

Neutron Star Cooling

Dany Page

Instituto de Astronomía Universidad Nacional Autónoma de México

Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints, Page D. & Reddy S., 2006, Annu. Rev. Nucl. Part. Sci. 56, 327

Neutron Star Cooling

Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints, Page D. & Reddy S., 2006, Annu. Rev. Nucl. Part. Sci. 56, 327

Neutron Star Cooling

Contains a huge temperature gradient: it determines the relationship between T_{int} and T_e. Extremely important for the cooling, strongly affected by magnetic fields and the presence of "polluting" light elements. B Atmosphere (10 cm): Determines the shape of the thermal radiation (the spectrum). Of upmost importance for interpretation of X-ray (and optical) observation. However it as NO effect on the thermal evolution of the star. Atmosphere Envelope Crust Outer core

Inner core

Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints, Page D. & Reddy S., 2006, Annu. Rev. Nucl. Part. Sci. 56, 327

Neutron vortex Magnetic flux tube

-Neutron superfluid Neutron superfluid

-Neutron vortex proton superconductor-

Nuclei in a lattice

Spaghetti

1.25305112

Switzs eese

Neutron Star Cooling

Contains a huge temperature gradient: it determines the relationship between T_{int} and T_e. Extremely important for the cooling, strongly affected by magnetic fields and the presence of "polluting" light elements.

Atmosphere (10 cm): Determines the shape of the thermal radiation (the spectrum).

Of upmost importance for interpretation of X-ray (and optical) observation. However it as NO effect on the thermal evolution of the star.

Atmosphere

Envelope

Crust Outer core

Inner core

Crust (1 km):

Little effect on the long term cooling. BUT: may contain heating sources (magnetic/ rotational, pycnonuclear under accretion). Its thermal time is important for very young star and for quasi-persistent accretion

Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints, Page D. & Reddy S., 2006, Annu. Rev. Nucl. Part. Sci. 56, 327

Neutron vortex Magnetic flux tube

Neutron superfluid Neutron superfluid

-Neutron vortex proton superconductor-

Nuclei in a lattice

Spaghetti

(B)

Lasagna

Switcheese

Dany Page

Neutron Star Cooling

Contains a huge temperature gradient: it determines the relationship between T_{int} and T_e. Extremely important for the cooling, strongly affected by magnetic fields and the presence of "polluting" light elements.

Crust (1 km):

Little effect on the long term cooling. BUT: may contain heating sources (magnetic/ rotational, pycnonuclear under accretion). Its thermal time is important for very young star and for quasi-persistent accretion

Neutron superfluid Neutron superfluid Neutron vortex proton superconductor-Neutron vortex -Magnetic flux tube-Nuclei in a lattice

Spaghetti

B)

1.2525112

Switcheese

Atmosphere (10 cm):

Determines the shape of the thermal radiation (the spectrum). Of upmost importance for interpretation of X-ray (and optical) observation. However it as NO effect on the thermal evolution of the star.

Atmosphere

- Envelope
- Crust
- Outer core
- Inner core

Outer Core (10-x km):

Nuclear and supranuclear densities, containing $n, p, e \& \mu$. Provides about 90% of c_v and ε_v unless an inner core is present. Its physics is basically under control except pairing T_c which is essentially unknown.

Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints, Page D. & Reddy S., 2006, Annu. Rev. Nucl. Part. Sci. 56, 327

Neutron Star Cooling

Contains a huge temperature gradient: it determines the relationship between T_{int} and T_e . Extremely important for the cooling, strongly affected by magnetic fields and the presence of "polluting" light elements.

Crust (1 km):

Little effect on the long term cooling. BUT: may contain heating sources (magnetic/ rotational, pycnonuclear under accretion). Its thermal time is important for very young star and for quasi-persistent accretion

Inner Core (x km ?): The hypothetical region. Possibly only present in massive NSs. May contain Λ , Σ^- , Σ^0 , π or K condensates, or/and deconfined quark matter. Its ε_v dominates the outer core by many orders of magnitude. T_c ?

