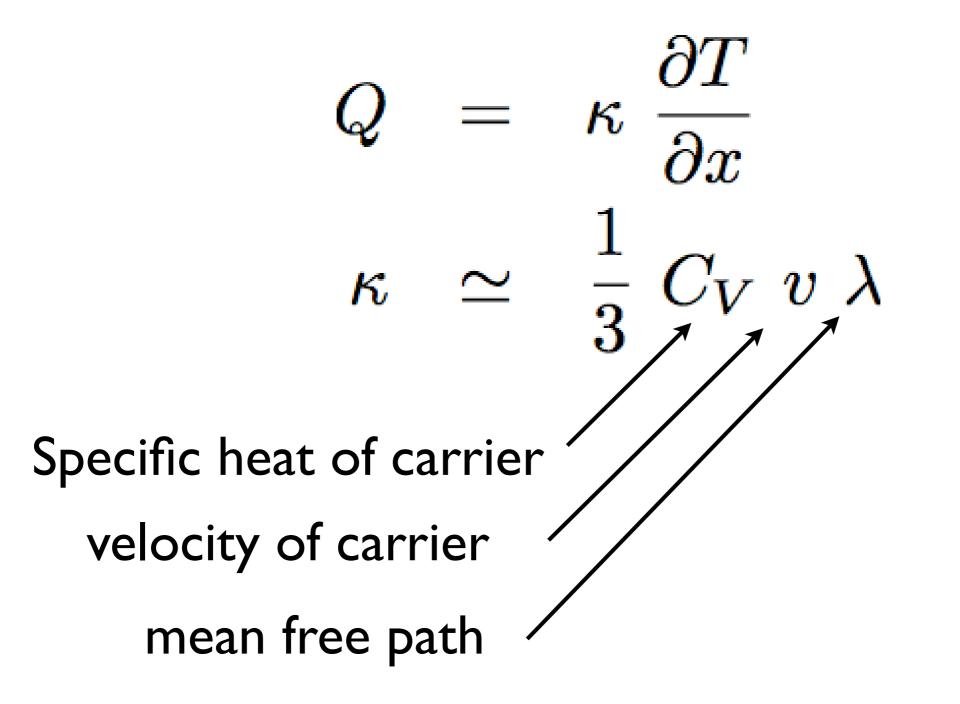
Superfluid Heat Conduction in the Neutron Star Crust

Sanjay Reddy Los Alamos National Lab Collaborators : Deborah Aguilera Vincenzo Cirigliano Jose Pons Rishi Sharma

arXiv:0807.4754

Thermal Conduction 101:



Thermal Conductivity - Down to Earth

material	к (ergs/cm·s·K)
air	0.00025
bronze	1.10
copper	4.01
diamond	8.95
Earth (dry)	0.015
Freon	0.00073
graphite	19.5
helium (II)	>1000
ice cream (powder)	0.0005

Thermal Conductivity - Down to Earth

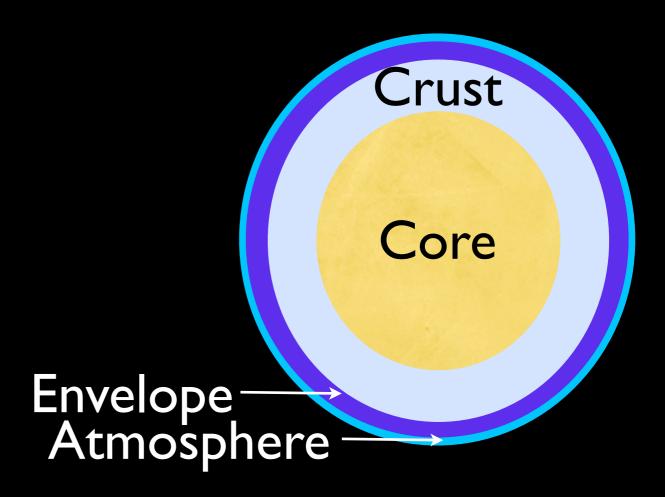
material air	к (ergs/cm·s·K) 0.00025
bronze	1.10
copper	4.01
diamond	8.95
Earth (dry)	0.015
Freon	0.00073
graphite	19.5
helium (II)	>1000
ice cream (powder)	0.0005

Thermal Conductivity - Down to Earth

material air	к (ergs/cm·s·K) 0.00025
bronze	1.10
copper	4.01
diamond	8.95
Earth (dry)	0.015
Freon	0.00073
graphite	19.5
helium (II)	>1000
ice cream (powder)	0.0005

Neutron Star Thermal Evolution

- Long term cooling of isolated neutron stars.
- Thermal profiles of accreting neutron stars.
- Long term cooling of magnetars.
- Early thermal evolution.



Neutron Star Thermal Evolution

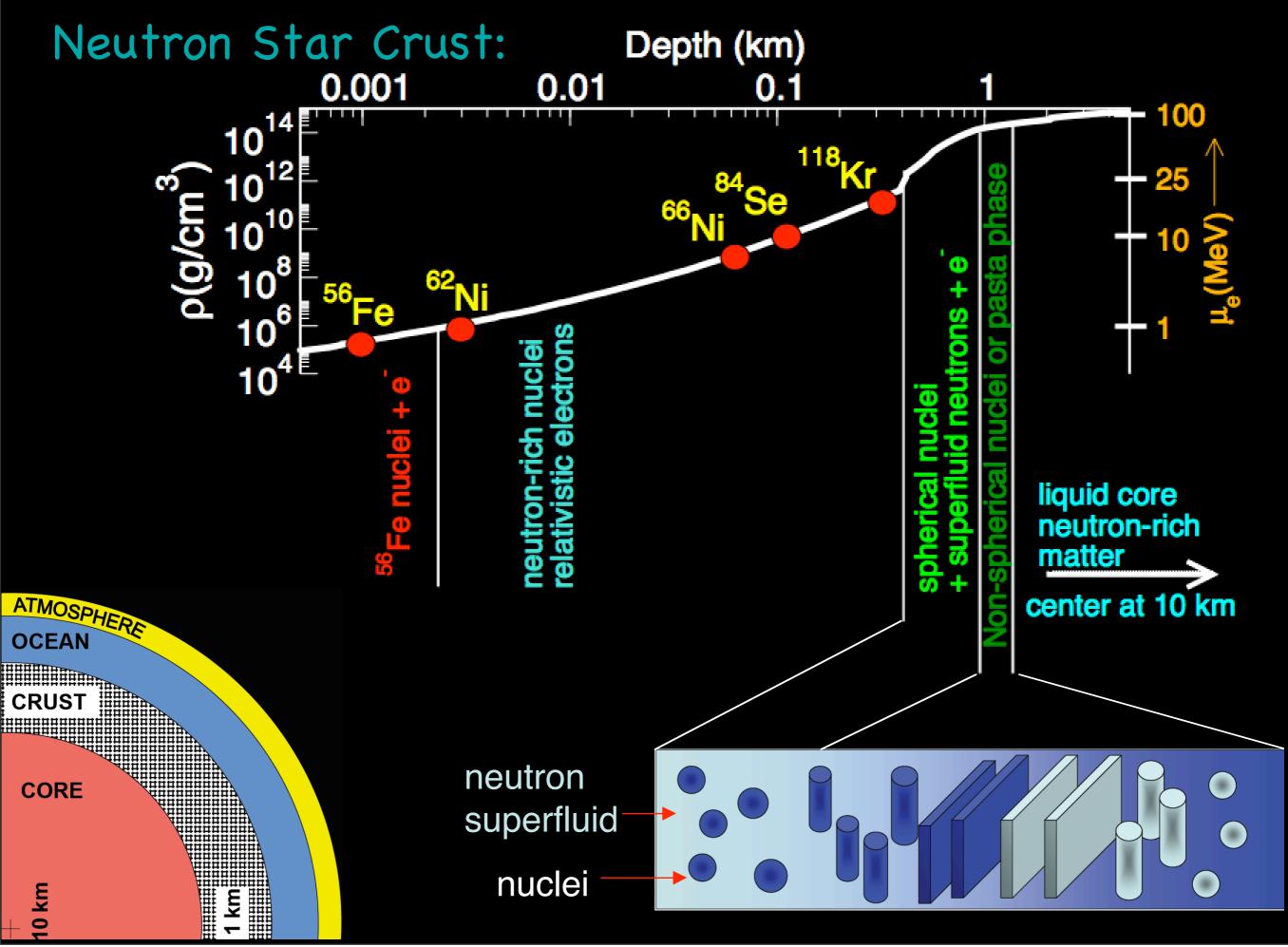
- Long term cooling of isolated neutron stars.
- Thermal profiles of accreting neutron stars.
- Long term cooling of magnetars.
- Early thermal evolution.

Envelope Atmosphere

Temperature gradient in the inner crust plays a role.

Crust

Core



Thermal Conduction in the Crust

Liquid Phase: Electrons & lons
Solid Phase: Electrons & Phonons

- Electronic specific heat is large
- Electron mean free path is small
- Electron momentum is large $k_F > 1/a$
- Phonon specific heat is small
- Phonon mean free path is large
- Phonon momentum is small

Outer Crust:

Electrons or Phonons ?

$$\frac{\kappa_{\rm el}}{\kappa_{\rm lPh}} = \frac{C_{\rm el}}{C_{\rm lPh}} \frac{1}{c} \frac{\lambda_{\rm e}}{\lambda_{\rm lPh}}$$

Typically electrons dominate

- unless there is a large magnetic field.

Magnetic field suppresses transverse conduction

$$\begin{split} \kappa_{\perp} &= \frac{\kappa_{\parallel}}{1 + (\omega_g \ \tau_e)^2} & \omega_g = \frac{eB}{\mu_e} \ \texttt{=Gyrofrequency} \\ \kappa_{\parallel} &= \kappa_{\text{el}}(B = 0) & \tau_{\text{e}} \ \texttt{=Collision time} \end{split}$$

Canuto and Ventura (1977) Uripin & Yakovlev (1980)

Electrons or Phonons ?

