

Collaborator(s)

• Mei Huang

(ITP, Goethe-University & Tsinghua University, Beijing)

References

- M. Huang and I. Shovkovy, hep-ph/0407049 New
- M. Huang and I. Shovkovy, Nucl. Phys. A 729 (2003) 835, hep-ph/0307273
- I. Shovkovy and M. Huang, Phys. Lett. B 564 (2003) 205, hep-ph/0302142

Igor Shovkovy

Matter at high density

Igor Shovkovy

Is there SC inside stars?

The answer is: we do not know yet

Arguments in favor:

Arguments against:

- Relatively high densities in stars, $\rho_c \gtrsim 5\rho_0$, suggest that quarks may be deconfined
- Output An attractive diquark channel is likely to exist
- \bigcirc Temperatures are quite low, $T \lesssim 50$ keV, to allow pairing

Strongly coupled dynamics is not under control

- Matter may not necessarily be deconfined at existing densities
- Specific conditions inside stars (e.g., β -equilibrium) may not favor color superconductivity

The natural approach: To give predictions and to test them

Igor Shovkovy

Specific conditions inside stars

Matter in the bulk of a star is

- (i) β -equilibrated: $\mu_d = \mu_u + \mu_e$
- (ii) electrically and color neutral: $n_Q^{\text{el}} = 0, \qquad n_Q^{\text{color}} = 0$

Otherwise, a star would **not** be stable!

• Coulomb energy (when $n_Q \neq 0$)

$$E_{\text{Coulomb}} \sim n_Q^2 R^5 \sim M_{\odot} c^2 \left(\frac{n_Q}{10^{-15} e/\text{fm}^3}\right)^2 \left(\frac{R}{1 \text{ km}}\right)^5$$

n 2SC phase, $10^{-2} \lesssim n_Q \lesssim 10^{-1} e/\text{fm}^3 \Rightarrow E_{\text{Coulomb}}^{2SC} \gg M_{\odot} c^2$

Igor Shovkovy

Ι

Neutrality vs. color superconductivity

- The "best" 2SC phase appears when $n_d \approx n_u$
- Neutral matter (in β -equilibrium) appears when $n_d \approx 2n_u$
- Electrons do **not** help (!):

$$n_d \approx 2n_u \quad \Rightarrow \quad \mu_d \approx 2^{1/3} \mu_u \quad \Rightarrow \quad \mu_e = \mu_d - \mu_u \approx \frac{1}{4} \mu_u$$

i.e., $n_e \approx \frac{1}{4^3} \frac{n_u}{3} \ll n_u$

The "best" Cooper pairing is distorted by the following mismatch parameter:

$$\delta\mu \equiv \frac{p_F^{\rm down} - p_F^{\rm up}}{2} = \frac{\mu_e}{2} \neq 0$$

Igor Shovkovy

Mismatch vs. coupling strength

Mismatch parameter μ_e is **not** a free model parameter,

$$n_Q \equiv -\frac{\partial \Omega}{\partial \mu_e} = 0 \qquad \Rightarrow \qquad \mu_e = \mu_e(\bar{\mu}_q, \Delta)$$

However, the diquark coupling strength (η) is a model parameter:

- 1. Weak coupling, $\eta \lesssim 0.7$ the mismatch does not allow Cooper
pairing:Normal phase is the ground state
- 2. Strong coupling, $\eta \gtrsim 0.8$ pairing wins over the mismatch between the Fermi surfaces: 2SC is the ground state
- 3. Intermediate strength coupling, $0.7 \leq \eta \leq 0.8$ the ground state is a new gapless color superconducting (g2SC) phase.

Igor Shovkovy

Sarma phase in condensed matter

Type II superconductors in a constant magnetic field: [G. Sarma, J. Phys. Chem. Solids **24** (1963) 1029.]

- Magnetic field originates from ferromagnetic order of impurities in La_{1-x}Gd_x and Y_{1-x}Gd_xOs₂ [B.Matthias,H.Suhl & Corenzwit, Phys. Rev. Lett. 1 (1958) 92], [N.Phillips,B.Matthias, Phys. Rev. 121 (1961) 105]
- Pairing happens between spin- \uparrow and spin- \downarrow holes/electrons
- Fermi momenta of \uparrow and \downarrow -quasiparticles are different
- The mismatch parameter $\delta \mu \sim H \sim n_{\text{impurity}}$

The gapless "Sarma" phase is **unstable**!

