CHM 598, Photochemistry, Spring 2005

Homework 1, due Jan 27th

1. Give values for the following physical constants
i) speed of light, $\mathrm{c}\left(\mathrm{cm} \mathrm{s}^{-1}\right)$
$2.998 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}$
ii) Avagadro's number, N
6.022×10^{23}
iii) Planck constant, h (J s)
$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
2. Give the energy of the following Irradiation wavelengths in $\mathrm{kJ} / \mathrm{mol}, \mathrm{kcal} / \mathrm{mol}, \mathrm{cm}^{-1}, \mathrm{eV}$
i) 184.7 nm
$647.7 \mathrm{~kJ} / \mathrm{mol}, 154.8 \mathrm{kcal} / \mathrm{mol}, 54,140 \mathrm{~cm}^{-1}, 6.71 \mathrm{eV}$
ii) 253.7 nm
$471.5 \mathrm{~kJ} / \mathrm{mol}, 112.7 \mathrm{kcal} / \mathrm{mol}, 39,420 \mathrm{~cm}^{-1}, 4.88 \mathrm{eV}$
iii) 366.0 nm
$326.8 \mathrm{~kJ} / \mathrm{mol}, 78.1 \mathrm{kcal} / \mathrm{mol}, 27,320 \mathrm{~cm}^{-1}, 3.39 \mathrm{eV}$
3. A medium pressure mercury lamp with a filer solution gives 2 watts of energy at 313 nm . Assume all of this light is absorbed by the sample, how many seconds will it take for 10^{-3} moles of product to be formed if each photon absorbed converts one molecule of starting material into product?

2 watts $=2$ joules per second
$313 \mathrm{~nm}=382500 \mathrm{~J} / \mathrm{mol}$
$313 \mathrm{~nm}=6.35 \times 10^{-19} \mathrm{~J} /$ photon
2 watts at $313 \mathrm{~nm}=3.15 \times 10^{18}$ photons per second
6 watts at $313 \mathrm{~nm}=5.2 \times 10^{-6}$ Einsteins (moles of photons) per second
therefore, $10^{-3} / 5.2 \times 10^{-6}$ seconds for 10^{-3} moles of photons $=191$ seconds
4. A laser emits pulses of light of 355 nm in 10 ns , at a rate of 10 Hz (10 pulses per second). Each pulse has an energy of 10 mJ . Calculate the average power of the laser in Watts, the peak power of the laser, the number of photons in each pulse. The beam is used to excite a sample contained in a $1 \mathrm{~cm}^{2}$ cuvette. Assume the beam is round with a radius of 1 mm , and that in the cell, 90% of the light is absorbed. What is the average concentration (moles/L) of excited states that are formed in the cell with each pulse?
$10 \mathrm{~mJ} \times 10=100 \mathrm{~mJ}$ per second, average power is 0.1 Watts
10 mJ in $10 \mathrm{~ns}=1 \times 10^{6} \mathrm{~J}$ per second $=1 \times 10^{6} \mathrm{~W}$ atts peak power
$355 \mathrm{~nm}=336970 \mathrm{~J} / \mathrm{mol}$
10 mJ of $355 \mathrm{~nm}=2.968 \times 10^{-8}$ moles of photons
number of moles of photons absorbed by the sample $=2.67 \times 10^{-8}$ moles of photons
volume of sample irradiated $=(\pi \times 0.1 \times 0.1) \times 1$ (pathlength $)=0.031 \mathrm{~cm}^{2}$
moles per liter of photons absorbed $=2.67 \times 10^{-8} / 0.031 * 1000=8.6 \times 10^{-4}$