Neutron superfluid Neutron vortex Nuclei in a lattice

Atmosphere (10 cm):

Determines the shape of the thermal radiation (the spectrum). Of upmost importance for interpretation of X-ray (and optical) observation. However it as NO effect on the thermal evolution of the star.

Atmosphere Envelope Crust Outer core Inner core

Outer Core (10-x km):

Nuclear and supranuclear densities, containing $n, p, e \& \mu$. Provides about 90% of c_v and ε_v unless an inner core is present. Its physics is basically under control except pairing T_c which is essentially unknown.

Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints, Page D. & Reddy S., 2006, Annu. Rev. Nucl. Part. Sci. 56, 327

Neutron Star Cooling

Neutron star cooling on a napkin

Assume the star's interior is isothermal and neglect GR effects.

Thermal Energy, *E*_{th} , balance:

$$\frac{dE_{th}}{dt} = C_v \frac{dT}{dt} = -L_\gamma - L_\nu + H$$

 \Rightarrow 3 essential ingredients are needed:

- C_v = total stellar specific heat
- L_{γ} = total surface photon luminosity
- L_{ν} = total stellar neutrino luminosity

H = "heating", from B field decay, friction, etc ...

Observational Data

Observational data

Specific Heat

Neutron star cooling on a napkin

Assume the star's interior is isothermal and neglect GR effects.

Thermal Energy, *E*_{th} , balance:

$$\frac{dE_{th}}{dt} = C_v \frac{dT}{dt} = -L_\gamma - L_\nu + H$$

 \Rightarrow 3 essential ingredients are needed:

- C_v = total stellar specific heat
- L_{γ} = total surface photon luminosity
- L_{ν} = total stellar neutrino luminosity

H = "heating", from B field decay, friction, etc ...

Specific heat on a napkin

Sum over all degenerate fermions:
$$C_V = \sum_i C_{V,i}$$
 $c_{v,i} = N(0)\frac{\pi^2}{3}k_B^2T$ with $N(0) = \frac{m^*p_F}{\pi^2\hbar^3}$

$$C_v = \iiint c_v dV \simeq 10^{38} - 10^{39} \times T_9 \text{ erg } \mathrm{K}^{-1} \equiv C_9 T_9$$

(lowest value corresponds to the case where extensive pairing of baryons in the core suppresses their c_v and only the leptons, e & μ , contribute)

Distribution of c_v in the core of a 1.4 M_{Sun} neutron star build with the APR EOS (Akmal, Pandharipande, & Ravenhall, 1998), at

Neutron Star Cooling

Neutrinos

The direct Urca process

Basic mechanism: β and inverse β decays:

 $n \longrightarrow p + e^- + \overline{\nu}_e$ and $p + e^- \longrightarrow n + \nu_e$

"Direct URCA process in neutron stars", JM Lattimer, CJ Pethick, M Prakash & P Haensel, 1991 PhRvL 66, 2701

Basic mechanism: β and inverse β decays:

 $n \longrightarrow p + e^- + \overline{\nu}_e$ and $p + e^- \longrightarrow n + \nu_e$

Energy conservation:

"Direct URCA process in neutron stars", JM Lattimer, CJ Pethick, M Prakash & P Haensel, 1991 PhRvL 66, 2701

The direct Urca process

Basic mechanism: β and inverse β decays:

 $n \longrightarrow p + e^- + \overline{\nu}_e$ and $p + e^- \longrightarrow n + \nu_e$

Energy conservation:

 $E_{Fn} = E_{Fp} + E_{Fe}$

Momentum conservation:

