

POLYTECHNIC CAMPUS

Igor Shovkovy* Chiral asymmetry in relativistic matter in a magnetic field

*E.V. Gorbar, V.A. Miransky, I.S., arXiv:0904.2164 [hep-ph]

Motivation

Opposition Dynamics of Quantum Hall Effect in graphene (2+1 dimensions) Parity and time-reversal odd Dirac mass $\sim~\langle \bar{\Psi} \gamma^3 \gamma^5 \Psi
angle$ [Gorbar, Gusynin, Miransky, I.S., PRB 78, 085437 (2008)] Topological current in relativistic matter in a magnetic field (3+1 dimensions) $\langle \bar{\psi} \gamma^3 \gamma^5 \psi \rangle = rac{eB}{2\pi^2} \mu$ (free theory!)

[Metlitski, Zhitnitsky, PRD 72, 045011 (2005)]

Model Lagrangian density: $\mathcal{L} = \bar{\psi} \left(iD_{\nu} + \mu_0 \delta_{\nu}^0 \right) \gamma^{\nu} \psi + \frac{G_{\text{int}}}{2} \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma^5 \psi \right)^2 \right]$ • The dimensionless coupling is weak, $q \equiv G_{\rm int} \Lambda^2 / (4\pi^2) \ll 1$ • Magnetic field is inside $D_{\nu} = \partial_{\nu} - ieA_{\nu}$ where $A_{\nu} = x B \delta_{\nu}^2$ Gap equation in meanfield approximation:

Vacuum state

• Magnetic catalysis (spontaneous generation of a nonzero Dirac mass even at $g \ll 1$):

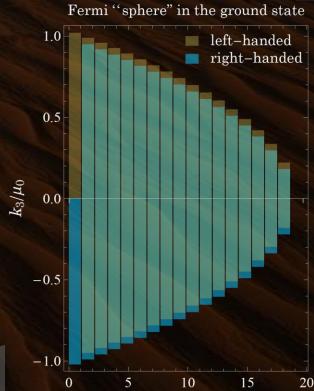
 $m_0^2 = \frac{1}{\pi l^2} \exp\left(-\frac{\Lambda^2 l^2}{g}\right)$ where $l = 1/\sqrt{|eB|}$

(along with $\mu = \mu_0$)

[Gusynin, Miransky, I.S., PRL 73, 3499 (1994); PLB 349, 477 (1995)]

• This solution exists for $\mu_0 < m_0$, but it is less stable than the normal state (m = 0) already for $\mu_0 \gtrsim m_0/\sqrt{2}$ [Clogston, PRL 9, 266 (1962)]

"Abnormal" normal ground state Gap equation allows another solution, $\mu \simeq \mu_0$ and $\Delta \simeq -g\mu_0 eB/\Lambda^2$ • This solution is almost independent of temperature when $T \ll \mu$ O This is the normal ground state since its symmetry is same as in the Lagrangian • Besides, there is no solution with $\Delta = 0...$


Physical meaning of ∆ The dispersion relation of quasiparticles:

 $\omega_{n,\sigma} = -\mu \pm \sqrt{\left[k_3 + \sigma \Delta\right]^2 + 2n|eB|}$

where $\sigma = \pm 1$ is the chirality

• Longitudinal momenta of opposite chirality fermions are shifted, i.e., $k_3 \rightarrow k_3 \pm \Delta$

• All Landau levels $(n \ge 0)$ are affected by Δ

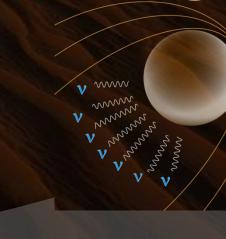
n

Induced axial current • The axial current in the ground state is $\langle \bar{\psi}\gamma^3\gamma^5\psi\rangle = \frac{eB}{2\pi^2}\mu - \frac{|eB|}{2\pi^2}\Delta - \frac{|eB|}{\pi^2}\Delta\sum_{n=1}^{\infty}\kappa(\sqrt{2n|eB|},\Lambda)$ • In addition to the topological contribution, $\frac{eB}{2\pi^2}\mu$ there are dynamical ones $\propto \Delta$ • The cutoff function: $\kappa(x,\Lambda) \simeq \begin{cases} 1 & , x \ll \Lambda \\ 0 & , x \gg \Lambda \end{cases}$

 An equivalent result is also obtained in the Pauli-Villars regularization

Potential implications

- O Physical properties to be affected
 - transport
 - emission
 - (if sensitive to anisotropy and/or CP violation)
- Specific physical systems
 - Compact stars
 - Quark stars (quarks)
 - Hybrid stars (quarks, electrons)
 - Neutron stars (electrons)
 - White dwarfs (electrons)


 Heavy ion collisions [Kharzeev & Zhitnitsky, NPA 797, 67(2007), Kharzeev, McLerran & Warringa, NPA 803, 227 (2008), ...]

Pulsar kicks

• The dynamical chiral shift parameter is nonzero even at moderate temperatures ($T \ll \mu$):

 $\Delta \simeq -g\mu_0 eB/\Lambda^2$

- This creates a strong anisotropy in the distribution of left-handed electrons/quarks
- The anisotropy is transferred to neutrinos by elastic scattering
- Pulsar gets a kick when neutrinos escape

Supernova explosions

 Because of the robustness of the axial currents at finite temperatures, even supernova explosions may be affected

 A small early-time neutrino asymmetry may facilitate explosions and give a kick at the same time, e.g., see

[Fryer & Kusenko, Astrophys. J. Supp. 163, 335 (2006)]

Summary

• $\mu < \mu_c$: Chiral symmetry is broken in the ground state (magnetic catalysis)

- $\mu > \mu_c$: Normal ground state of dense relativistic matter in a magnetic field is characterized by
 - Axial current along the field (topological and dynamical contributions)
 - Chiral shift parameter
- No solution with vanishing Δ exists

Outlook

 Detailed analysis of normal ground state in models with explicitly broken chiral symmetry (work in progress)

- Calculation of neutrino emission/diffusion in the state with axial currents
- Transport properties of the normal state with nonzero axial currents

 Modification of the "chiral magnetic effect" due to ∆ in heavy ion collisions
 [Fukushima, Kharzeev & Warringa, PRD 78, 074033 (2008)]