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Thermal Conduction 101:

Specific heat of carrier

velocity of carrier

mean free path
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                     material  κ (ergs/cm·s·K)
air 0.00025

bronze 1.10
copper 4.01

diamond 8.95
Earth (dry) 0.015

Freon 0.00073
graphite 19.5

helium (II) >1000
ice cream (powder) 0.0005

Thermal Conductivity - Down to Earth  
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Neutron Star Thermal Evolution 

• Long term cooling of 
isolated neutron stars.  

• Thermal profiles of 
accreting neutron stars. 

• Long term cooling of 
magnetars. 

• Early thermal evolution. 

Core

Crust

Envelope
Atmosphere
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Neutron Star Thermal Evolution 

• Long term cooling of 
isolated neutron stars.  

• Thermal profiles of 
accreting neutron stars. 

• Long term cooling of 
magnetars. 

• Early thermal evolution. 

Core

Crust

Envelope
Atmosphere

Temperature gradient in 
the inner crust plays a 
role. 
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nuclei

neutron
superfluid

Neutron Star Crust:
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• Electronic specific heat is large 
• Electron mean free path is small 
• Electron momentum is large kF > 1/a
• Phonon specific heat is small
• Phonon mean free path is large
• Phonon momentum is small   

Thermal Conduction in the Crust

• Liquid Phase: Electrons & Ions

• Solid Phase: Electrons & Phonons 
Outer Crust: 
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Electrons or Phonons ?

Typically electrons dominate                    
- unless there is a large magnetic field. 

Magnetic field suppresses transverse conduction

= Collision time

=Gyrofrequency

Canuto and Ventura (1977)
Uripin & Yakovlev (1980)
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Phonon Conduction  in the Outer Crust

Perez-Azorin (2006) Chugunov and Haensel (2007)

Lattice Phonons have large 
mean free paths. 

Mean free path set by:
 

Impurity scattering 

Electron 
absorption
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Phonon Conduction  in the Outer Crust

Perez-Azorin (2006) Chugunov and Haensel (2007)

Lattice Phonons have large 
mean free paths. 

Mean free path set by:
 

Impurity Scattering

Electron Absorption

Impurity scattering 

Electron 
absorption
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At low temperature phonons 
have very large mean free path. 

Rayleigh scattering off 
impurities dominates at long-
wavelength 

Phonon Conduction in Insulators

Baumann & Pohl (1967)
Ziman (1960)
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At low temperature phonons 
have very large mean free path. 

Rayleigh scattering off 
impurities dominates at long-
wavelength 

Phonon Conduction in Insulators
Rayleigh Scattering

Baumann & Pohl (1967)
Ziman (1960)
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At low temperature phonons 
have very large mean free path. 

Rayleigh scattering off 
impurities dominates at long-
wavelength 

Phonon Conduction in Insulators
Rayleigh Scattering

Boundary Scattering
Baumann & Pohl (1967)
Ziman (1960)
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Heat Transport in the Inner Crust

Low energy degrees of freedom: 
1.Electrons
2.Lattice Phonons (1 long. + 2 Trans.)
3.Superfluid Phonons 

•Neutron matter in the 
crust is superfluid. 
•Neutron particle-hole 
excitations are gapped
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Pairing in neutron matter

H =
∑

k,s=↑,↓
(

k2

2m
− µ) a†k,sak,s + g

∑

k,p,q,s=↑,↓
a†k+q,sa

†
p−q,sak,sap,s

∆ = g〈ak,↑ap,↓〉 ∆∗ = g〈a†k,↑a
†
p,↓〉

Attractive interactions destabilize the Fermi surface: 

Cooper pairs leads to 
superfluidity   

Ω(Δ)

Δ

Energy gap for fermions:

New collective mode:
Superfluid Phonon 
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Superfluidity in the Crust Enhances Heat Conduction:

Conventional Wisdom:  Electrons dominate conduction

At neutron drip and T=108  K
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Microscopic Processes in the Crust 

Electrons lPhs sPhs

Electron-phonon
processes

Impurity (Rayleigh)
scattering

Multi electron and 
phonon processes
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scattering
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Elastic process 
Rayleigh Scattering

Very large mean free path!

ro =Typical nuclear radii
q = sPh momentum

Scattering dominated 
by impurities:

If only impurity 
scattering  is relevant: 
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Low Energy Effective Theory
Phonon coupling is derivative - Low momentum 
phonons interact weakly !
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Low Energy Effective Theory
Phonon coupling is derivative - Low momentum 
phonons interact weakly !

kinetic terms coupling to 
Fermions 

self-coupling 

lPh-sPh mixing sPh→2 lPh
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Electron-Phonon Coupling Fetter & Walecka

16Thursday, April 16, 2009



Fluctuation in density due to displacement 

Electron-Phonon Coupling Fetter & Walecka
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Canonically normalized 
lattice phonon field 

Fluctuation in density due to displacement 

Electron-Phonon Coupling Fetter & Walecka
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lattice phonon field 

Fluctuation in density due to displacement 
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Neutron-lPh Interaction

Low-energy neutron-nucleus 
potential (Fermi Potential)
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Neutron-lPh Interaction

Low-energy neutron-nucleus 
potential (Fermi Potential)
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sPh-lPh Interactions 

“Integrate-out” neutron and ion degree of freedom
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sPh-lPh Interactions 

“Integrate-out” neutron and ion degree of freedom

In the neutron star crust:
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sPh-lPh Interactions 

“Integrate-out” neutron and ion degree of freedom

In the neutron star crust:

This is a systematic expansion (EFT)
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Neutron-Nucleus Interaction

In medium Pauli blocking and effective range corrections 
can suppress  the interaction. 
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Mixing and Dissipation
Mixing leads to oscillations

Dissipation of lPh leads to 
dissipation of sPh
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dissipation of sPh

sPh mean 
free path

lPh mean 
free path
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Mixing and Dissipation
Mixing leads to oscillations

Dissipation of lPh leads to 
dissipation of sPh

sPh mean 
free path

lPh mean 
free path

Away from resonance  
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Thermal Conductivity
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Consequences for Magnetar Cooling

θ

Temperature 
anisotropy 
due 
anisotropic 
conduction.

sPh can limit 
the anisotropy
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Observational Consequences

Temperature anisotropy will 
affect the spectrum. 
2 Black-body fit to RXJ 1856 
works well.

Hot spots on the surface will lead to 
pulsations in the thermal emission.

Geppert, Kueker & Page (2006)
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• New mode for heat conduction in the inner 
crust. 

• Low energy EFT for sPhs, lPhs and electrons. 

• sPh conduction is likely to be important for 
thermal evolution of magnetars. 

• Could also play a role in accreting neutron 
stars and first 100 years of NS evolution. 

Conclusions
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Electron Scattering and the 
Dynamic Structure Factor

Flowers & Itoh (1976)
Yakovlev & Urpin (1980)
Potekhin et al. (1999)

Coulomb Logarithm 

Dynamic Structure Factor 
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Plasma physics of the outer 
crust:

Potekhin (1999)

Γ =
Z2 e2

a kT
Γc ! 175

a ! 125
(

A

50
1

ρ10

)1/3

fm

kT = 4.4 10−5 T

108 K
fm−1

27Thursday, April 16, 2009