"Triangle rule":
$$p_{Fn} < p_{Fp} + p_{Fe}$$

 $n_i = \frac{k_{Fi}^3}{3\pi^2} \Rightarrow n_n^{1/3} \le n_p^{1/3} + n_e^{1/3} = 2n_p^{1/3}$

$$x_p \equiv \frac{n_p}{n_n + n_p} \ge \frac{1}{9} \approx 11\%$$

"Direct URCA process in neutron stars", JM Lattimer, CJ Pethick, M Prakash & P Haensel, 1991 PhRvL 66, 2701

n

Neutron Star Cooling

 e^{-}

p

The modified URCA process

If the direct Urca process:

$$\begin{cases} n & \longrightarrow & p + e^- + \overline{\nu}_e \\ p + e^- & \longrightarrow & n + \nu_e \end{cases}$$

is forbidden because of momentum conservation, add a spectator neutron:

Modified Urca process:

$$\begin{cases} n+n' & \longrightarrow p+n'+e^- + \overline{\nu}_e \\ p+n'+e^- & \longrightarrow n+n'+\nu_e \end{cases}$$

Momentum conservation is automatic, but the price to pay is:

3 vs 5 fermions phase space:

$$\left(\frac{k_B T}{E_F}\right)^2 \sim \left(\frac{0.1 \,\mathrm{MeV} \cdot T_9}{100 \,\mathrm{MeV} \cdot E_{F\,100}}\right)^2 \sim 10^{-6} \cdot T_9^2$$

"Direct URCA process in neutron stars", JM Lattimer, CJ Pethick, M Prakash & P Haensel, 1991 PhRvL 66, 2701

Neutrino emission on a napkin (I)

The Murca-Bremsstrahlung family and Durca

Name	Process	Emissivity		
		$(erg cm^{-3} s^{-1})$		
Modified Urca cycle (neutron branch)	$ \begin{vmatrix} n+n \to n+p+e^- + \bar{\nu}_e \\ n+p+e^- \to n+n+\nu_e \end{vmatrix} $	$\sim 2 \times 10^{21} \ R \ T_9^8$	Slow	
Modified Urca cycle (proton branch)	$\begin{vmatrix} p+n \to p+p+e^- + \bar{\nu}_e \\ p+p+e^- \to p+n+\nu_e \end{vmatrix}$	$\sim 10^{21}~R~T_{9}^{8}$	Slow	
Bremsstrahlung	$n + n \rightarrow n + n + \nu + \overline{\nu}$ $n + p \rightarrow n + p + \nu + \overline{\nu}$ $p + p \rightarrow p + p + \nu + \overline{\nu}$	$\sim 10^{19}~R~T_9^8$	Slow	
Direct Urca cycle	$ \begin{array}{c c} n \rightarrow p + e^{-} + \overline{\nu}_{e} \\ p + e^{-} \rightarrow n + \nu_{e} \end{array} $	$\sim 10^{27}~R~T_9^6$	Fast	

Hyperons in neutron stars (I)

Hyperons, as Λ and Σ^{-} can be produced through reactions as, e.g.

$$\begin{cases} p + e^{-} & \longrightarrow & \Lambda + \nu_{e} \\ \Lambda & \longrightarrow & p + e^{-} + \overline{\nu}_{e} \\ \end{cases}$$
$$\begin{cases} n + e^{-} & \longrightarrow & \Sigma^{-} + \nu_{e} \\ \Sigma^{-} & \longrightarrow & n + e^{-} + \overline{\nu}_{e} \end{cases}$$

Energy conservation requires:

Momentum conservation:

 $\mu_{\Lambda} = \mu_n$ and $\mu_{\Sigma^-} = \mu_n + \mu_e$

very easily satisfied for Λ and not very difficult to satisfy for Σ^-

Hyperons will result in DUrca processes if they can be present

Dany Page

Hyperons, as π^- and K⁻ can be produced through reactions as, e.g.

$$\begin{cases} n+e^{-} \longrightarrow n+\pi^{-}+\nu_{e} \\ n+\pi^{-} \longrightarrow n+e^{-}+\overline{\nu}_{e} \end{cases}$$
$$\begin{cases} n+e^{-} \longrightarrow n+K^{-}+\nu_{e} \\ n+K^{-} \longrightarrow n+e^{-}+\overline{\nu}_{e} \end{cases}$$