Igor Shovkovy

Effective potential at T = 0 [I.S. & M.Huang, Phys. Lett. B564 (2003) 205]:

(Q.: Mixed phase? \rightarrow A.: Unlikely if $\sigma \gtrsim 20 \text{ MeV/fm}^2$ [I.S., Hanauske, Huang, hep-ph/0303027]. See, however, [Reddy & Rupak, nucl-th/0405054]) No Sarma instability in g2SC phase if $n_Q = 0$ is enforced *locally*!

Igor Shovkovy

Higgs/Meissner effect in g2SC

- Higgs effect, i.e., $SU(3)_c \to SU(2)_c$ without NG bosons
 - there exists unitary gauge in which NG boson fields are "eaten" by 5 gluons
- Is there Meissner effect?
 - low energy spectrum looks like in normal quark matter
- Improved HDL approximation plus (NG) collective modes:

Igor Shovkovy

General structure of $\Pi^{AB,\mu\nu}$

$$\Pi^{AB,\mu\nu}(q) = \begin{cases} \delta^{AB}\Pi_{1}^{\mu\nu}, & \text{for } A, B = 1, 2, 3, \\ \delta^{AB}\Pi_{4+}^{\mu\nu}, & \text{for } A, B = (4+5i), (6+7i), \\ \delta^{AB}\Pi_{4-}^{\mu\nu}, & \text{for } A, B = (4-5i), (6-7i), \\ \begin{pmatrix} \Pi_{88}^{\mu\nu} & \Pi_{8\gamma}^{\mu\nu} \\ \Pi_{\gamma8}^{\mu\nu} & \Pi_{\gamma\gamma}^{\mu\nu} \end{pmatrix}, & \text{for } A, B = 8, \gamma, \end{cases}$$
where
$$\Pi_{a}^{\mu\nu}(q) = \begin{pmatrix} g^{\mu\nu} - u^{\mu}u^{\nu} + \frac{\vec{q}^{\mu}\vec{q}^{\nu}}{\vec{q}^{2}} \end{pmatrix} H_{a}(q) + u^{\mu}u^{\nu}K_{a}(q) \\ - \frac{\vec{q}^{\mu}\vec{q}^{\nu}}{\vec{q}^{2}}L_{a}(q) + \frac{u^{\mu}\vec{q}^{\nu} + \vec{q}^{\mu}u^{\nu}}{|\vec{q}|}M_{a}(q)$$

Screening masses: $m_{M,a}^2 \equiv -H_a(0)$ and $m_{D,a}^2 \equiv -K_a(0)$

Igor Shovkovy

$$\Pi^{AB,\mu\nu}$$
 with $A, B = 1, 2, 3$

Meissner and Debye screening masses:

$$\begin{split} m_{M,1}^2 &\equiv -H_1(0) \simeq 0, \quad (\text{no Meissner effect}) \\ m_{D,1}^2 &\equiv -K_1(0) = \frac{2\alpha_s}{\pi} \left(\frac{(\mu^-)^2 \delta \mu}{\sqrt{(\delta\mu)^2 - \Delta^2}} + \frac{(\mu^+)^2 \delta \mu}{\sqrt{(\delta\mu)^2 - \Delta^2}} \right) \theta(\delta\mu - \Delta) \\ &\simeq \frac{4\alpha_s \bar{\mu}^2 \delta \mu}{\pi \sqrt{(\delta\mu)^2 - \Delta^2}} \theta(\delta\mu - \Delta), \end{split}$$

where

$$\bar{\mu} \equiv \frac{\mu_{gd} + \mu_{ru}}{2} \qquad (average Fermi momentum)$$

$$\delta\mu \equiv \frac{\mu_{gd} - \mu_{ru}}{2} \qquad (mismatch between Fermi momenta)$$

$$\mu^{\pm} \equiv \bar{\mu} \pm \sqrt{\delta\mu^2 - \Delta^2} \qquad (boundaries of "blocking" region)$$

Igor Shovkovy

$\Pi^{AB,\mu\nu}$ with $A, B = 8, \gamma$ (Debye screening)

$$K_{88} \simeq \frac{4\alpha_s \bar{\mu}^2}{\pi},$$

$$K_{\gamma\gamma} \simeq \frac{8\alpha \bar{\mu}^2}{3\pi} \left(1 + \frac{3\delta\mu \ \theta(\delta\mu - \Delta)}{2\sqrt{(\delta\mu)^2 - \Delta^2}}\right),$$

$$K_{8\gamma} = K_{\gamma8} \simeq 0$$

There is no mixing (static, long-range Debye screening). However, a mixing will appear in the "natural basis",

$$\tilde{A}^{8}_{\mu} = A^{8}_{\mu} \cos \varphi + A^{\gamma}_{\mu} \sin \varphi,$$

$$\tilde{A}^{\gamma}_{\mu} = A^{\gamma}_{\mu} \cos \varphi - A^{8}_{\mu} \sin \varphi,$$

How about gauge symmetry? — No problem.