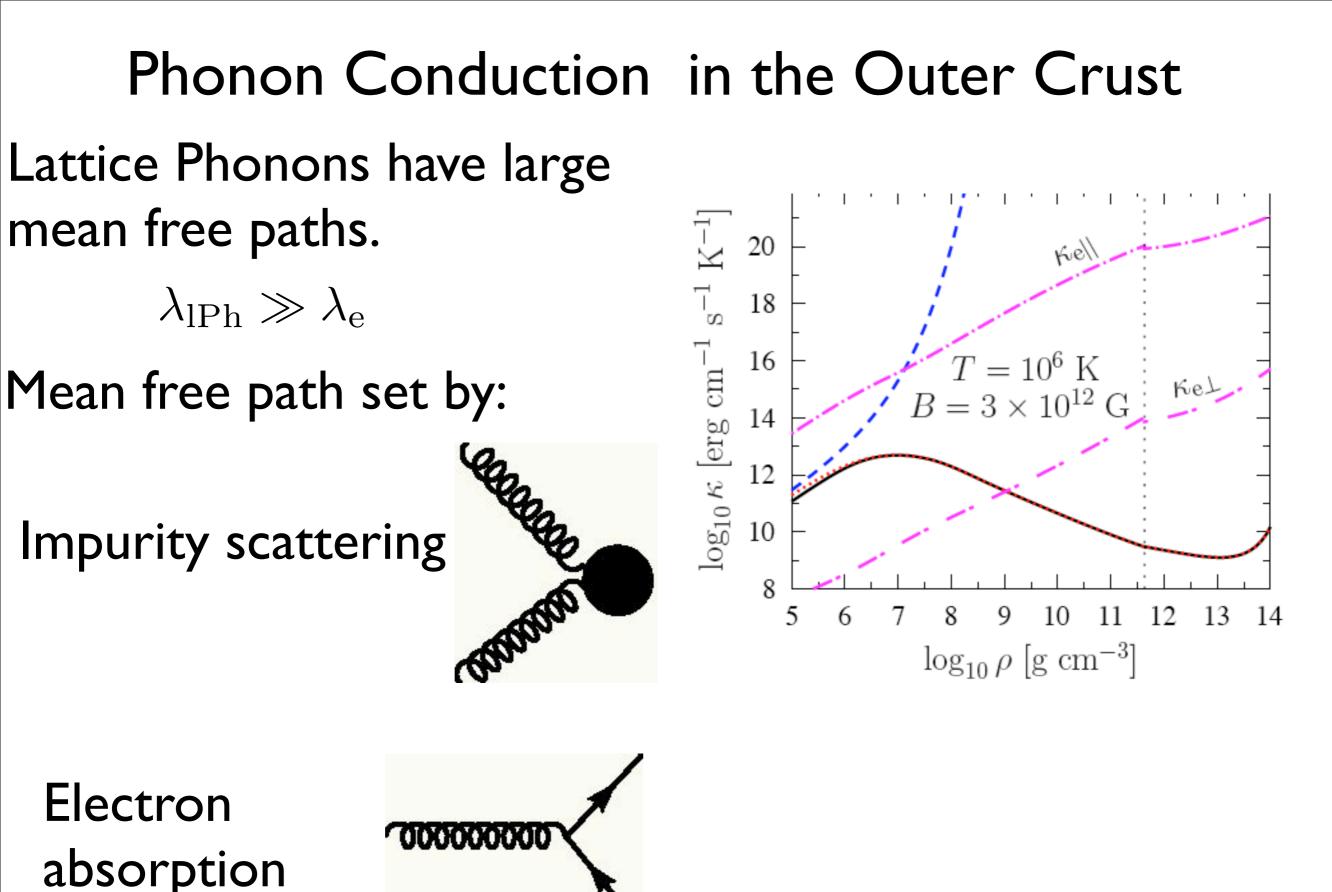
$$\frac{\kappa_{\rm el}}{\kappa_{\rm lPh}} = \frac{C_{\rm el}}{C_{\rm lPh}} \frac{1}{c} \frac{\lambda_{\rm e}}{\lambda_{\rm lPh}} \simeq \frac{\mu_e^2}{T^2} \frac{1}{c} \frac{\lambda_{\rm e}}{\lambda_{\rm lPh}} \gg 1$$

Typically electrons dominate - unless there is a large magnetic field.

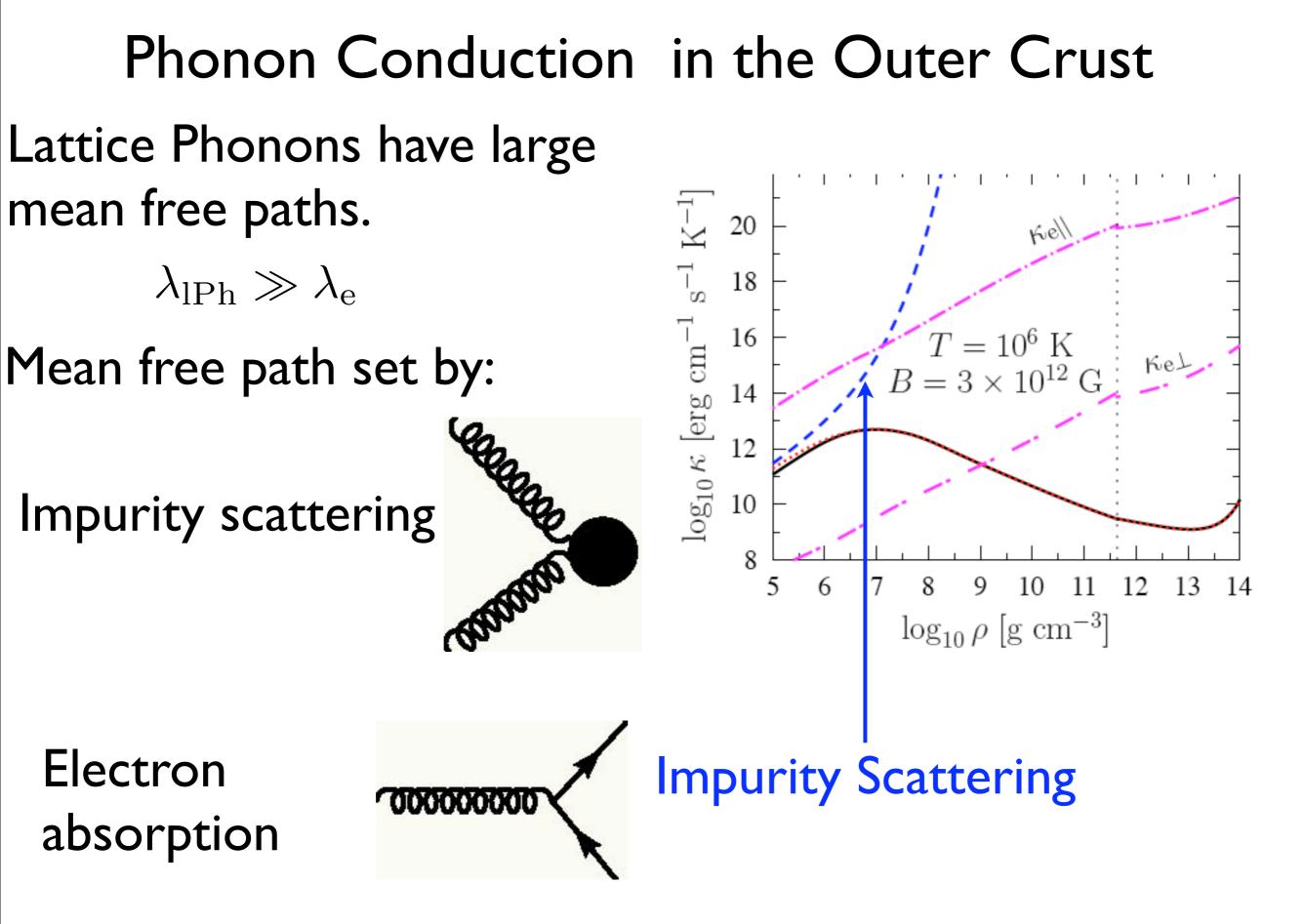
Magnetic field suppresses transverse conduction

$$\begin{split} \kappa_{\perp} &= \frac{\kappa_{\parallel}}{1 + (\omega_g \ \tau_e)^2} & \omega_g = \frac{eB}{\mu_e} \text{ = Gyrofrequency} \\ \kappa_{\parallel} &= \kappa_{el}(B = 0) & \tau_e \text{ = Collision time} \end{split}$$

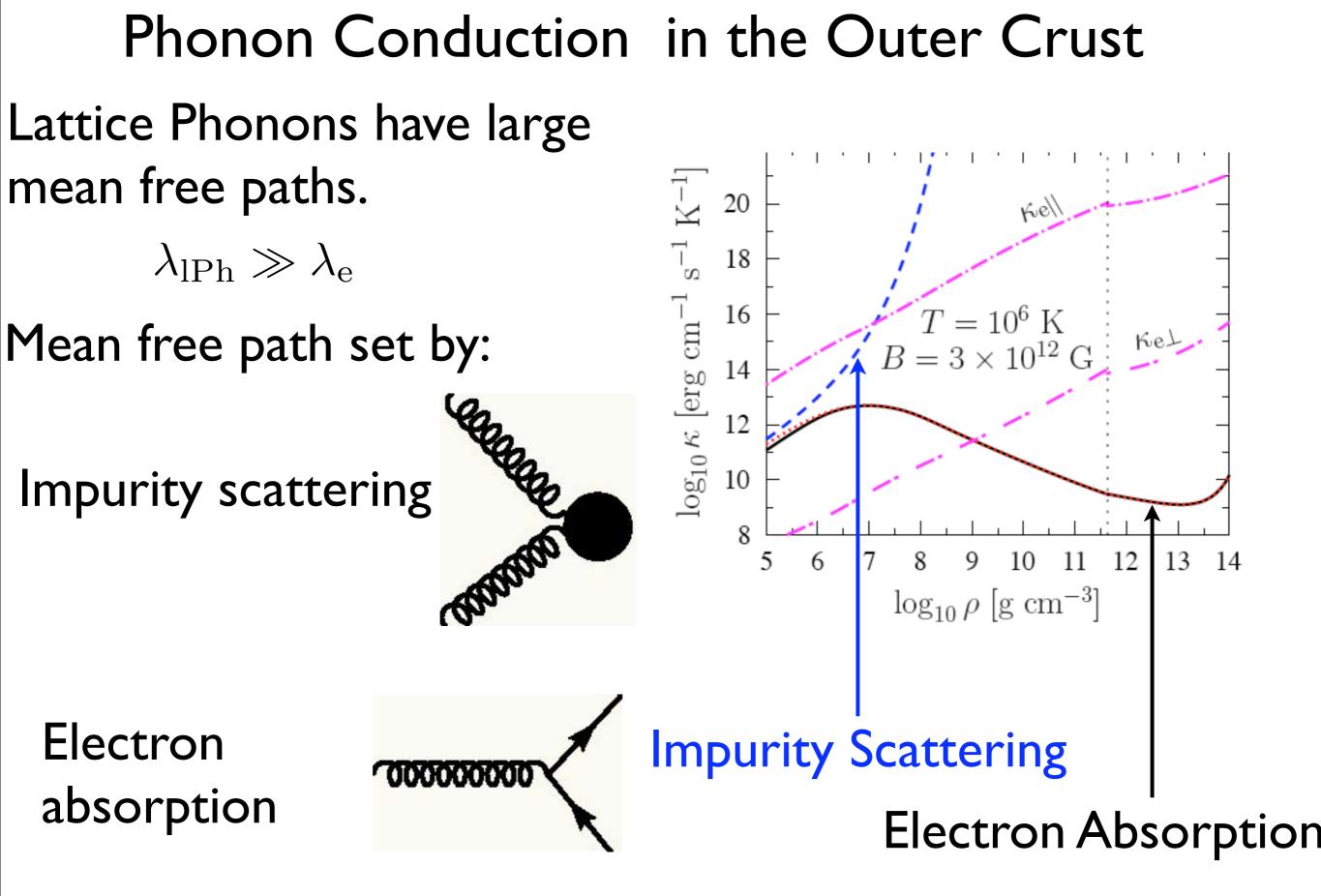
Canuto and Ventura (1977) Uripin & Yakovlev (1980)



Perez-Azorin (2006) Chugunov and Haensel (2007)



Perez-Azorin (2006) Chugunov and Haensel (2007)



Perez-Azorin (2006) Chugunov and Haensel (2007)

Phonon Conduction in Insulators

10.0

5.0

2.0

m-IDEGREE-1

At low temperature phonons have very large mean free path.