Energy conservation requires: $m_{\pi}^* = \mu_e$ or $m_K^* = \mu_e$

Momentum conservation: trivially satisfied because mesons condense (they are bosons) and the condensate can absorb *any* extra needed momentum

Charged mesons will result in DUrca processes if they can be present

Dany Page

Neutrino emission on a napkin (III)

Name	Process	Emissivity (erg cm ⁻³ s ⁻¹)	
Modified Urca cycle	$n + n \rightarrow n + p + e^{-} + \overline{\nu}_{e}$	$\sim 2 \times 10^{21} R T_9^8$	Slow
(neutron branch) Modified Urca cycle (proton branch)	$ \begin{array}{c} n+p+e^{-} \rightarrow n+n+\nu_{e} \\ p+n \rightarrow p+p+e^{-}+\overline{\nu}_{e} \\ p+p+e^{-} \rightarrow p+n+\nu_{e} \end{array} $	$\sim 10^{21}~R~T_{9}^{8}$	Slow
Bremsstrahlung	$n + n \rightarrow n + n + \nu + \overline{\nu}$ $n + p \rightarrow n + p + \nu + \overline{\nu}$ $n + p \rightarrow n + p + \nu + \overline{\nu}$	$\sim 10^{19}~R~T_9^8$	Slow
Cooper pair formations	$p + p \rightarrow p + p + \nu + \nu$ $n + n \rightarrow [nn] + \nu + \overline{\nu}$ $p + p \rightarrow [pp] + \nu + \overline{\nu}$	$\sim 5{ imes}10^{21}~R~T_9^7 \ \sim 5{ imes}10^{19}~R~T_9^7$	Medium
Direct Urca cycle (nucleons)	$ \begin{vmatrix} n \to p + e^- + \bar{\nu}_e \\ p + e^- \to n + \nu_e \end{vmatrix} $	$\sim 10^{27}~R~T_9^6$	Fast
Direct Urca cycle (Λ hyperons)	$ \begin{array}{c} \Lambda \rightarrow p + e^{-} + \overline{\nu}_{e} \\ p + e^{-} \rightarrow \Lambda + \nu_{e} \end{array} $	$\sim 10^{27}~R~T_{9}^{6}$	Fast
Direct Urca cycle $(\Sigma^{-}$ hyperons)	$ \begin{array}{c} \Sigma^- \to n + e^- + \overline{\nu}_e \\ n + e^- \to \Sigma^- + \nu_e \end{array} $	$\sim 10^{27}~R~T_{9}^{6}$	Fast
π^- condensate K^- condensate	$n + < \pi^- > \rightarrow n + e^- + \overline{\nu}_e$ $n + < K^- > \rightarrow n + e^- + \overline{\nu}_e$	$\sim 10^{26}~R~T_9^6 \ \sim 10^{25}~R~T_9^6$	Fast Fast

Neutrino emission on a napkin (III)

Dominant neutrino processes in the crust

Plasmon decay process

 $\Gamma \longrightarrow \nu + \overline{\nu}$

Bremsstrahlung processes:

$$e^- + {}^{A}Z \longrightarrow e^- + {}^{A}Z + \nu + \overline{\nu}$$

$$n + n \longrightarrow n + n + \nu + \overline{\nu}$$

Pair annihilation process:

$$\gamma + \gamma \leftrightarrow e^- + e^+ \longrightarrow
u + \overline{
u}$$

Photo-neutrino process:

$$\gamma + e^- \longrightarrow e^- + \nu + \overline{
u}$$

Regions where the indicated neutrino emission process contributes more than 90% of the total.

