

POLYTECHNIC CAMPUS

Chiral shift in dense relativistic matter in magnetic field

Igor Shovkovy*

*E.V. Gorbar, V.A. Miransky, I.S., Phys. Rev. C 80 (2009), 032801(R) arXiv:0904.2164 [hep-ph] + work in progress

XII Mexican Workshop on Particles and Fields November 9-14, 2009, Mazatlán, México

Dense relativistic matter

- Dense relativistic matter is common inside compact stars
 - Electrons in white dwarfs
 - $T \ll m \leq \mu$ (*i.e.*, $T \leq 1$ keV & $\mu \simeq 1$ MeV)

Neutrons of nuclear matter

 $T \ll m \leq \mu$ (*i.e.*, $T \leq 10 \text{ MeV } \& \mu \simeq 1 \text{ GeV}$)

Electrons inside stellar nuclear matter m≤ T≪μ (i.e., T≤ 10 MeV & μ≃100 MeV)
Dense quark matter in stellar cores (if formed) T≤ m≪μ (i.e., T≤ 10 MeV & μ≥400 MeV)

General idea

 Topological current in relativistic matter in a magnetic field (3+1 dimensions)

 $\langle \bar{\psi} \gamma^3 \gamma^5 \psi
angle = rac{eB}{2\pi^2} \mu$ (free theory!)

[Metlitski, Zhitnitsky, PRD 72, 045011 (2005)]

Should there be a dynamical "mass" ∆, associated with this condensate?

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_\Delta$$
 where

$$\left[\mathcal{L}_{\Delta}\simeq\Delta\bar{\psi}\gamma^{3}\gamma^{5}\psi\right]$$

• Note: $\Delta = 0$ is not protected by any symmetry

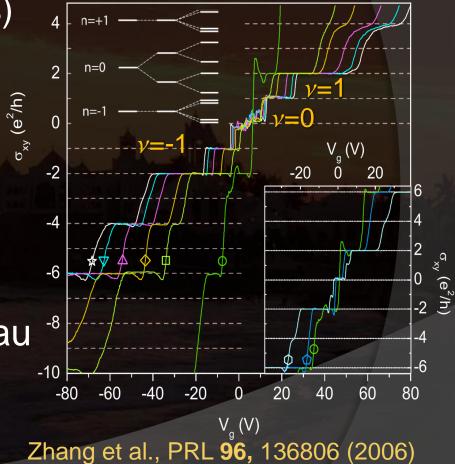
Lesson from graphene

- Dynamics of Quantum Hall Effect in graphene
 (~ QED in 2+1 dimensions)
 - Parity and time-reversal odd Dirac mass

$$\Delta \quad \sim \quad \langle \bar{\Psi} \gamma^3 \gamma^5 \Psi \rangle$$

[Gorbar, Gusynin, Miransky, I.S., PRB **78**, 085437 (2008)]

 ▲ describes the 0th plateau in Quantum Hall effect in graphene



RIZONA STATE.

ModelLagrangian density:

- $\mathcal{L} = \bar{\psi} \left(iD_{\nu} + \mu_0 \delta_{\nu}^0 \right) \gamma^{\nu} \psi + \frac{G_{\text{int}}}{2} \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma^5 \psi \right)^2 \right]$
 - The dimensionless coupling is

$$g \equiv G_{\rm int} \Lambda^2 / (4\pi^2) \ll 1$$

• Magnetic field is inside $D_{\nu} = \partial_{\nu} - ieA_{\nu}$ where $A_{\nu} = xB\delta_{\nu}^2$ (Landau gauge)

Approximation

 Gap equation in mean-field approximation:

$$G^{-1}(u, u') = S^{-1}(u, u') - iG_{int} \{G(u, u) - \gamma^5 G(u, u)\gamma^5 - tr[G(u, u)] + \gamma^5 tr[\gamma^5 G(u, u)] \} \delta^4(u - u')$$

where
$$iG^{-1}(u, u') = \left[(i\partial_t + \mu)\gamma^0 - (\pi \cdot \gamma) - \pi^3 \gamma^3 + i\tilde{\mu}\gamma^1\gamma^2 + \Delta\gamma^3\gamma^5 - m \right] \delta^4(u - u')$$

and
$$iS^{-1}(u, u') = \left[(i\partial_t + \mu_0)\gamma^0 - (\pi \cdot \gamma) - \pi^3\gamma^3 \right] \delta^4(u - u')$$