Rayleigh scattering off impurities dominates at longwavelength

$$\sigma_{R} = \pi r_{0}^{6} q^{4} \simeq \frac{A}{v^{4}} T^{4}$$

$$\lambda = \frac{1}{n_{I} \sigma_{R}}$$

$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq B \frac{v^{2}}{n_{I} T}$$

Baumann & Pohl (1967) Ziman (1960)

Phonon Conduction in Insulators

10.0

5.0

2.0

om-IDEGREE-I

At low temperature phonons have very large mean free path.

Rayleigh scattering off impurities dominates at longwavelength

$$\sigma_{R} = \pi r_{0}^{6} q^{4} \simeq \frac{A}{v^{4}} T^{4}$$

$$\lambda = \frac{1}{n_{I} \sigma_{R}}$$

$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq B \frac{v^{2}}{n_{I} T}$$

$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq \frac{A}{v^{4}} T^{4}$$

$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq \frac{A}{v^{4}} T^{4}$$

$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq \frac{A}{v^{4}} T^{4}$$

$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq \frac{A}{v^{4}} T^{4}$$

Baumann & Pohl (1967) Ziman (1960)

Rayleigh Scattering

200

Phonon Conduction in Insulators

10.0

5.0

2.0

DEGREE-1

At low temperature phonons have very large mean free path.

Rayleigh scattering off impurities dominates at longwavelength

$$\sigma_{R} = \pi r_{0}^{6} q^{4} \simeq \frac{A}{v^{4}} T^{4}$$

$$\lambda = \frac{1}{n_{I} \sigma_{R}}$$

$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq B \frac{v^{2}}{n_{I} T}$$

$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq C B \frac{v^{2}}{n_{I} T}$$

$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq C B \frac{v^{2}}{n_{I} T}$$

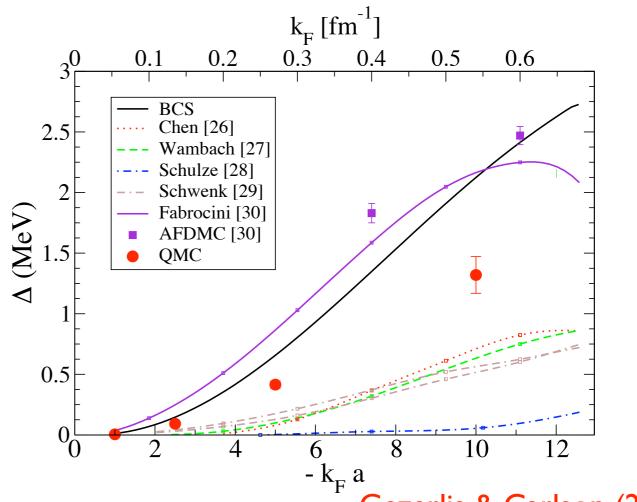
$$\kappa \simeq \frac{1}{3} C_{V} v \lambda \simeq C B \frac{v^{2}}{n_{I} T}$$

Baumann & Pohl (1967) Ziman (1960)

Rayleigh Scattering

Heat Transport in the Inner Crust

Neutron matter in the crust is superfluid.
Neutron particle-hole excitations are gapped



Gezerlis & Carlson (2008)

Low energy degrees of freedom: I.Electrons 2.Lattice Phonons (I long. + 2 Trans.) 3.Superfluid Phonons

Pairing in neutron matter

Attractive interactions destabilize the Fermi surface:

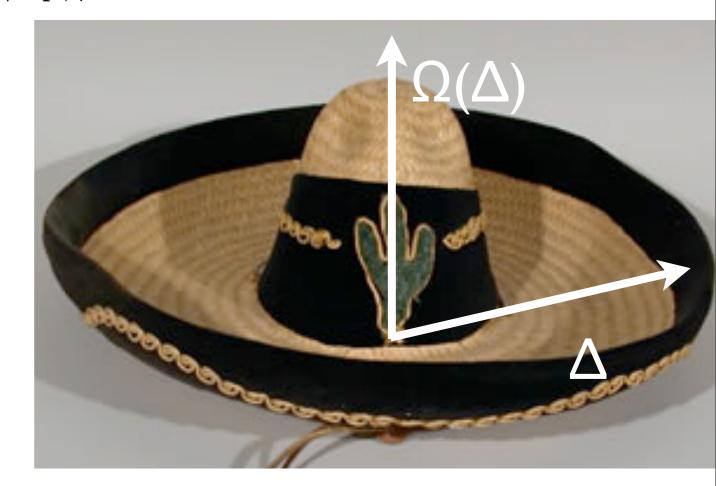
$$H = \sum_{k,s=\uparrow,\downarrow} \left(\frac{k^2}{2m} - \mu\right) a_{k,s}^{\dagger} a_{k,s} + g \sum_{k,p,q,s=\uparrow,\downarrow} a_{k+q,s}^{\dagger} a_{p-q,s}^{\dagger} a_{k,s} a_{p,s}$$
$$\Delta = g \langle a_{k,\uparrow} a_{p,\downarrow} \rangle \quad \Delta^* = g \langle a_{k,\uparrow}^{\dagger} a_{p,\downarrow}^{\dagger} \rangle$$

Cooper pairs leads to superfluidity

Energy gap for fermions:

$$E(p) = \sqrt{\left(\frac{p^2}{2M} - \mu\right)^2 + \Delta^2}$$

New collective mode: Superfluid Phonon



 $\omega(k) = v_s \ k$

Superfluidity in the Crust Enhances Heat Conduction:

$$\kappa_{\rm sPh} = 1.5 \times 10^{22} \left(\frac{T}{10^8 \text{ K}}\right)^3 \left(\frac{0.1}{v_s}\right)^2 \left(\frac{\lambda_{\rm sPh}}{\rm cm}\right) \frac{\rm erg}{\rm cm \ s \ K}$$

Conventional Wisdom: Electrons dominate conduction

At neutron drip and T=10⁸ K
$$\kappa_e \simeq 10^{18} \frac{\text{crgs}}{\text{cm s K}}$$

Droc

Superfluidity in the Crust Enhances Heat Conduction:

$$\kappa_{\rm sPh} = 1.5 \times 10^{22} \left(\frac{T}{10^8 \text{ K}}\right)^3 \left(\frac{0.1}{v_s}\right)^2 \left(\frac{\lambda_{\rm sPh}}{\rm cm}\right) \frac{\rm erg}{\rm cm \ s \ K}$$

Conventional Wisdom: Electrons dominate conduction

At neutron drip and T=10⁸ K
$$\kappa_e \simeq 10^{18} \frac{\text{ergs}}{\text{cm s K}}$$

At B = 10¹⁴ G $\kappa_e^{\perp} \simeq 10^{16} \frac{\text{ergs}}{\text{cm s K}}$

Superfluidity in the Crust Enhances Heat Conduction:

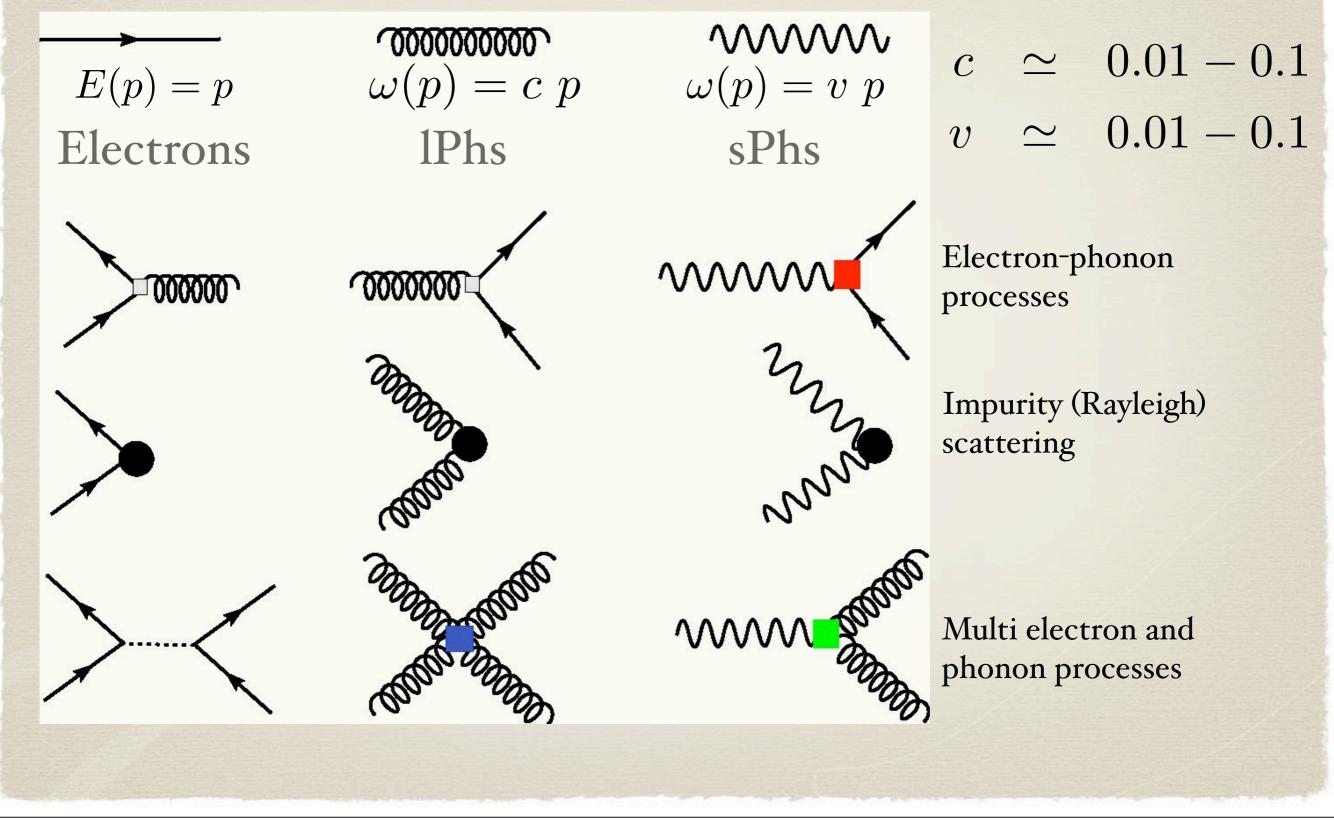
$$\kappa_{\rm sPh} = 1.5 \times 10^{22} \left(\frac{T}{10^8 \text{ K}}\right)^3 \left(\frac{0.1}{v_s}\right)^2 \left(\frac{\lambda_{\rm sPh}}{\rm cm}\right) \frac{\rm erg}{\rm cm \ s \ K}$$