Simple Models

A simple analytical solution

$$\frac{dE_{th}}{dt} = C_v \frac{dT}{dt} = -L_\gamma - L_\nu$$
$$C_v = CT \quad L_\nu = NT^8 \quad L_\gamma = ST^{2+4\alpha}$$

$$L_{\gamma}=4\pi R^2\sigma T_e^4$$
 using $T_e\propto T^{0.5+lpha}$ with $lpha\ll 1$

• Neutrino Cooling Era: $L_v >> L_\gamma$

$$\frac{dT}{dt} = -\frac{N}{C}T^7 \Rightarrow t - t_0 = \frac{C}{6N} \left[\frac{1}{T^6} - \frac{1}{T_0^6} \right]$$
$$T \propto t^{-1/6} \text{ and } T_e \propto t^{-1/12}$$

• Photon Cooling Era: $L_{\gamma} >> L_{\nu}$

$$\frac{dT}{dt} = -\frac{N}{S}T^{1+\alpha} \Rightarrow t - t_0 = \frac{C}{4\alpha S} \left[\frac{1}{T^{\alpha}} - \frac{1}{T_0^{\alpha}} \right]$$

$$T \propto t^{-1/lpha}$$
 and $T_e \propto t^{-1/2lpha}$

Arizona State University, Tempe 15 April 2009 18

Neutron Star Cooling

Neutrino cooling time scales

$$\frac{dE_{th}}{dt} = C_v \frac{dT}{dt} = -L_\nu \qquad C_v = CT \quad \text{and} \quad L_\nu^{\text{slow}} = N^{\text{slow}} T^8 \quad \text{or} \quad L_\nu^{\text{fast}} = N^{\text{fast}} T^6$$

• Slow neutrino cooling: $L_{\nu}^{\text{slow}} = \iiint \epsilon_{\nu}^{\text{slow}} dV = 10^{38} - 10^{40} \times T_9^8 \text{ erg s}^{-1} \equiv N_9^{\text{slow}} T_9^8$ (lowest value corresponds to the case where extensive

(lowest value corresponds to the case where extensive pairing in the core suppresses its neutrino emission and only the crust e-ion bremsstrahlung process is active)

$$\frac{dT}{dt} = -\frac{N}{C}T^7 \Rightarrow t - t_0 = \frac{C}{6N^{\text{slow}}} \left[\frac{1}{T^6} - \frac{1}{T_0^6}\right] \qquad \tau_{\nu}^{\text{slow}} \sim \frac{6 \text{ months}}{T_0^6} \times \left[\frac{C_9/10^{39}}{6 N_9^{\text{slow}}/10^{40}}\right]$$

• Fast neutrino cooling: $L_{\nu}^{\text{sfast}} = \iiint \epsilon_{\nu}^{\text{sfast}} dV = 10^{44} - 10^{45} \times T_9^6 \text{ erg s}^{-1} \equiv N_9^{\text{fast}} T_9^6$

$$\frac{dT}{dt} = -\frac{N}{C}T^5 \Rightarrow t - t_0 = \frac{C}{4N^{\text{fast}}} \left[\frac{1}{T^{\alpha}} - \frac{1}{T_0^{\alpha}}\right]$$

$$au_{
u}^{\text{fast}} \sim \frac{4 \text{ minutes}}{T_9^4} \times \left[\frac{C_9/10^{39}}{4 N_9^{\text{fast}}/10^{45}} \right]$$

MUrca vs DUrca

Direct vs modified Urca cooling

Models based on the PAL EOS:

adjusted (by hand) so that DURCA becomes allowed (triangle rule !) at M > 1.35 M_{Sun}.

"The Cooling of Neutron Stars by the Direct Urca Process", Page & Applegate, ApJ 394, L17 (1992)

Direct vs modified Urca cooling

Models based on the PAL EOS:

adjusted (by hand) so that DURCA becomes allowed (triangle rule !) at M > 1.35 M_{Sun}.

This value is arbitrary: we DO NOT know the value of this critical mass, and hopefully observations will, some day, tell us what it is !