Igor Shovkovy

 $\Pi^{AB,\mu\nu}$ with $A, B = 8, \gamma$ (Meissner screening)

$$H_{88} \simeq \frac{4\alpha_s \bar{\mu}^2}{9\pi} \left(1 - \frac{\delta \mu \ \theta(\delta \mu - \Delta)}{\sqrt{(\delta \mu)^2 - \Delta^2}} \right),$$

$$H_{\gamma\gamma} \simeq \frac{4\alpha \bar{\mu}^2}{27\pi} \left(1 - \frac{\delta \mu \ \theta(\delta \mu - \Delta)}{\sqrt{(\delta \mu)^2 - \Delta^2}} \right),$$

$$H_{8\gamma} = H_{\gamma8} \simeq \frac{4\sqrt{\alpha \alpha_s} \bar{\mu}^2}{9\sqrt{3\pi}} \left(1 - \frac{\delta \mu \ \theta(\delta \mu - \Delta)}{\sqrt{(\delta \mu)^2 - \Delta^2}} \right).$$

This becomes diagonal in the new basis:

$$\begin{split} \tilde{A}^8_\mu &= A^8_\mu \cos \varphi + A^\gamma_\mu \sin \varphi, \\ \tilde{A}^\gamma_\mu &= A^\gamma_\mu \cos \varphi - A^8_\mu \sin \varphi, \end{split}$$

Igor Shovkovy

where the mixing angle is determined by

$$\sin \varphi = \sqrt{\frac{\alpha}{3\alpha_s + \alpha}},$$
$$\cos \varphi = \sqrt{\frac{3\alpha_s}{3\alpha_s + \alpha}}.$$

Then, the Meissner screening masses are

$$m_{M,\tilde{8}}^2 \equiv \frac{4(3\alpha_s + \alpha)\bar{\mu}^2}{27\pi} \left(1 - \frac{\delta\mu \ \theta(\delta\mu - \Delta)}{\sqrt{(\delta\mu)^2 - \Delta^2}}\right),$$

 $m_{M,\tilde{\gamma}}^2 \equiv 0$ i.e., no Meissner effect connected with $\tilde{U}(1)_{\rm em}$.

Note that $m_{M,\tilde{8}}^2 < 0$ in the g2SC phase. This means that there is a **plasma** (magnetic) type instability. Note that spin-1 condensates around μ^{\pm} remove the instability.

Igor Shovkovy

$$\Pi^{AB,\mu\nu} \text{ with } A, B = (4\pm)$$

Meissner and Debye screening masses:

$$\begin{split} m_{M,4\pm}^2 &\equiv -H_{4\pm}(0) \\ &\simeq \frac{4\alpha_s \bar{\mu}^2}{3\pi} \left[\frac{\Delta^2 - 2\delta\mu^2}{2\Delta^2} + \theta(\delta\mu - \Delta) \frac{\delta\mu\sqrt{\delta\mu^2 - \Delta^2}}{\Delta^2} \right], \\ m_{D,4\pm}^2 &\equiv -K_{4\pm}(0) \\ &\simeq \frac{4\alpha_s \bar{\mu}^2}{\pi} \left[\frac{\Delta^2 + 2\delta\mu^2}{2\Delta^2} - \theta(\delta\mu - \Delta) \frac{\delta\mu\sqrt{\delta\mu^2 - \Delta^2}}{\Delta^2} \right] \end{split}$$
Note that $m_{M,4\pm}^2 < 0$ when

 $0 < \Delta < \sqrt{2}\delta\mu$ (i.e., in g2SC and 2SC phases)

Thus, there is a **plasma** (magnetic) type instability

Igor Shovkovy

Magnetic instability $m_{M,4\pm}^2 < 0$

Could gluons "feel" the local maximum of the effective potential? This is possible, but this is not everything ...