Vacuum state

• Magnetic catalysis (spontaneous generation of a nonzero Dirac mass even at $g \ll 1$):

 $m_0^2 = rac{1}{\pi l^2} \exp\left(-rac{\Lambda^2 l^2}{g}
ight)$ where $l = 1/\sqrt{|eB|}$

(along with $\mu = \mu_0$)

[Gusynin, Miransky, I.S., PRL 73, 3499 (1994); PLB 349, 477 (1995)]

• The solution exists for $\mu_0 < m_0$, although it will be less stable than the normal state (m = 0) already for $\mu_0 \gtrsim m_0/\sqrt{2}$ [Clogston, PRL 9, 266 (1962)]

"Abnormal" normal ground state The gap equation allows another solution, $\mu \simeq \mu_0$ and $\Delta \simeq g\mu_0 eB/\Lambda^2$ • This solution is almost independent of temperature when $T \ll \mu$ • This is the normal ground state since its symmetry is same as in the Lagrangian \odot Besides, there is no trivial solution $\Delta = 0$

Change of ground state

 The free energy in the state with m≠0 (broken symmetry)

$$\Omega_m \simeq -\frac{m_0^2}{2(2\pi l)^2} \left(1 + (m_0 l)^2 \ln |\Lambda l|\right)$$

• The free energy in the normal state, $\Delta \neq 0$

$$\Omega_{\Delta} \simeq -\frac{\mu_0^2}{(2\pi l)^2} \left(1 - g\frac{|eB|}{\Lambda^2}\right)$$

 ${\circ}$ So, indeed symmetry is restored for μ > $\mu_{\rm c}$, $\mu_c \simeq m_0/\sqrt{2}$

Physical meaning of Δ

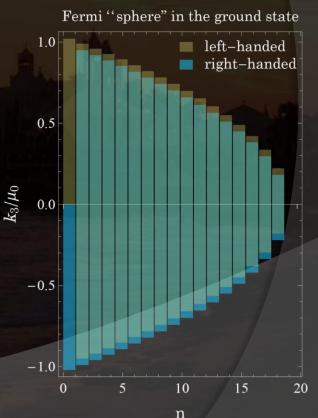
• The dispersion relation of quasiparticles:

$$\omega_{n,\sigma} = -\mu \pm \sqrt{\left[k_3 + \sigma \Delta\right]^2 + 2n|eB|}$$

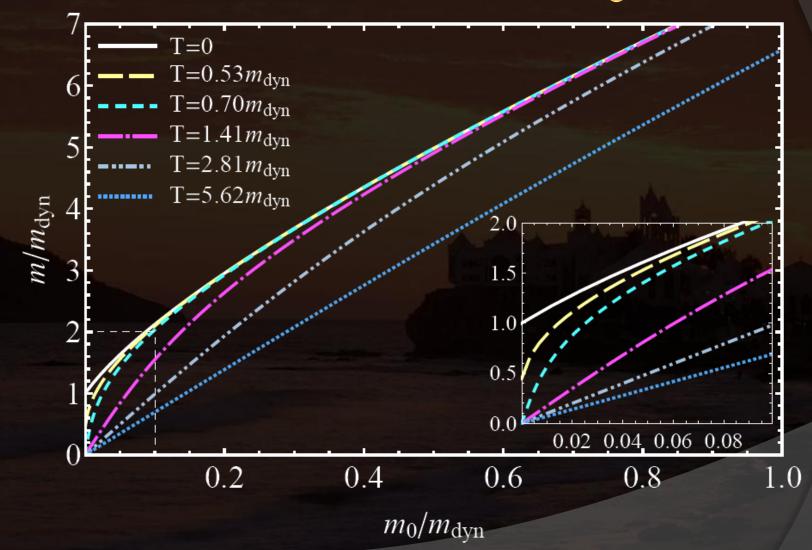
where $\sigma = \pm 1$ is the chirality

• Longitudinal momenta of opposite chirality fermions are shifted, i.e., $k_3 \rightarrow k_3 \pm \Delta$