"The Cooling of Neutron Stars by the Direct Urca Process", Page & Applegate, ApJ 394, L17 (1992)

Standard cooling of a 1.3 Mo neutron star

Standard cooling of a 1.3 M_{\odot} neutron star

Direct vs modified Urca cooling

Models based on the PAL EOS:

adjusted (by hand) so that DURCA becomes allowed (triangle rule !) at M > 1.35 M_{Sun}.

This value is arbitrary: we DO NOT know the value of this critical mass, and hopefully observations will, some day, tell us what it is !

"The Cooling of Neutron Stars by the Direct Urca Process", Page & Applegate, ApJ 394, L17 (1992)

Enhanced cooling of a 1.5 Mo neutron star

Enhanced cooling of a 1.5 M_☉ neutron star

Enhanced cooling of a 1.5 M_o neutron star

Pairing

Nucleon pairing

"Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State", Bohr, Mottelson, Pines, 1958 Phys. Rev. 110, 936

unam

Neutron Star Cooling

Suppression of c_v and ε_v by pairing

The presence of a pairing gap in the single particple excitation spectrum results in a Boltzmann-like

~ $exp(-\Delta/k_BT)$ suppression of c_v and ε_v :

$$c_v \rightarrow c_v^{\text{Paired}} = R_c c_v^{\text{Normal}}$$

$$\epsilon_{\nu}
ightarrow \epsilon_{\nu}^{\text{Paired}} = R_{\nu} \epsilon_{\nu}^{\text{Normal}}$$

Pairing T_c models

Size and extent of pairing gaps is highly uncertain

Slow vs fast cooling with pairing

Slow neutrino emission (modified URCA process)

$$\epsilon_
u^{
m slow} \sim 10^{21} \ T_9^8 \
m erg \
m cm^{-3} \
m s^{-1}$$

Fast neutrino emission (almost anything else)

 $\epsilon_{\nu}^{\rm fast} \sim 10^n \ T_9^6 \ {\rm erg} \ {\rm cm}^{-3} \ {\rm s}^{-1}$

- n = 24 ~ Kaon condensate
- n = 25 ~ Pion condensate
- n = 26 ~ Direct Urca

Slow vs fast cooling with pairing

Standard cooling of a 1.3 M_o neutron star with pairing

Enhanced cooling of a 1.5 Mo neutron star with pairing

Enhanced cooling of a 1.5 M_o neutron star moderated pairing

Envelopes: Heavy vs light elements Magnetic fields

Envelope (100 m):

Contains a huge temperature gradient: it determines the relationship between T_{int} and T_e. Extremely important for the cooling, strongly affected by magnetic fields and the presence of "polluting" light elements. B Atmosphere (10 cm): Determines the shape of the thermal radiation (the spectrum). Of upmost importance for interpretation of X-ray (and optical) observation. However it as NO effect on the thermal evolution of the star. Atmosphere Envelope Crust Outer core

Inner core

Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints, Page D. & Reddy S., 2006, Annu. Rev. Nucl. Part. Sci. 56, 327

Neutron vortex Magnetic flux tube

-Neutron superfluid Neutron superfluid

-Neutron vortex proton superconductor-

Nuclei in a lattice

Spaghetti

1.25305112

Switzs Reese

Neutron Star Cooling

Envelope models

Neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I., 1982ApJ...259L..19G Structure of neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I. 1983ApJ...272..286G

Dany Page

Neutron Star Cooling

T_b - T_e relationship for heavy elements

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

T_b - T_e relationship for heavy elements

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Structure of neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I. 1983ApJ...272..286G

Structure of neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I. 1983ApJ...272..286G

Structure of neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I. 1983ApJ...272..286G

Structure of neutron star envelopes Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I. 1983ApJ...272..286G

Light element envelopes

 ΔM_{light} = mass of light elements in the upper envelope

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Unam

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Unam

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Unam

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Unam

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Unam

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Unam

Light element envelopes

 ΔM_{light} = mass of light elements in the upper envelope

Cooling Neutron Stars with Accreted Envelopes Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C

Light element envelopes: - star looks warmer during neutrino cooling era, but - cools faster during photon cooling era

