

POLYTECHNIC CAMPUS

Chiral shift at Fermi surface of dense relativistic matter in magnetic field

Igor Shovkovy*

*E.V. Gorbar, V.A. Miransky, I.S., Phys. Rev. C 80 (2009), in press arXiv:0904.2164 [hep-ph]

> BOGOLYUBOV KYIV CONFERENCE Modern Problems of Theoretical and Mathematical Physics September 15-18, 2009, Kyiv, Ukraine

Dense relativistic matter O Dense relativistic matter is common inside compact stars Electrons in white dwarfs $T \ll m \leq \mu$ (*i.e.*, $T \leq 1$ keV & $\mu \simeq 1$ MeV) Neutrons of nuclear matter $T \ll m \leq \mu$ (*i.e.*, $T \leq 10 \text{ MeV} \& \mu \simeq 1 \text{ GeV}$) Electrons inside stellar nuclear matter $m \leq T \ll \mu$ (*i.e.*, $T \leq 10 \text{ MeV} \& \mu \simeq 100 \text{ MeV}$) • Dense quark matter in stellar cores (if formed) $T \le m \ll \mu$ (*i.e.*, $T \le 10 \text{ MeV} \& \mu \ge 400 \text{ MeV}$)

General idea

O Topological current in relativistic matter in a magnetic field (3+1 dimensions) $\langle \bar{\psi} \gamma^3 \gamma^5 \psi
angle = rac{eB}{2\pi^2} \mu$ (free theory!) [Metlitski, Zhitnitsky, PRD 72, 045011 (2005)] • Should there be a dynamical "mass" Δ , associated with this condensate? $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_\Delta$ where $\mathcal{L}_\Delta \simeq \Delta \bar{\psi} \gamma^3 \gamma^5 \psi$

• Note: $\Delta = 0$ is not protected by any symmetry

Lesson from graphene

Dynamics of Quantum Hall Effect in graphene
 (~ QED in 2+1 dimensions)

 Parity and time-reversal odd Dirac mass

$$\Delta \quad \sim \quad \langle \bar{\Psi} \gamma^3 \gamma^5 \Psi \rangle$$

[Gorbar, Gusynin, Miransky, I.S., PRB **78**, 085437 (2008)]

 ▲ describes the 0th plateau in Quantum Hall effect in graphene

RIZONA STATE

ModelLagrangian density:

- $\mathcal{L} = \bar{\psi} \left(i D_{\nu} + \mu_0 \delta_{\nu}^0 \right) \gamma^{\nu} \psi + \frac{G_{\text{int}}}{2} \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma^5 \psi \right)^2 \right]$
 - The dimensionless coupling is
 - $g \equiv G_{\rm int} \Lambda^2 / (4\pi^2) \ll 1$
 - Magnetic field is inside $D_{
 u} = \partial_{
 u} ieA_{
 u}$ where $A_{
 u} = xB\delta_{
 u}^2$

Approximation Gap equation in mean-field approximation:

 $G^{-1}(u, u') = S^{-1}(u, u') - iG_{\text{int}} \{ G(u, u) - \gamma^5 G(u, u) \gamma^5 \}$ $- \operatorname{tr}[G(u,u)] + \gamma^5 \operatorname{tr}[\gamma^5 \overline{G}(u,u)] \delta^4(u-u')$ where $iG^{-1}(u,u') = \left[(i\partial_t + \mu)\gamma^0 - (\boldsymbol{\pi} \cdot \boldsymbol{\gamma}) - \pi^3 \gamma^3 \right]$ + $i\tilde{\mu}\gamma^{1}\gamma^{2}$ + $\Delta\gamma^{3}\gamma^{5}$ - m] $\delta^{4}(u-u')$ and $iS^{-1}(u,u') = \left[(i\partial_t + \mu_0)\gamma^0 - (\boldsymbol{\pi} \cdot \boldsymbol{\gamma}) - \pi^3\gamma^3 \right] \delta^4(u-u')$

Vacuum state
Magnetic catalysis (spontaneous generation of a nonzero Dirac mass even at $g \ll 1$):

 $m_0^2 = \frac{1}{\pi l^2} \exp\left(-\frac{\Lambda^2 l^2}{g}\right)$ where $l = 1/\sqrt{|eB|}$

(along with $\mu = \mu_0$)

[Gusynin, Miransky, I.S., PRL 73, 3499 (1994); PLB 349, 477 (1995)]

• The solution exists for $\mu_0 < m_0$, although it will be less stable than the normal state (m = 0) already for $\mu_0 \gtrsim m_0/\sqrt{2}$ [Clogston, PRL 9, 266 (1962)]

"Abnormal" normal ground state

Gap equation allows another solution,

 $\mu \simeq \mu_0$ and $\Delta \simeq g\mu_0 eB/\Lambda^2$

• This solution is almost independent of temperature when $T \ll \mu$

This is the normal ground state since its symmetry is same as in the Lagrangian
 Besides, there is no solution with ∆=0...

