Question 1.

The choice is between breaking bond A or bond B . Bond A is stronger than bond B for 2 reasons. First the oxygen is more electronegative than carbon, which means that the electrons in the O-H bond are lower in energy than in the $\mathrm{C}-\mathrm{H}$ bond. Also, the radical formed by breaking bond B is resonance stabilized. Thus, product B, formed by breaking bond B is the more likely product.

Question 2.

$$
\begin{aligned}
& \Phi_{\text {prod }}=\frac{\mathrm{k}_{\mathrm{r}}}{\mathrm{k}_{\mathrm{r}}+\mathrm{k}_{\mathrm{d}}} * \mathrm{X} \quad(\mathrm{X}=\text { scaling factor because yield is given in arbitrary units) } \\
& \left.\Phi_{\text {prod }} \mathrm{Q}=\frac{\mathrm{k}_{\mathrm{r}}}{\mathrm{k}_{\mathrm{r}}+\mathrm{k}_{\mathrm{d}}+\mathrm{k}_{\mathrm{d}}[\mathrm{Q}]} \quad * \mathrm{X} \quad \text { (same } \mathrm{X} \text { and here, } \mathrm{Q}=\text { pentadiene) }\right) \\
& \frac{\Phi_{\text {prod }}}{\Phi_{\text {prod }} \mathrm{Q}}=\frac{\mathrm{k}_{\mathrm{r}}+\mathrm{k}_{\mathrm{d}}}{\Phi_{\text {prod }}} \\
& \underset{\Phi_{\text {prod }}}{\mathrm{Q}}=\frac{\mathrm{k}_{\mathrm{r}}+\mathrm{k}_{\mathrm{d}}+\mathrm{k}_{\mathrm{d}}[\mathrm{Q}]}{\mathrm{k}_{\mathrm{r}}+\mathrm{k}_{\mathrm{d}}[\mathrm{Q}]} \\
& \mathrm{k}_{\mathrm{r}}+\mathrm{k}_{\mathrm{d}}
\end{aligned}
$$

$$
\text { tau }(\text { lifetime of triplet })=1 / \mathrm{k}_{\mathrm{r}}+\mathrm{k}_{\mathrm{d}}
$$

Question 3.

At high concentrations, the alkene can intercept the short-lived excited singlet state. At lower concentrations, the singlet intersystem crosses to the longer-lived triplet, which is then intercepted by the alkene (check notes for detailed mechanisms).

Question 4.

This is a Type II reaction, X is the 1,4 triplet biradical. This is the reason it is not quenched by diene. It is, however, quenched by dimethylviologen. The product shown is one-electron reduction of the viologen. The other product must then be oxidized. The obvious electron to remove is that next to the oxygen, since the cation product is resonance stabilized.