Magnetized envelopes: surface temperature distributions

Surface temperature of a magnetized neutron star and interpretation of the ROSAT da I. Dipolar fields D Page, ApJ 442, 273 (1995)

D Page & A Sarmiento, ApJ 473, 1067 (1996)

Dany Page

Neutron Star Cooling

Magnetized T_b - T_e relationships

The star's effective temperature is then easily calculated:

$$L = \iint \sigma_B T_s(\theta, \phi)^4 dS = 4\pi R^2 \sigma T_e^4$$
$$(dS = R^2 \cdot d\Omega)$$

$$T_e^4 = \frac{1}{4\pi} \iint T_s(\theta,\phi)^4 \, d\Omega$$

This directly generates a T_b - T_e relationship for any surface magnetic field geometry

Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. II. D Page & A Sarmiento, ApJ 473, 1067 (1996)

Dany Page

Magnetized T_b - T_e relationships

The star's effective temperature is then easily calculated:

$$L = \iint \sigma_B T_s(\theta, \phi)^4 dS = 4\pi R^2 \sigma T_e^4$$
$$(dS = R^2 \cdot d\Omega)$$

$$T_e^4 = \frac{1}{4\pi} \iint T_s(\theta,\phi)^4 \, d\Omega$$

This directly generates a T_b - T_e relationship for any surface magnetic field geometry

Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. II. D Page & A Sarmiento, ApJ 473, 1067 (1996)

Comparison with Data

Direct Urca with pairing vs data

Pairing gaps:

Neutron ${}^{1}S_{0}$: "SFB" Neutron ${}^{3}P_{2}$: "b" Proton ${}^{1}S_{0}$: "T73"

Minimal Cooling

Minimal Cooling or, do we need fast cooling ?

Motivation:

Many new observations of cooling neutron stars with CHANDRA and XMM-NEWTON

Do we have any strong evidence for the presence of some "exotic" component in the core of some of these neutron stars ?

Minimal Cooling or, do we need fast cooling ?

Minimal Cooling assumes: nothing special happens in the core, i.e., no direct URCA, no π^- or K^- condensate, no hyperons, no deconfined quark matter, no ...

(and no medium effects enhance the modified URCA rate beyond its standard value)

Minimal Cooling or, do we need fast cooling ?

Minimal Cooling assumes: nothing special happens in the core, i.e., no direct URCA, no π^- or K^- condensate, no hyperons, no deconfined quark matter, no ...

(and no medium effects enhance the modified URCA rate beyond its standard value)

Minimal Cooling is not naive cooling:

it takes into account uncertainties due to

- Large range of predicted values of T_c for n & p.
- Enhanced neutrino emission at $T \le T_c$ from the Cooper pair formation mechanism.
- Chemical composition of upper layers (envelope), i.e., iron-peak elements or light (H, He, C, O, ...) elements, the latter significantly increasing T_e for a given T_b .
- Equation of state.
- Magnetic field.

Neutrino emission from the breaking (and formation) of Cooper pairs: "PBF"

Neutrino pair emission from finite-temperature neutron superfluid and the cooling of neutron stars E Flowers, M Ruderman & P Sutherland, 1976ApJ...205..541F

Voskresensky D., Senatorov A., 1986, Sov. Phys.-JETP 63, 885

Dany Page

Neutron Star Cooling

Basic effects of pairing on the cooling

Basic effects of pairing on the cooling

Pairing T_c models

Size and extent of pairing gaps is highly uncertain

Minimal cooling versus data

Neutron Star Cooling

Minimal cooling versus data

Neutron Star Cooling

Conclusions

Conclusions

- Many possibilities for fast neutrino emission.
- Neutrino emission can be strongly suppressed by pairing.
- Sast cooling scenarios are compatible with if T_c for pairing is large enough.
- Minimal Cooling: most observed isolated cooling neutron stars are OK.
- A few serious candidates for neutrino cooling beyond minimal.