Conventional Wisdom: Electrons dominate conduction

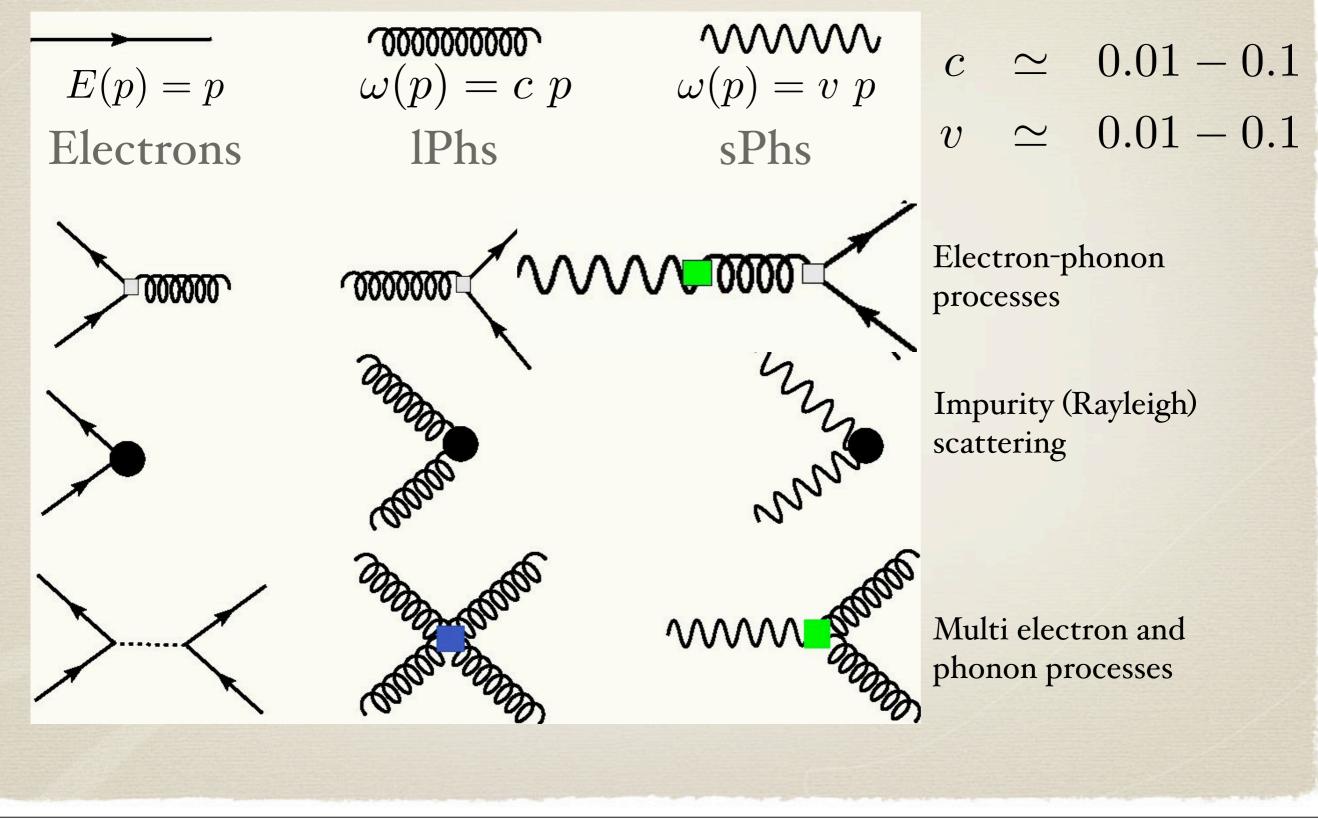
At neutron drip and T=10⁸ K
$$\kappa_e \simeq 10^{18} \frac{\text{ergs}}{\text{cm s K}}$$

At B = 10¹⁴ G $\kappa_e^{\perp} \simeq 10^{16} \frac{\text{ergs}}{\text{cm s K}}$

Microscopic Processes in the Crust



Microscopic Processes in the Crust



Elastic process

Rayleigh Scattering $\sigma_R = \pi r_0^2 \left(\frac{q^4 r_0^4}{1 + q^4 r_0^4} \right)$ r_o =Typical nuclear radii
q = sPh momentum $q r_0 \simeq 10^{-3} \left(\frac{T}{10^7 \text{K}} \right) \ll 1$

Scattering dominated $\lambda_{R} = \frac{1}{n_{I} \sigma_{R}} = \frac{v_{s}^{4}}{81 \pi n_{I} r_{0}^{6} T^{4}}$ by impurities:

Very large mean free path!

$$\lambda_{\text{Ray}} = 450 \ \left(\frac{v_s}{0.1}\right)^4 \left(\frac{x}{10}\right)^3 \left(\frac{10 \text{ fm}}{r_0}\right)^3 \ T_7^{-4} \text{ cm}$$

If only impurity scattering is relevant: $\kappa_{sPh}(T = 10^8 \text{K}) \simeq 10^{21} \frac{\text{ergs}}{\text{cm s K}}$

$$\mathcal{L}_{\rm EFT}^{\rm sPh} = \frac{1}{2} (\partial_o \phi)^2 + \frac{1}{2} v (\partial_i \phi)^2 + \frac{1}{f_s} \partial_o \phi \psi^{\dagger} \psi + \frac{1}{\Lambda_s^2} (\partial_o \phi)^3 + \cdots$$
$$\mathcal{L}_{\rm EFT}^{\rm lPh} = \frac{1}{2} (\partial_o \xi)^2 + \frac{1}{2} c (\partial_i \xi_i)^2 + \frac{1}{f_l} \partial_i \xi^i \psi^{\dagger} \psi + \frac{1}{\Lambda_l^2} (\partial_i \xi^i)^3 + \cdots$$

$$\mathcal{L}_{\rm EFT}^{\rm sPh} = \frac{1}{2} (\partial_o \phi)^2 + \frac{1}{2} v (\partial_i \phi)^2 + \frac{1}{f_s} \partial_o \phi \psi^{\dagger} \psi + \frac{1}{\Lambda_s^2} (\partial_o \phi)^3 + \cdots$$
$$\mathcal{L}_{\rm EFT}^{\rm lPh} = \frac{1}{2} (\partial_o \xi)^2 + \frac{1}{2} c (\partial_i \xi_i)^2 + \frac{1}{f_l} \partial_i \xi^i \psi^{\dagger} \psi + \frac{1}{\Lambda_l^2} (\partial_i \xi^i)^3 + \cdots$$
$$\bigwedge_{\text{kinetic terms}} \uparrow_{\text{coupling to}} f_{\text{Fermions}}$$

Fetter & Walecka

$$\mathcal{H}_{el-Ion} = \int d^3x \int d^3y \ V(x-y) \ \psi^{\dagger}(x)\psi(x) \left[\Psi^{\dagger}(y)\Psi(y) \right]$$
$$V(x-y) = \frac{4\pi \ Z \ e^2}{q_{TF}^2} \ \delta(x-y) \quad \text{for } q \ll q_{TF}$$
$$\Psi^{\dagger}(y)\Psi(y) = n_{Ion} + \delta\rho(y)$$

Fetter & Walecka

$$\mathcal{H}_{\text{el-Ion}} = \int d^3x \int d^3y \ V(x-y) \ \psi^{\dagger}(x)\psi(x) \underbrace{\Psi^{\dagger}(y)\Psi(y)}_{V(x-y)} = \frac{4\pi \ Z \ e^2}{q_{\text{TF}}^2} \ \delta(x-y) \quad \text{for } q \ll q_{\text{TF}}$$

$$\Psi^{\dagger}(y)\Psi(y) = n_{\text{Ion}} + \delta\rho(y)$$

Fluctuation in density due to displacement $\vec{d(y)}$

$$\delta \rho(y) = -n_{\mathrm{Ion}} \, \nabla \cdot \vec{d}(y) + \cdots$$

Fetter & Walecka

$$\mathcal{H}_{\text{el-Ion}} = \int d^3x \int d^3y \ V(x-y) \ \psi^{\dagger}(x)\psi(x) \underbrace{\Psi^{\dagger}(y)\Psi(y)}_{4-\sqrt{2}}$$

$$V(x - y) = \frac{4\pi \ Z \ e^2}{q_{\rm TF}^2} \ \delta(x - y) \quad \text{for } q \ll q_{\rm TF}$$
$$\Psi^{\dagger}(y)\Psi(y) = n_{\rm Ion} + \delta\rho(y)$$

Fluctuation in density due to displacement $\vec{d}(y)$

$$\delta \rho(y) = -n_{\text{Ion}} \nabla \cdot \vec{d}(y) + \cdots$$
$$\vec{d}(y) = \frac{1}{\sqrt{n_{\text{Ion}} AM}} \underbrace{\vec{\xi}(x)}_{\text{Ion}} \underbrace{\text{Canonically normalized}}_{\text{lattice phonon field}}$$

Fetter & Walecka

$$\mathcal{H}_{\text{el-Ion}} = \int d^3x \int d^3y \ V(x-y) \ \psi^{\dagger}(x)\psi(x) \left[\Psi^{\dagger}(y)\Psi(y) \right]$$

$$V(x - y) = \frac{4\pi \ Z \ e^2}{q_{\rm TF}^2} \ \delta(x - y) \quad \text{for } q \ll q_{\rm TF}$$
$$\Psi^{\dagger}(y)\Psi(y) = n_{\rm Ion} + \delta\rho(y)$$

Fluctuation in density due to displacement $\vec{d}(y)$

$$\delta \rho(y) = -n_{\text{Ion}} \nabla \cdot \vec{d}(y) + \cdots$$

$$\vec{d}(y) = \frac{1}{\sqrt{n_{\text{Ion}} AM}} \vec{\xi}(x) \leftarrow \text{Canonically normalized} \\ \text{lattice phonon field} \\ \mathcal{H}_{\text{el-lPh}} = \underbrace{\frac{4\pi Z e^2}{q_{\text{TF}}^2} \frac{n_{\text{Ion}}}{\sqrt{n_{\text{Ion}} AM}}}_{\sqrt{n_{\text{Ion}} AM}} \int d^3x \ \psi^{\dagger}(x)\psi(x) \ \nabla \cdot \vec{\xi}(x)$$

Electron-Phonon Coupling

Fetter & Walecka

$$\mathcal{H}_{\text{el-Ion}} = \int d^3x \int d^3y \ V(x-y) \ \psi^{\dagger}(x)\psi(x) \left[\Psi^{\dagger}(y)\Psi(y) \right]$$

$$V(x - y) = \frac{4\pi \ Z \ e^2}{q_{\rm TF}^2} \ \delta(x - y) \quad \text{for } q \ll q_{\rm TF}$$
$$\Psi^{\dagger}(y)\Psi(y) = n_{\rm Ion} + \delta\rho(y)$$

Fluctuation in density due to displacement $\vec{d}(y)$

$$\delta \rho(y) = -n_{\text{Ion}} \nabla \cdot \vec{d}(y) + \cdots$$

$$\vec{d}(y) = \frac{1}{\sqrt{n_{\text{Ion}} AM}} \vec{\xi}(x) \leftarrow \text{Canonically normalized} \\ \text{Lettice phonon field} \\ \mathcal{H}_{\text{el-lPh}} = \underbrace{\frac{4\pi Z e^2}{q_{\text{TF}}^2} \frac{n_{\text{Ion}}}{\sqrt{n_{\text{Ion}} AM}}}_{\vec{q}_{\text{TF}}} \int d^3x \ \psi^{\dagger}(x)\psi(x) \ \nabla \cdot \vec{\xi}(x) \\ \mathcal{H}_{\text{el-lPh}} = \underbrace{\frac{1}{f_{\text{el-ph}}}} \int d^3x \ \psi^{\dagger}(x)\psi(x) \ \nabla \cdot \vec{\xi}(x)$$

