 k(s,s)h(s)f(u(s))ds$$

$$\leq \lambda \eta ||u|| \int_0^1 k(s,s)h(s)ds \leq ||u||.$$

Thus, $||Fu|| \le ||u||$ for $u \in K$ and $||u|| = q_1$. Also, since $f_{\infty} = 0$ we may choose $q_2 > 2p_2$ such that $f(u) \le \eta u$ for $u \ge q_2$ where η satisfies (2.7). Now if f is bounded, say $f(u) \le N$ for all $u \in (0, \infty)$, then we may also suppose that $N\lambda \int_0^1 k(s,s)h(s)ds \le q_2$. Then for $u \in K$ and $||u|| = q_2$ we have

$$(Fu)(t) = \lambda \int_0^1 k(t,s)h(s)f(u(s))ds$$

$$\leq N\lambda \int_0^1 k(s,s)h(s)ds \leq q_2 = ||u||$$

so $||Fu|| \le ||u||$ for $u \in K$ and $||u|| = q_2$.

If f is unbounded then $q_2>2p_2$ is chosen so that $f(u)\leq f(q_2)$ for $0< u\leq q_2$. Then for $u\in K$ and $\|u\|=q_2$ we have

$$(Fu)(t) = \lambda \int_0^1 k(t,s)h(s)f(u(s))ds$$

$$\leq \lambda f(q_2) \int_0^1 k(s,s)h(s)ds$$

$$\leq \lambda \eta q_2 \int_0^1 k(s,s)h(s)ds \leq q_2$$

and so again we have $||Fu|| \le ||u||$ for $u \in K$ and $||u|| = q_2$. If we now set

$$\begin{split} &\Omega_1 = \{u \in X: \ \|u\| < q_1\} \\ &\Omega_2 = \{u \in X: \ \|u\| < p_1\} \\ &\Omega_3 = \{u \in X: \ \|u\| < p_2\} \end{split}$$

$$\Omega_4 = \{ u \in X : ||u|| < q_2 \}$$

then we conclude from Theorem 2 that F has a fixed point $u_1 \in K \cap (\overline{\Omega}_2 \setminus \Omega_1)$ and $u_2 \in K \cap (\overline{\Omega}_4 \setminus \Omega_3)$ with $q_1 \leq \|u_1\| \leq p_1$ and $p_2 \leq \|u_2\| \leq q_2$. Since $p_1 < p_2$, u_1, u_2 are distinct and are both positive for 0 < t < 1.

Proof of Theorem 1b. For any $u \in K$ we have

$$(Fu)(t) = \lambda \int_0^1 k(t,s)h(s)f(u(s))ds \le \lambda \int_0^1 k(s,s)h(s)f(u(s))ds. \tag{2.8}$$

Let $0 < p_1 < p_2$ be given and let $M_i = \max \{f(u): 0 \le u \le p_i\}$, i = 1, 2. Then we have, from (2.8)

$$(Fu)(t) \leq \left(\lambda \int_0^1 k(s,s)h(s)ds\right)M_1, \quad \|u\| = p_1$$

and

$$(Fu)(t) \leq \left(\lambda \int_0^1 k(s,s)h(s)ds\right)M_2, \quad \|u\| = p_2.$$

Therefore, we may choose $\lambda_2 > 0$ such that for $0 < \lambda \le \lambda_2$ we have $(Fu)(t) \le p_1$ and $(Fu)(t) \le p_2$ for $||u|| = p_1$ and $||u|| = p_2$, respectively. If we set

$$\Omega_2 = \{ u \in X : ||u|| < p_1 \}$$

$$\Omega_3 = \{ u \in X : ||u|| < p_2 \}$$

then $||Fu|| \le ||u||$ for $\lambda \le \lambda_2$ and $u \in K \cap \partial \Omega_2$ and $||Fu|| \le ||u||$ for $\lambda \le \lambda_2$ and $u \in K \cap \partial \Omega_3$.

Now since $f_0=\infty$, there exists $q_1<\frac{1}{2}\,p_1$ such that $f(u)\geq Mu$ for $0< u\leq q_1$ where M>0 satisfies

$$\lambda \sigma M \ge \int_{1/4}^{3/4} k(\frac{1}{2}, s) h(s) ds \ge 1.$$
 (2.9)

Then for $u \in K$ and $||u|| = q_1$ we have

$$(Fu)(\frac{1}{2}) = \lambda \int_0^1 k(\frac{1}{2}, s)h(s)f(u(s))ds$$

$$\geq \lambda \int_{1/4}^{3/4} k(\frac{1}{2}, s)h(s)f(u(s))ds$$

$$\geq \lambda \sigma M(\int_{1/4}^{3/4} k(\frac{1}{2}, s)h(s)ds)||u|| \geq ||u||$$

so letting $\Omega_1 = \{u \in X : ||u|| < q_1\}$ we have

$$||Fu|| \geq ||u||, \quad u \in K \cap \partial\Omega_1.$$

Similarly, since $f_{\infty}=\infty$, it follows that there is q>0 such that $f(u)\geq Mu$ for $u\geq q$ where M satisfies (2.9). If we now put $q_2=\max\left\{2p_2,\frac{q}{\sigma}\right\}$, then for $u\in K$ and $\|u\|=q_2$ we have $\min_I u(t)\geq \sigma\|u\|\geq q$ and

