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Neutron Stars probe matter at densities ~100 times larger than
what is well understood

but they probe gravitational fields ~10   times stronger
13

nuclear
saturation



General Relativity has been Tested in Intermediate Field Strengths

The Einstein Field Equation

The Equivalence Principle



 The Equivalence Principle Has Been Tested to a Very High Degree
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 The Einstein Field Equation has been tested to ~10-4  
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Fast X-ray timing!
(AXTAR & IXO)  

High-Frequency
Gravitational Waves
(e.g.,LIGO, GEO600)
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NEUTRON STARS IN ALTERNATIVE GRAVITY THEORIES

Radius (km)
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General Relativity

Rosen’s Theory

(prior geometry)

Scalar-Tensor
(dynamical)

 All theories consistent with solar system tests!
 Uncertainty due to gravity larger than EOS!
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We have to be very careful when playing
with Einstein’s equation…

(aka a lesson learned from Cosmology)
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Cosmic acceleration can be produced by

Carroll et al. 2004

But:

Universe unstable to small perturbations!
Dolgov & Kawasaki 2003; Sawicki & Hu 2007

Stars are unstable to small perturbations!!!
Seifert & Wald 2007; Seifert 2007 

Post-Newtonian corrections do not depend on µ!!

Chiba 2003; Erickek et al 2006 
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Solution to these problems requires

• fine tuning

• a chameleon field

• perturbative localization
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Cosmic acceleration can be produced by

Carroll et al. 2004
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Redshift for EXO 0748-676: δλ/λ=0.35

Bonus: Neutron Stars are Spherically Symmetric
(when slowly rotating)

GRAVITATIONALLY REDSHIFTED LINES



NEUTRON STARS IN SCALAR-TENSOR GRAVITY

STABLE

UNSTABLE
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Scalar Stars can become Large and Massive

=β0 

.
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GR stars Scalar Stars

NEUTRON STARS IN SCALAR-TENSOR GRAVITY II

Baryonic Mass < 1.4M
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LIMITS FROM GRAVITATIONAL REDSHIFTS
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z=0.35

Mbaryon>1.4M

Limit: −β<9

If the mass of EXO 0748-676 is measured, limits will become tighter

DeDeo & Psaltis 2003 



Other tests with Neutron Stars

 Quasi-Periodic Oscillations

 Eddington-Limited Bursts

 Pulsar Glitches

 Neutron-Star Cooling

 Maximum Spin Frequency

DeDeo & Psaltis 2005a 

DeDeo & Psaltis 2005b 