Neutron-IPh Interaction

$$\mathcal{H}_{n-Ion} = \int d^3x \int d^3y \ V_{n-A}(x-y) \ \psi_n^{\dagger}(x)\psi_n(x) \ \Psi^{\dagger}(y)\Psi(y)$$

$$V_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)$$

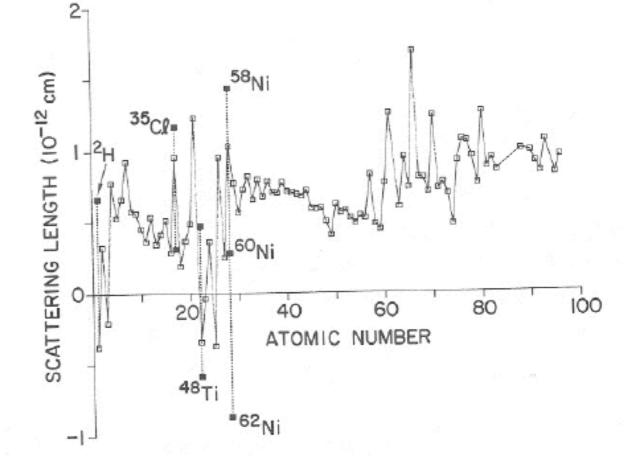
Low-energy neutron-nucleus potential (Fermi Potential)

Neutron-IPh Interaction

$$\mathcal{H}_{n-Ion} = \int d^3x \int d^3y \ V_{n-A}(x-y) \ \psi_n^{\dagger}(x)\psi_n(x) \ \Psi^{\dagger}(y)\Psi(y)$$

$$V_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)$$

Low-energy neutron-nucleus potential (Fermi Potential)

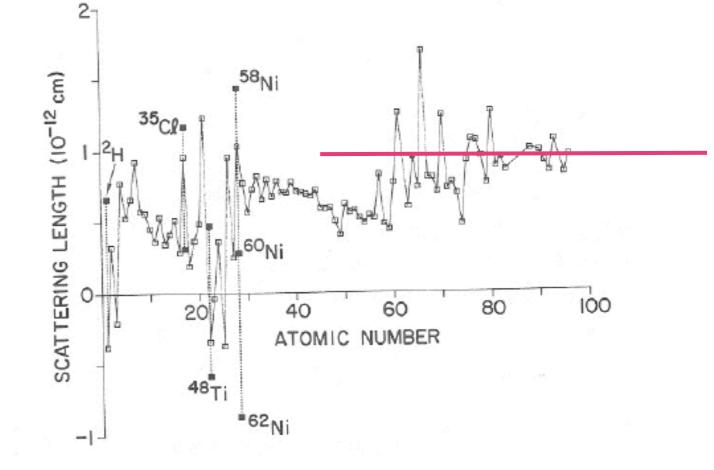


Neutron-IPh Interaction

$$\mathcal{H}_{n-Ion} = \int d^3x \int d^3y \ V_{n-A}(x-y) \ \psi_n^{\dagger}(x)\psi_n(x) \ \Psi^{\dagger}(y)\Psi(y)$$

$$V_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)$$

Low-energy neutron-nucleus potential (Fermi Potential)



Neutron-IPh Interaction

$$\mathcal{H}_{n-Ion} = \int d^3x \int d^3y \ V_{n-A}(x-y) \ \psi_n^{\dagger}(x)\psi_n(x) \ \Psi^{\dagger}(y)\Psi(y)$$

$$\boxed{V_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)}_{\text{Low-energy neutron-nucleus}}$$

$$\boxed{U_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)}_{\text{Low-energy neutron-nucleus}}$$

$$\boxed{U_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)}_{\text{Low-energy neutron-nucleus}}$$

$$\boxed{U_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)}_{\text{Low-energy neutron-nucleus}}$$

$$\boxed{U_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)}_{\text{Low-energy neutron-nucleus}}$$

$$\boxed{U_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)}_{\text{Low-energy neutron-nucleus}}$$

$$\underbrace{U_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)}_{\text{Low-energy neutron-nucleus}}$$

$$\underbrace{U_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)}_{\text{Low-energy neutron-nucleus}}$$

$$\underbrace{U_{n-A} = \frac{2\pi \ a_{n-A}}{A \ M} \ \delta^3(x)}_{\text{Low-energy neutron-nucleus}}$$

sPh-IPh Interactions

$$\mathcal{L}_{\rm sPh-lPh} = g_{\rm mix} \ \partial_o \phi \ \partial_i \xi_i + \frac{g_{\rm mix}}{\Lambda^2} \ \partial_o \phi \ \partial_i \xi^i \partial_i \xi^i + \cdots$$

"Integrate-out" neutron and ion degree of freedom

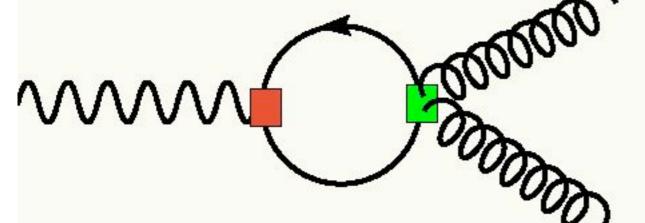
$$g_{\text{mix}} = 2a_{n-\text{Ion}} \sqrt{\frac{n_{\text{Ion}} k_{\text{Fn}}}{A M^2}}$$
$$\Lambda^2 = \sqrt{n_{\text{Ion}} A M}$$

sPh-IPh Interactions

$$\mathcal{L}_{\rm sPh-lPh} = g_{\rm mix} \ \partial_o \phi \ \partial_i \xi_i + \frac{g_{\rm mix}}{\Lambda^2} \ \partial_o \phi \ \partial_i \xi^i \partial_i \xi^i + \cdots$$

"Integrate-out" neutron and ion degree of freedom

$$g_{\text{mix}} = 2a_{\text{n-Ion}} \sqrt{\frac{n_{\text{Ion}} k_{\text{Fn}}}{A M^2}}$$
$$\Lambda^2 = \sqrt{n_{\text{Ion}} A M}$$



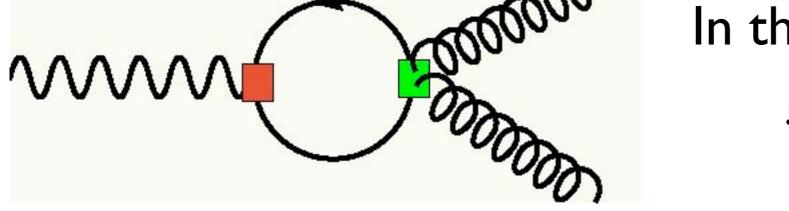
In the neutron star crust: $g_{\rm mix} \simeq 10^{-3}$ $\Lambda \simeq 50 {\rm MeV}$

sPh-IPh Interactions

$$\mathcal{L}_{\rm sPh-lPh} = g_{\rm mix} \ \partial_o \phi \ \partial_i \xi_i + \frac{g_{\rm mix}}{\Lambda^2} \ \partial_o \phi \ \partial_i \xi^i \partial_i \xi^i + \cdots$$

"Integrate-out" neutron and ion degree of freedom

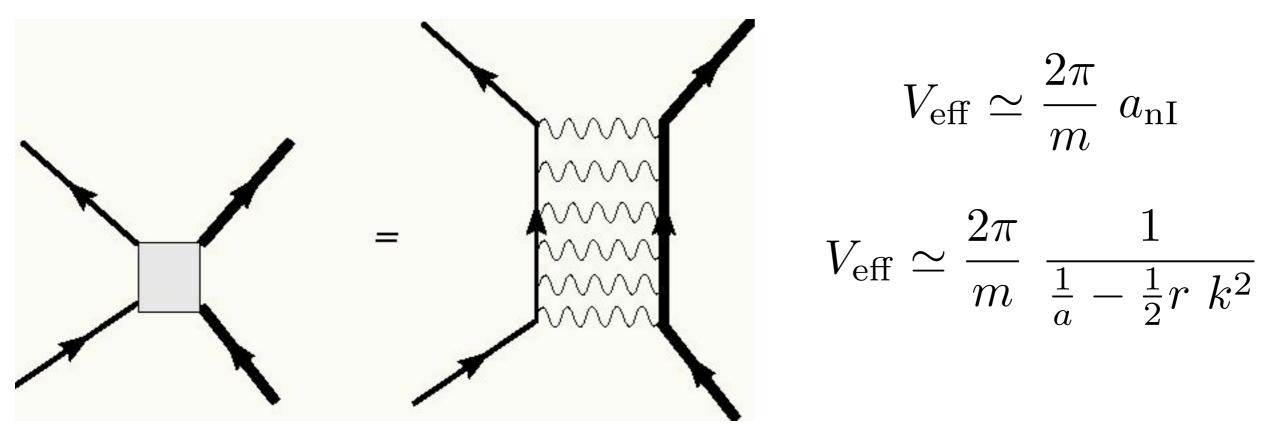
$$g_{\text{mix}} = 2a_{\text{n-Ion}} \sqrt{\frac{n_{\text{Ion}} k_{\text{Fn}}}{A M^2}}$$
$$\Lambda^2 = \sqrt{n_{\text{Ion}} A M}$$
In the neutron star crust:



In the neutron star crust: $g_{\rm mix} \simeq 10^{-3}$ $\Lambda \simeq 50 \,{
m MeV}$

This is a systematic expansion (EFT)

Neutron-Nucleus Interaction



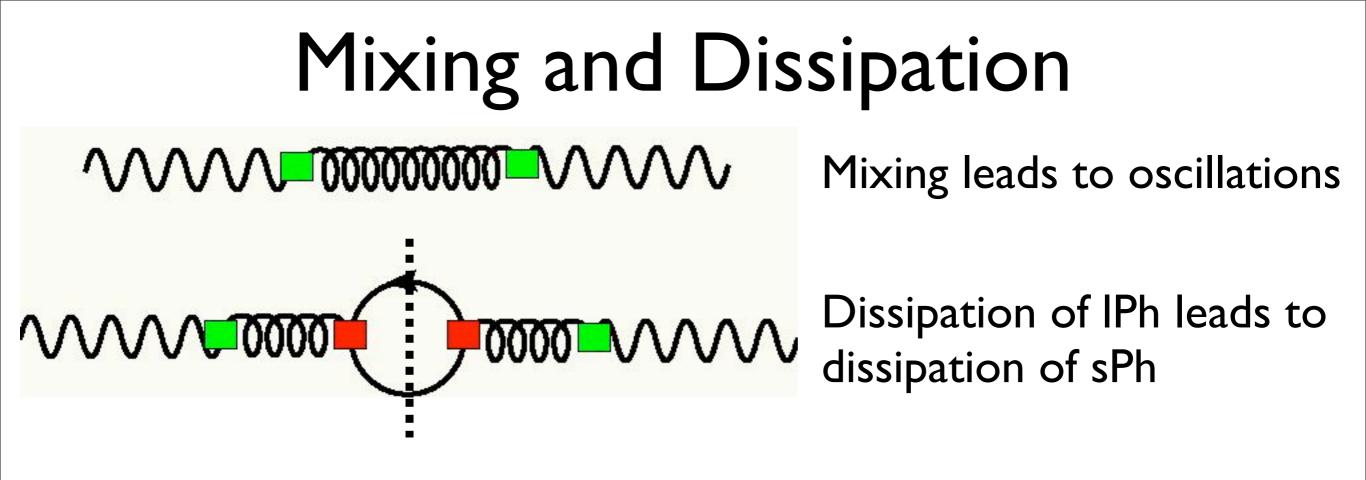
In medium Pauli blocking and effective range corrections can suppress the interaction.