Igor Shovkovy

Gluon condensation (?)

• In 2SC/g2SC, there is an unbroken $\tilde{U}(1)_B$ ("blue" color charge)

$$\tilde{Q}_B \sim \frac{1}{3}\mathcal{I} - \frac{2}{\sqrt{3}}T_8$$

- Gluons $A^4_{\mu} \pm i A^5_{\mu}$ and $A^6_{\mu} \pm i A^7_{\mu}$ carry $\tilde{U}(1)_B$ charges $\pm \tilde{1}$
- μ induces chemical potential $\tilde{\mu}$ for "modified" baryon charge
- If $\tilde{\mu} \ge m_g$: magnetic gluons \rightarrow **Bose-Einstein condensation**
- (?) Difficulty: screening masses for all four gluons, $A^4_{\mu} \pm i A^5_{\mu}$ and $A^6_{\mu} \pm i A^7_{\mu}$, are degenerate
- (?) Bose-Einstein condensation may be outside the validity of the low-energy effective theory (e.g., $m_g > \Delta$)

Igor Shovkovy

So, the ground state is ...]

Igor Shovkovy

• The g2SC phase is a new state of matter that may exist in cores of compact stars (gCFL \rightarrow [Alford, Kouvaris, Rajagopal, hep-ph/0311286])

- The g2SC phase is a new state of matter that may exist in cores of compact stars (gCFL \rightarrow [Alford, Kouvaris, Rajagopal, hep-ph/0311286])
- There is no Sarma instability in g2SC phase if the neutrality is enforced locally

- The g2SC phase is a new state of matter that may exist in cores of compact stars (gCFL \rightarrow [Alford, Kouvaris, Rajagopal, hep-ph/0311286])
- There is no Sarma instability in g2SC phase if the neutrality is enforced locally
- The spectrum of low-energy excitations in the g2SC phase has extra gapless modes (these should affect transport properties)

- The g2SC phase is a new state of matter that may exist in cores of compact stars (gCFL \rightarrow [Alford, Kouvaris, Rajagopal, hep-ph/0311286])
- There is no Sarma instability in g2SC phase if the neutrality is enforced locally
- The spectrum of low-energy excitations in the g2SC phase has extra gapless modes (these should affect transport properties)
- Finite temperature properties of the g2SC phase are rather unusual [$\Delta(T)$ is nonmonotonic; T_c/Δ_0 is nonuniversal]

- The g2SC phase is a new state of matter that may exist in cores of compact stars (gCFL \rightarrow [Alford, Kouvaris, Rajagopal, hep-ph/0311286])
- There is no Sarma instability in g2SC phase if the neutrality is enforced locally
- The spectrum of low-energy excitations in the g2SC phase has extra gapless modes (these should affect transport properties)
- Finite temperature properties of the g2SC phase are rather unusual $[\Delta(T)$ is nonmonotonic; T_c/Δ_0 is nonuniversal]
- There is a new type plasma instability for a range of parameters in g2SC phase and even in 2SC phase!

- The g2SC phase is a new state of matter that may exist in cores of compact stars (gCFL \rightarrow [Alford, Kouvaris, Rajagopal, hep-ph/0311286])
- There is no Sarma instability in g2SC phase if the neutrality is enforced locally
- The spectrum of low-energy excitations in the g2SC phase has extra gapless modes (these should affect transport properties)
- Finite temperature properties of the g2SC phase are rather unusual [$\Delta(T)$ is nonmonotonic; T_c/Δ_0 is nonuniversal]
- There is a new type plasma instability for a range of parameters in g2SC phase and even in 2SC phase!
- Part of plasma instability is removed by spin-1 condensates

- The g2SC phase is a new state of matter that may exist in cores of compact stars (gCFL \rightarrow [Alford, Kouvaris, Rajagopal, hep-ph/0311286])
- There is no Sarma instability in g2SC phase if the neutrality is enforced locally
- The spectrum of low-energy excitations in the g2SC phase has extra gapless modes (these should affect transport properties)
- Finite temperature properties of the g2SC phase are rather unusual [$\Delta(T)$ is nonmonotonic; T_c/Δ_0 is nonuniversal]
- There is a new type plasma instability for a range of parameters in g2SC phase and even in 2SC phase!
- Part of plasma instability is removed by spin-1 condensates

There are additional (BEC) gluon condensates in 2SC phase

Igor Shovkovy