CHM 598, Photochemistry, Spring 2005, Homework 3, my answers!

I apologize, I made 2 errors on the homework. First, the concentrations were wrong! They should have been 1.18×10^{-4} M for buffer, and 2.42×10^{-4} M for DNA. Second, the radiative frequency I gave in the formulas was v_f , and I meant to give v_{abs}^{max} (I was looking ahead to next weeks homework already). I have taken these errors into account when grading the homework.

Extinction coefficient calculated as Absorbance divided by Concentration (pathlength is 1 cm). The Absorption cross section as extinction coeff x 3.824×10^{-5} (Å²/molecule).

Calculation of Oscillator Strengths

Using $f = 4.32 \times 10^{-9}$. A

I integrated the buffer absorption band from 14,000 to 23500 wavenumber as: $A = \int \varepsilon(\tilde{v}) d\tilde{v}$ A (buffer) = 2.17 x 10⁷, f (buffer) = 0.0937

I integrated the DNA absorption band from 14,000 to 26500 wavenumber as: $A = \int \varepsilon(v) dv$ A (DNA) =1.66 x 10⁷, f(DNA) = 0.0717

Calculation of Transition Dipole Moments

Using $f = 4.70 \times 10^{-7} \tilde{v_{abs}}^{max} \cdot \mu_i^2$ $\mu_i = \text{sqrt} (f / 4.7 \times 10^{-7} \cdot \tilde{v_{abs}}^{max})$

I determined the absorption maximum to be 19120 cm⁻¹ in buffer $\mu_i = \text{sqrt} (0.0937 / 4.7 \times 10^{-7} . 19120) = 3.23 \text{ D} (\text{buffer})$

I determined the absorption maximum to be 20830 cm⁻¹ in DNA $\mu_i = \text{sqrt} (0.0717 / 4.7 \times 10^{-7} . 20830) = 2.71 \text{ D} (\text{DNA})$

Calculation of Effective Distance

Using:: $r = \mu i / 4.8$ r (buffer) = 0.623 Å r (DNA) = 0.565 Å

Calculation of Radiative Rate

Using: $k_f = 2.881 \times 10^{-9} (\tilde{v}_{abs}^{max})^2 n^2 A$ (assume the refractive index of water is OK for both systems, n = 1.335 at 500 nm)

 k_{f} (buffer) = 2.881 x 10⁻⁹ (19120)² (1.335)² 2.17 x 10⁷ = 4.07 x 10⁷ s⁻¹

 k_f (DNA) = 2.881 x 10⁻⁹ (20830)² (1.335)² 1.66 x 10⁷ = 2.96 x 10⁷ s⁻¹