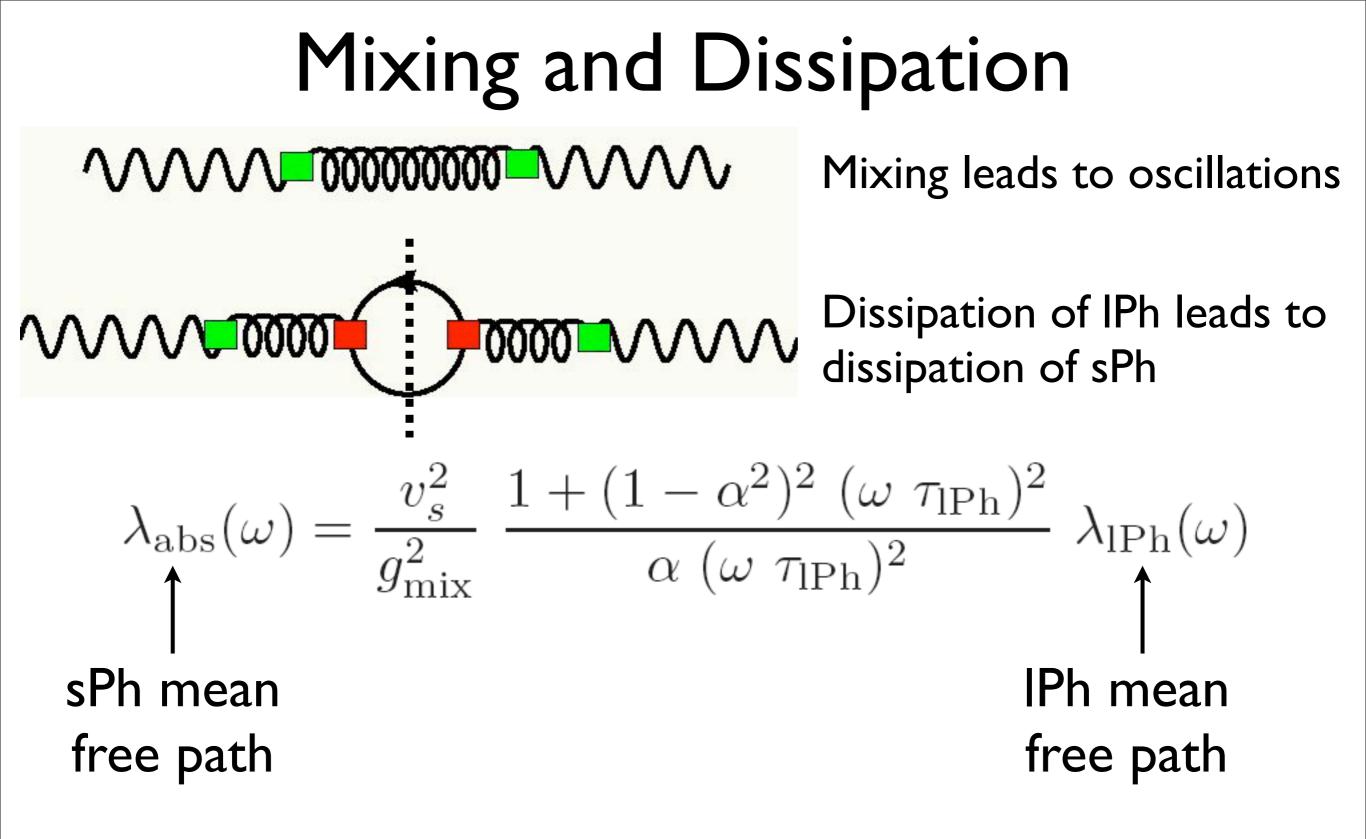
$$V_{\text{eff}} \simeq \frac{2\pi}{m} \frac{1}{\frac{1}{a} - A k_F - B r k_F^2}$$