Change of ground state

The free energy in the state with m≠0 (broken symmetry)

$\Omega_m \simeq -\frac{m_0^2}{2(2\pi l)^2} \left(1 + (m_0 l)^2 \ln |\Lambda l|\right)$

• The free energy in the normal state, $\Delta \neq 0$ $\Omega_{\Delta} \simeq -\frac{\mu_0^2}{(2\pi l)^2} \left(1 - g \frac{|eB|}{\Lambda^2}\right)$ • So, indeed symmetry is restored for $\mu > \mu_c$, $\mu_c \simeq m_0 / \sqrt{2}$

T=0 results

Physical meaning of Δ

• The dispersion relation of quasiparticles:

where $\sigma = \pm 1$ is the chirality

• Longitudinal momenta of opposite chirality fermions are shifted, i.e., $k_3 \rightarrow k_3 \pm \Delta$

• All Landau levels $(n \ge 0)$ are affected by Δ

n

Induced axial current The axial current in the ground state is $\langle \bar{\psi}\gamma^3\gamma^5\psi\rangle = \frac{eB}{2\pi^2}\mu - \frac{|eB|}{2\pi^2}\Delta - \frac{|eB|}{\pi^2}\Delta\sum_{n=1}^{\infty}\kappa(\sqrt{2n|eB|},\Lambda)$ eB• In addition to the topological contribution, $\overline{2\pi^2}^{\mu}$ there are dynamical ones $\propto \Delta$ • An equivalent result is also obtained in the **Pauli-Villars regularization** • Note: on the solution to the gap equation: $\langle j_5^3(u) \rangle = \frac{2\Delta}{G_{\text{int}}} = \frac{\Delta}{2\pi^2} \frac{\Lambda^2}{a}$

Potential implications

- O Physical properties to be affected
 - transport

Arizona State

- emission
 - (if sensitive to anisotropy and/or CP violation)
- Specific physical systems
 - Compact stars
 - Quark stars (quarks)
 - Hybrid stars (quarks, electrons)
 - Neutron stars (electrons)
 - White dwarfs (electrons)

 Heavy ion collisions [Kharzeev & Zhitnitsky, NPA 797, 67(2007), Kharzeev, McLerran & Warringa, NPA 803, 227 (2008), ...]

Pulsar kicks

• The dynamical chiral shift parameter is driven by chemical potential ($T\ll\mu$) $\Delta \simeq g\mu_0 eB/\Lambda^2$

and almost independent of temperature

- This creates strong anisotropy in the distribution of left quarks/electrons
- The anisotropy is transferred to neutrinos by elastic scattering even at large T
- Pulsar gets a kick when neutrinos escape

٥Ĵ,

Supernova explosions

 Because of the robustness of the axial currents at finite temperatures, even supernova explosions may be affected

 A small early-time neutrino asymmetry may facilitate explosions and give a kick at the same time, e.g., see

[Fryer & Kusenko, Astrophys. J. Supp. 163, 335 (2006)]

Summary

• $\mu < \mu_c$: Chiral symmetry is broken in the ground state (magnetic catalysis)

- $\mu > \mu_c$: Normal ground state of dense relativistic matter in a magnetic field is characterized by
 - Axial current along the field (topological and dynamical contributions)
 - Chiral shift parameter
- No solution with vanishing Δ exists

Outlook

O Detailed analysis of normal ground state in models with explicitly broken chiral symmetry (work in progress) Ocalculation of neutrino emission/diffusion in the state with axial currents Transport properties of the normal state with nonzero axial currents O Modification of the chiral magnetic effect due to "vector-like" Δ in heavy ion collisions [Fukushima, Kharzeev & Warringa, PRD 78, 074033 (2008)]

Thank you