$$\begin{split} (Fu)(\frac{1}{2}) &= \lambda \int_0^1 k(\frac{1}{2},s)h(s)f(u(s))ds \\ &\geq \lambda \int_{1/4}^{3/4} k(\frac{1}{2},s)h(s)f(u(s))ds \\ &\geq M\lambda \int_{1/4}^{3/4} k(\frac{1}{2},s)h(s)u(s)ds \\ &\geq M\lambda\sigma(\int_{1/4}^{3/4} k(\frac{1}{2},s)h(s)ds)\|u\| \geq \|u\|. \end{split}$$

Therefore, if we define Ω_4

$$\Omega_4 = \{u \in X: \ \|u\| < q_2\}$$

then $||Fu|| \ge ||u||$ for $u \in K \cap \partial \Omega_4$. Thus, if we apply the Fixed Point as in the proof of part a), we conclude the existence of $u_1 \in K \cap (\overline{\Omega}_2 \setminus \Omega_1)$ and $u_2 \in K \cap (\overline{\Omega}_4 \setminus \Omega_3)$ which are positive solutions of (I), (II) with $0 < q_1 \le ||u_1|| \le p_1 < p_2 \le ||u_2|| \le q_2$.

Proof of Theorem 1c and 1d. The proofs of parts c) and d) are similar to those for a) and b). If we consider Ω_1 and Ω_2 in the proof of a), then it follows that c) is true for $f_0 = 0$. Similarly, c) is true for $f_{\infty} = 0$ by considering Ω_3 and Ω_4 . Likewise, d) follows from the proof of b).

Proof of Theorem 1e. Suppose v(t) is a positive solution of (I), (II). Therefore, since $v \in K$

$$\begin{split} v(\frac{1}{2}) &= \lambda \int_0^1 k(\frac{1}{2}, s) h(s) f(v(s)) ds \\ &\geq \lambda \int_{1/4}^{3/4} k(\frac{1}{2}, s) h(s) f(v(s)) ds \\ &\geq \lambda c \int_{1/4}^{3/4} k(\frac{1}{2}, s) h(s) v(s) ds \\ &\geq \lambda c \sigma \left(\int_{1/4}^{3/4} k(\frac{1}{2}, s) h(s) ds \right) \|v\|. \end{split}$$

Hence, if λ is sufficiently large so that

$$\lambda c\sigma \int_{1/4}^{3/4} k(\frac{1}{2}, s) h(s) ds > 1$$

then we have $v(\frac{1}{2}) > ||v||$, which is a contradiction. This proves part e).

Proof of Theorem 1f. Suppose v(t) is a positive solution of (I), (II). Then we have

$$v(t) = \lambda \int_0^1 k(t, s)h(s)f(v(s))ds$$

$$\leq c\lambda \int_0^1 k(s, s)h(s)v(s)ds$$

$$\leq c\lambda \Big(\int_0^1 k(s, s)h(s)ds\Big)||v||.$$

Thus, if λ is sufficiently small so that

$$c\lambda \int_0^1 k(s,s)h(s)ds < 1$$

then we have v(t) < ||v|| for $0 \le t \le 1$, which is a contradiction. This proves part f).

REFERENCES

- D. Arcoya, Positive solutions for semilinear Dirichlet problems in an annulus, J. Differential Equations 94 (1991), 217-227.
- C. Bandle, C.V. Coffman and M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations 69 (1987), 322-345.
- C. Bandle and M.K. Kwong, Semilinear elliptic problems in annular domains, J. Appl. Phys. (ZAMP) 40 (1989), 245-257.
- C.V. Coffman and M. Marcus, Existence and uniqueness results for semilinear Dirichlet problems in Annuli, Arch. Rational Mech. Anal. 108 (1989), 293-307.
- E.N. Dancer, Global breaking of symmetry of positive solutions in two dimensional equations, Differential and Integral Equations 5 (1992), 903-913.
- 6. K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
- 7. L.H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. (to appear).
- 8. L.H. Erbe, S. Hu and H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. (to appear).
- 9. Xabier Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations 70 (1987), 69-72.
- J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597.
- S.S. Lin, On non-radially symmetric bifurcation in the annulus, J. Differential Equations 80 (1989), 251-279.
- S.S. Lin, On the existence of positive radial solutions for semilinear elliptic equations in annular domains, J. Differential Equations 81 (1989), 221-233.
- 13. P.L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review 24 (1982), 441-467.
- 14. F. Pacard, Radial and non-radial solutions of $-\Delta u = \lambda f(u)$ on an annulus of R^n , n > 3, J. Differential Equations 101 (1993), 103-138.
- Jairo Santanilla, Existence and nonexistence of positive radial solutions for some semilinear elliptic problems in annular domains, Nonlinear Analysis, TMA 16 (1991), 861-879.

- 16. Haiyan Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations (to appear).
- 17. Haiyan Wang, Existence of positive solutions for nonlinear elliptic equations in the annulus, preprint.