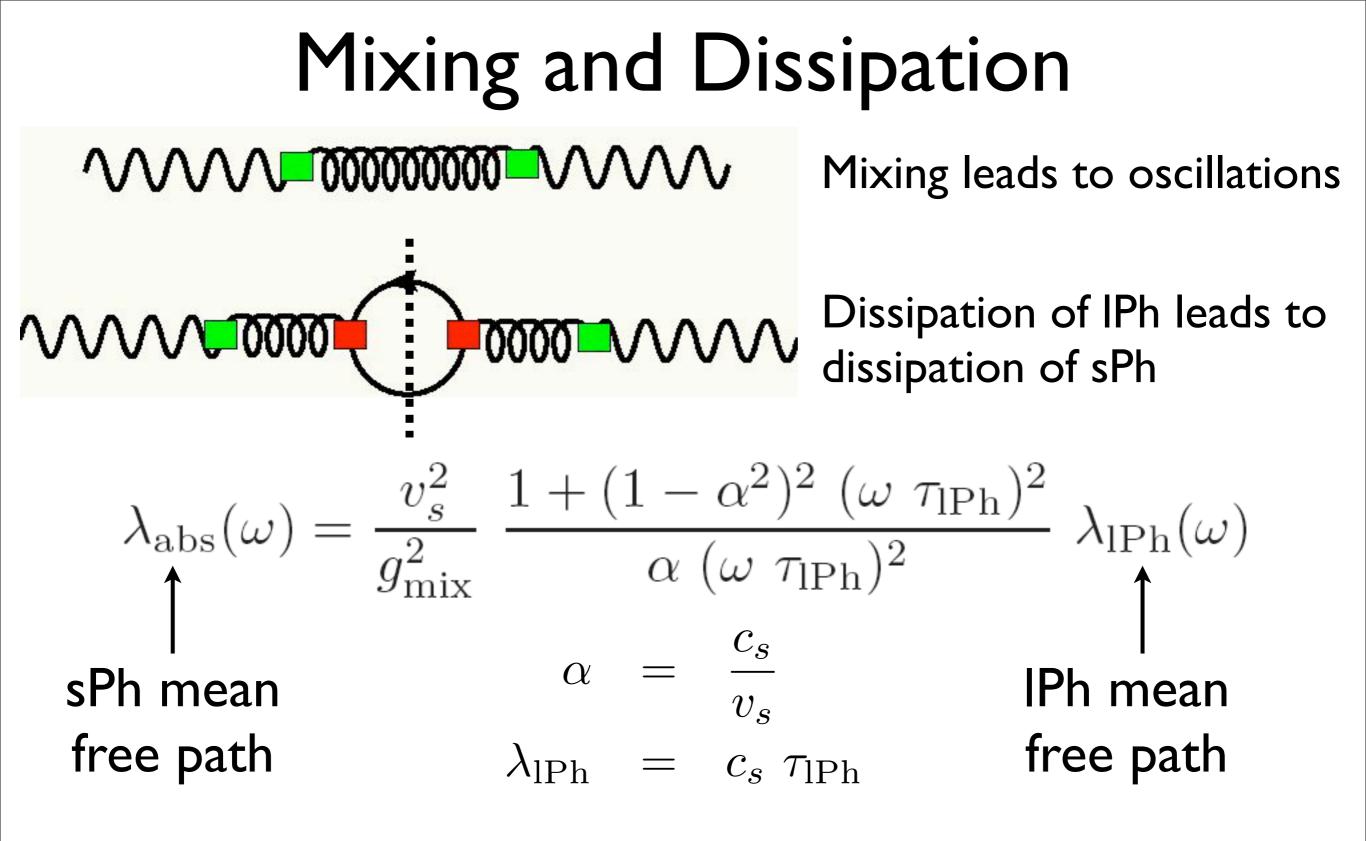
Mixing and Dissipation

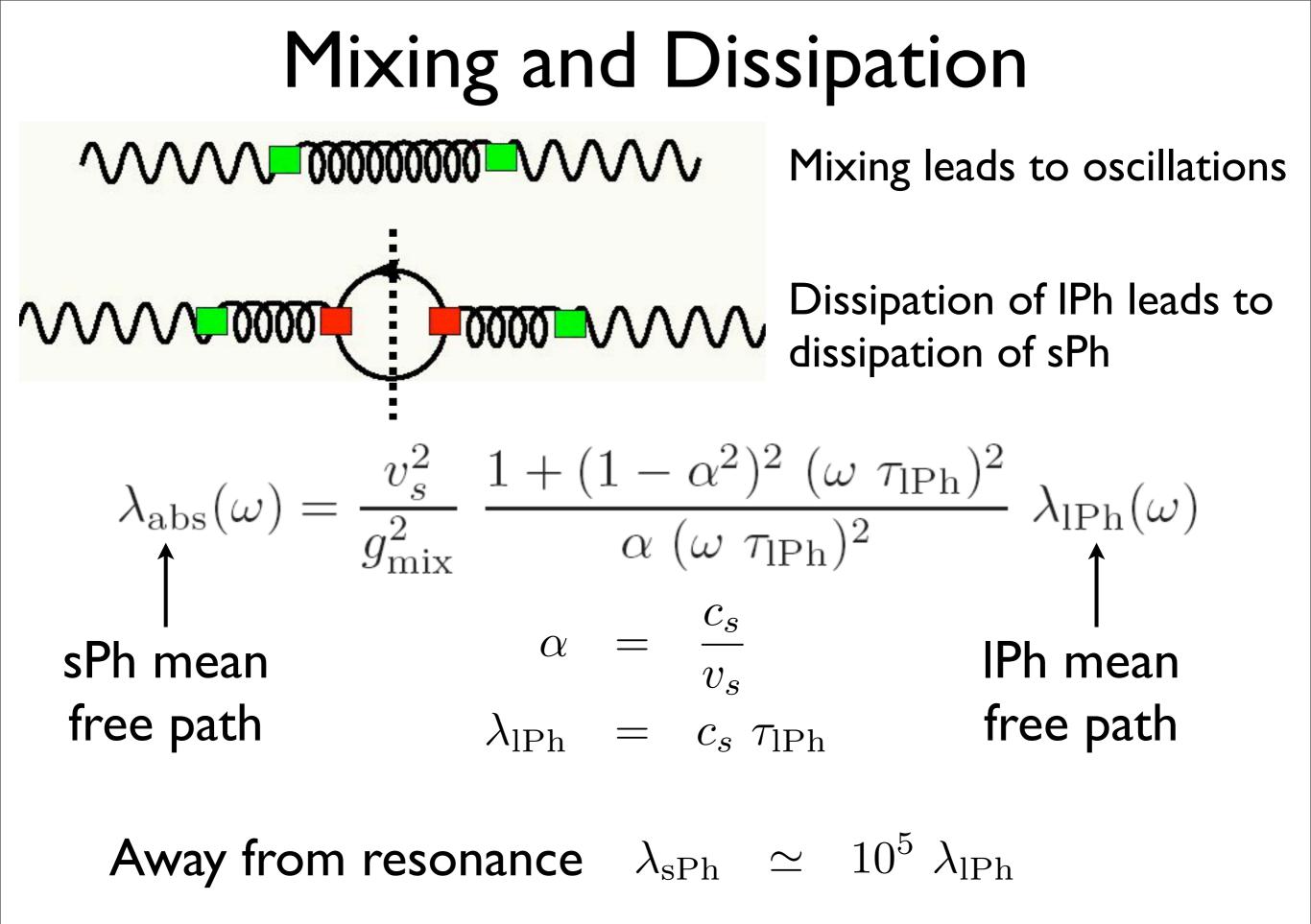
Mixing leads to oscillations

Dissipation of IPh leads to dissipation of sPh

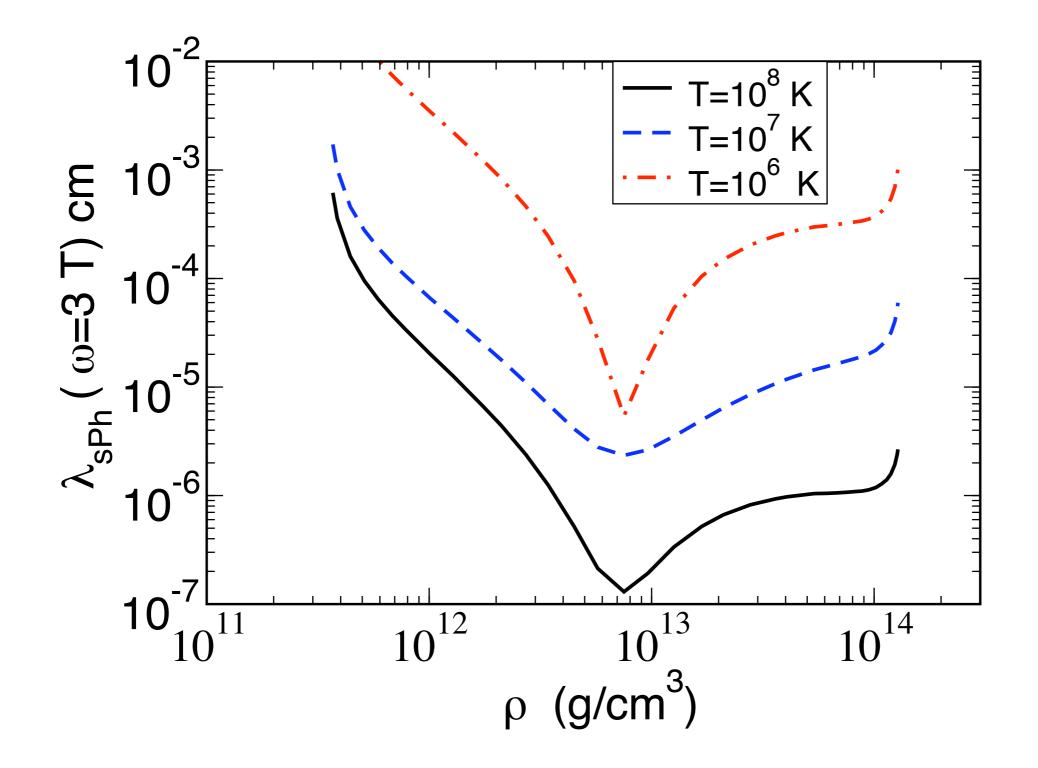




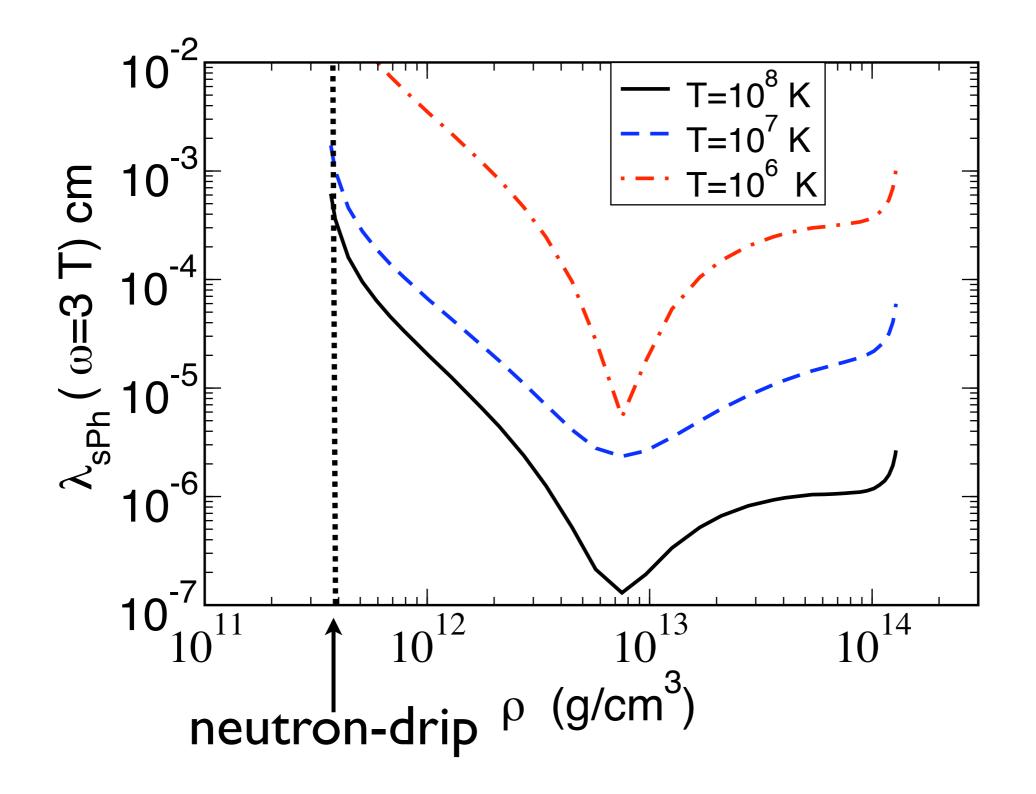




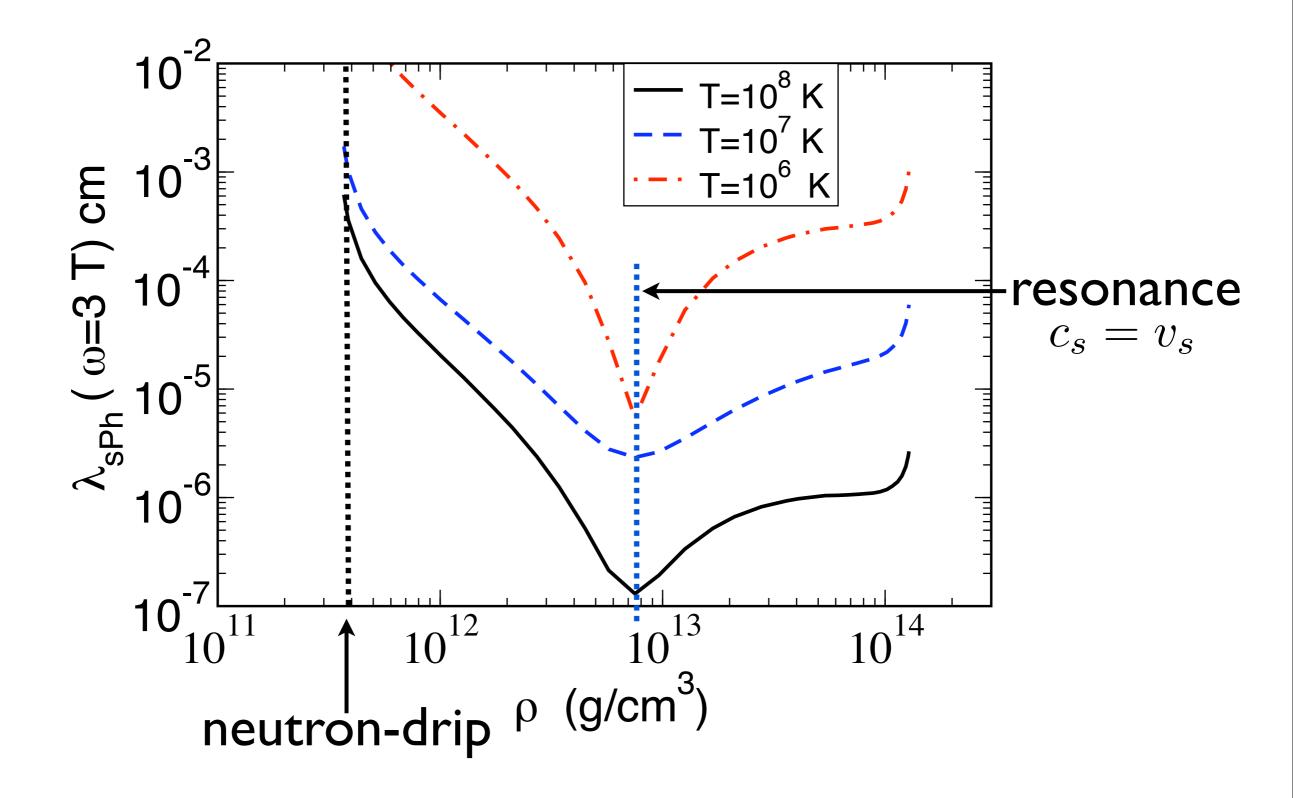
Superfluid Phonon Mean Free Path



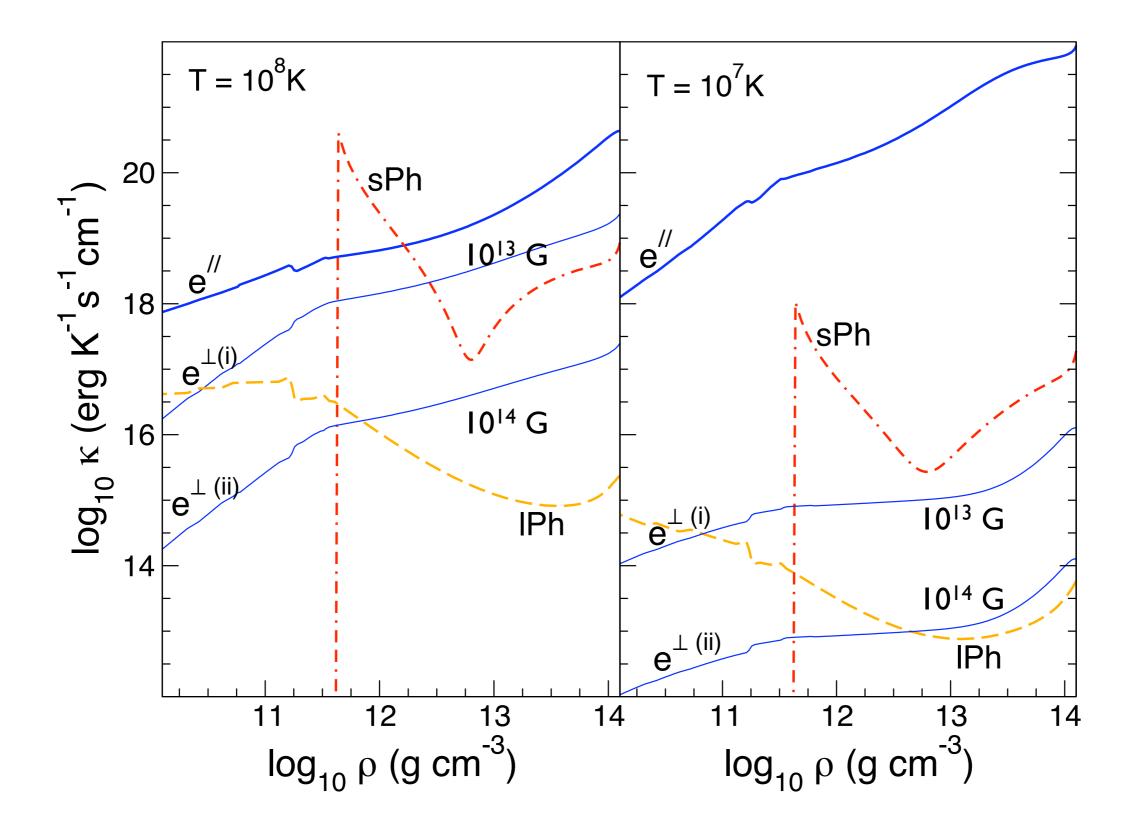
Superfluid Phonon Mean Free Path

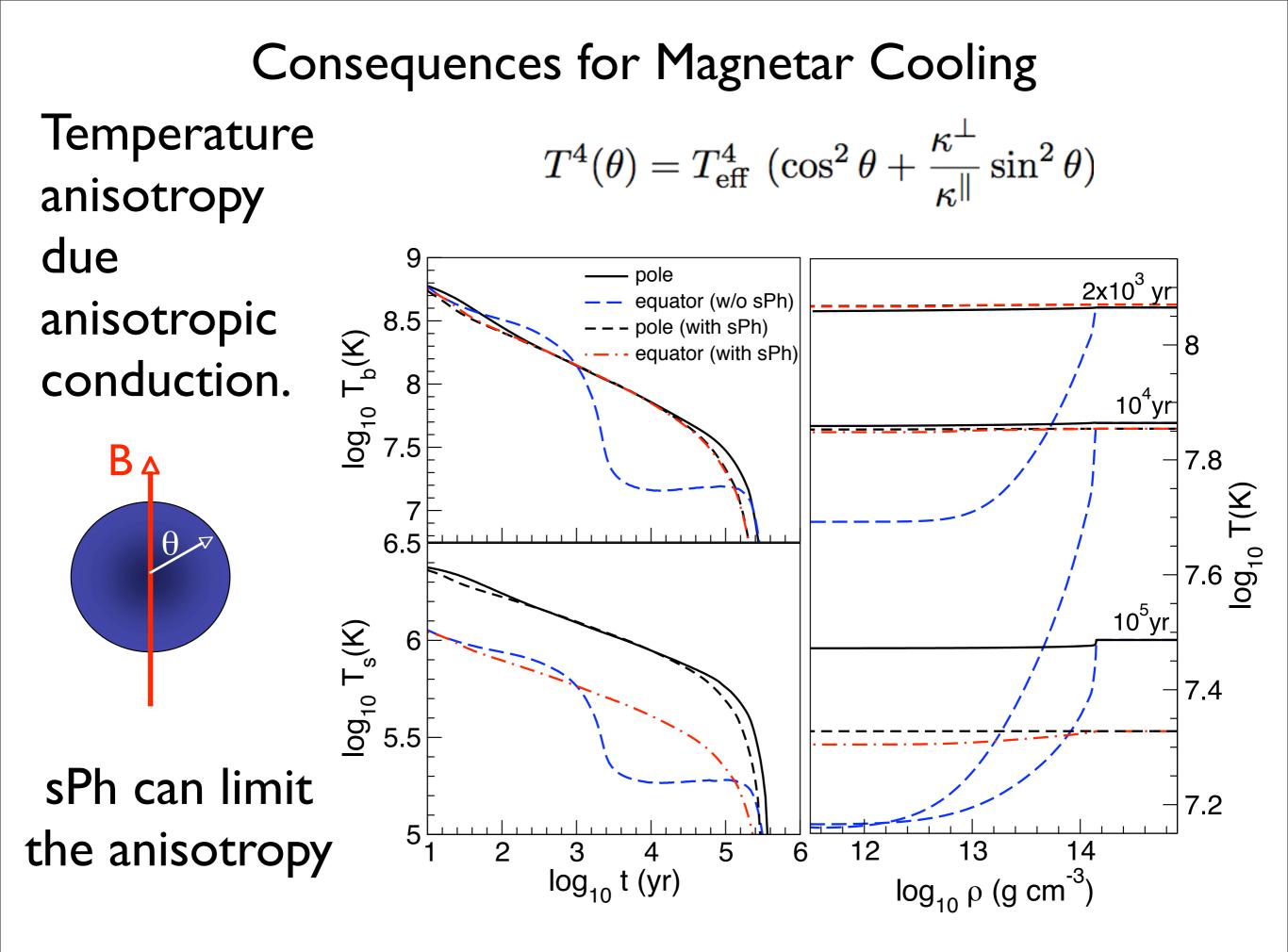


Superfluid Phonon Mean Free Path

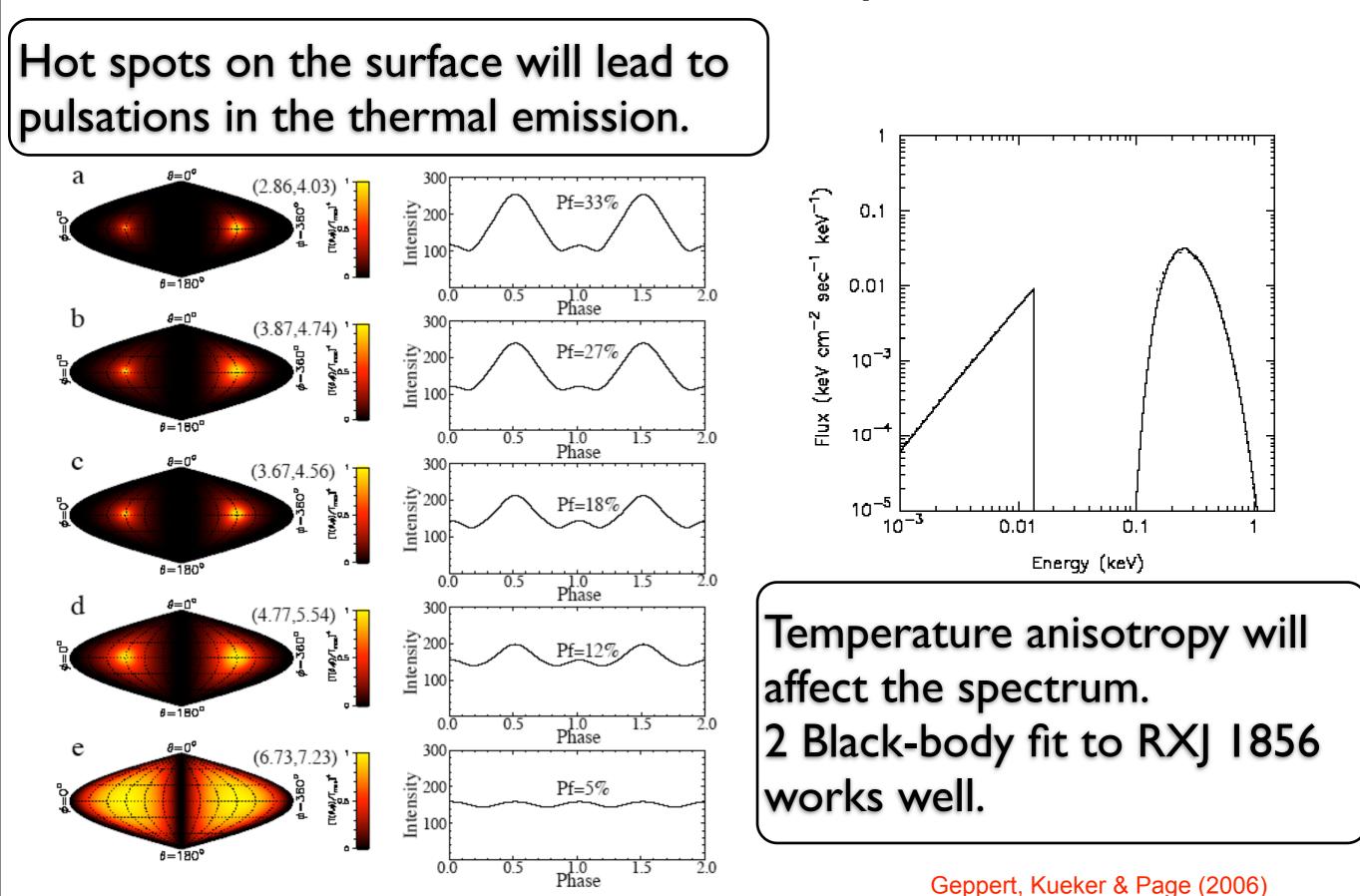


Thermal Conductivity





Observational Consequences



Conclusions

- New mode for heat conduction in the inner crust.
- Low energy EFT for sPhs, IPhs and electrons.
- sPh conduction is likely to be important for thermal evolution of magnetars.
- Could also play a role in accreting neutron stars and first 100 years of NS evolution.

Electron Scattering and the
Dynamic Structure Factor

