I apologize, I made 2 errors on the homework. First, the concentrations were wrong! They should have been $1.18 \times 10^{-4} \mathrm{M}$ for buffer, and $2.42 \times 10^{-4} \mathrm{M}$ for DNA. Second, the radiative frequency I gave in the formulas was v_{f}, and I meant to give $v_{a b s}{ }^{\text {max }}$ (I was looking ahead to next weeks homework already). I have taken these errors into account when grading the homework.

Extinction coefficient calculated as Absorbance divided by Concentration (pathlength is 1 cm). The Absorption cross section as extinction coeff $\times 3.824 \times 10^{-5}$ ($\AA^{2} /$ molecule).

Calculation of Oscillator Strengths

Using $f=4.32 \times 10^{-9} \cdot A$
I integrated the buffer absorption band from 14,000 to 23500 wavenumber as: $A=\int \varepsilon(\tilde{v}) d \tilde{v}$ $\mathrm{A}($ buffer $)=2.17 \times 10^{7}, \mathrm{f}($ buffer $)=0.0937$

I integrated the DNA absorption band from 14,000 to 26500 wavenumber as: $A=\int \varepsilon(\tilde{v}) d \tilde{v}$
$\mathrm{A}(\mathrm{DNA})=1.66 \times 10^{7}, \mathrm{f}(\mathrm{DNA})=0.0717$

Calculation of Transition Dipole Moments

Using $f=4.70 \times 10^{-7} \tilde{v}_{a b s}{ }^{\max } . \mu_{i}^{2}$
$\mu_{i}=\operatorname{sqrt}\left(f / 4.7 \times 10^{-7} \cdot \tilde{v_{a b s}}{ }^{\text {max }}\right)$
I determined the absorption maximum to be $19120 \mathrm{~cm}^{-1}$ in buffer

$$
\mu_{i}=\operatorname{sqrt}\left(0.0937 / 4.7 \times 10^{-7} .19120\right)=3.23 \mathrm{D} \text { (buffer) }
$$

I determined the absorption maximum to be $20830 \mathrm{~cm}^{-1}$ in DNA
$\mu_{i}=\operatorname{sqrt}\left(0.0717 / 4.7 \times 10^{-7} .20830\right)=2.71 \mathrm{D}(\mathrm{DNA})$

Calculation of Effective Distance

Using:: $\quad \mathrm{r}=\mu \mathrm{i} / 4.8$
r (buffer) $=0.623 \AA$
$r(D N A)=0.565 \AA$

Calculation of Radiative Rate

Using: $\mathrm{k}_{\mathrm{f}}=2.881 \times 10^{-9}\left(\tilde{v}_{\text {abs }}{ }^{\max }\right)^{2} n^{2} \mathrm{~A}$ (assume the refractive index of water is OK for both systems, $\mathrm{n}=1.335$ at 500 nm)
$\mathrm{k}_{\mathrm{f}}($ buffer $)=2.881 \times 10^{-9}(19120)^{2}(1.335)^{2} 2.17 \times 10^{7}=4.07 \times 10^{7} \mathrm{~s}^{-1}$
$\mathrm{k}_{\mathrm{f}}($ DNA $)=2.881 \times 10^{-9}(20830)^{2}(1.335)^{2} 1.66 \times 10^{7}=2.96 \times 10^{7} \mathrm{~s}^{-1}$