$$\frac{1}{\lambda_{e}} = \nu_{e} = \frac{4\pi Z^{2} e^{4} n_{\text{ions}}}{k_{Fe}^{2} v_{Fe}} \Lambda_{\kappa}$$

$$\Lambda_{\kappa} = \int_{0}^{2k_{\text{Fe}}} dq \ q^{3} \ V_{\text{eff}}(q)^{2} \ S_{\kappa}(q) \left[1 - \frac{v_{\text{Fe}}^{2}q^{2}}{4k_{\text{Fe}}^{2}}\right]$$
Flowers & Itoh (1976)
Yakovlev & Urpin (1980)
Potekhin et al. (1999)

$$\Lambda_{\kappa} = \int d\omega \ S(q, \omega) \left[\frac{z + f(q) \ z^{3}}{1 - e^{-z}}\right] \qquad z = \frac{\omega}{T}$$
Dynamic Structure Factor

$$S(q, \omega) = \int dt \ e^{i\omega t} \ \langle \rho(q, t)\rho(-q, 0) \rangle$$

Potekhin (1999)

Plasma physics of the outer crust:

$$\Gamma = \frac{Z^2 e^2}{a \, kT} \quad \Gamma_c \simeq 175$$

$$a \simeq 125 \left(\frac{A}{50} \frac{1}{\rho_{10}}\right)^{1/3} \text{ fm}$$

$$kT = 4.4 \, 10^{-5} \frac{T}{10^8 \, K} \, \text{fm}^{-1}$$

$$\omega_{\text{plasmon}} = \sqrt{\frac{4\pi e^2 Z^2 n_I}{AM}}$$

$$q_{\text{TFe}} = \sqrt{\frac{4e^2}{\pi} k_{\text{Fe}}}$$