• All Landau levels $(n \ge 0)$ are affected by Δ

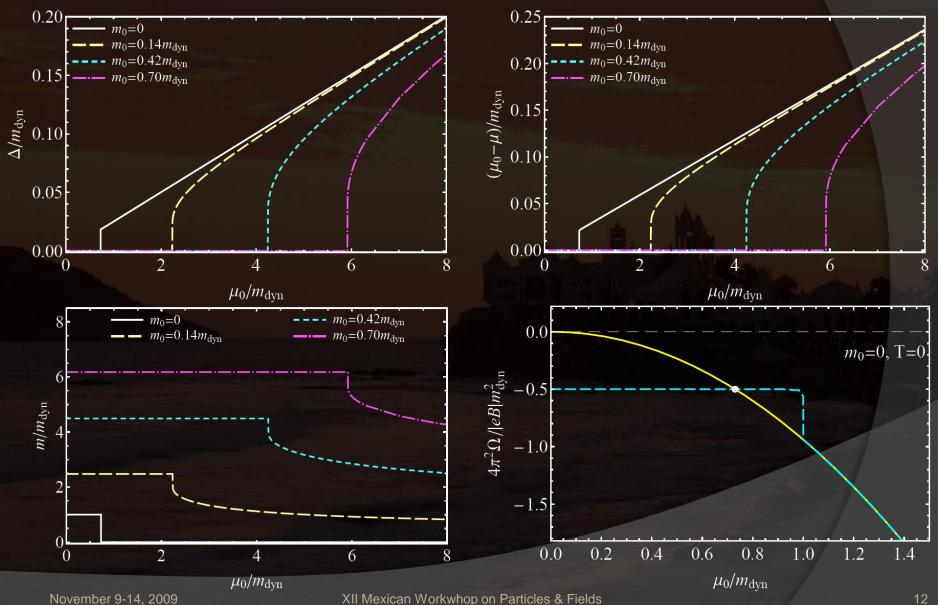


Magnetic catalysis at $\mu_0=0$

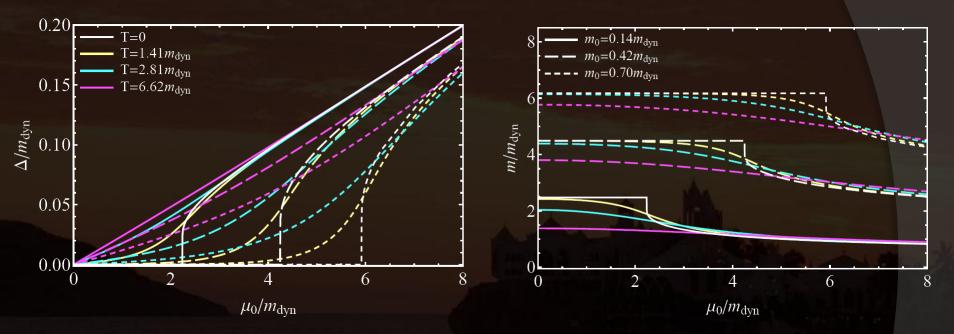


ARIZONA STATE

T=0 results



T≠0 results



These are smoothed versions of the T=0 results
 The dependence μ-μ₀ versus μ₀ (not shown) at T≠0 is similar to ∆ versus μ₀ (shown)

Induced axial current

• The axial current in the ground state is

In addition to the topological contribution, ^{eB}/_{2π²}μ there are dynamical ones ∝ Δ
 An equivalent result is also obtained in the Pauli-Villars regularization
 Note: on the solution to the gap equation:

 $\langle \bar{\psi}\gamma^3\gamma^5\psi\rangle = \left(\frac{eB}{2\pi^2}\mu\right) - \frac{|eB|}{2\pi^2}\Delta - \frac{|eB|}{\pi^2}\Delta\sum_{n=1}^{\infty}\kappa(\sqrt{2n|eB|},\Lambda)$

$$\langle j_5^3(u) \rangle = \frac{2\Delta}{G_{\rm int}} = \frac{\Delta}{2\pi^2} \frac{\Lambda^2}{g}$$

Potential implications

- O Physical properties to be affected
 - transport

ARIZONA STATE

- emission
 - (must be sensitive to anisotropy and/or CP violation)
- Specific physical systems
 - Compact stars
 - Quark stars (quarks)
 - Hybrid stars (quarks, electrons)
 - Neutron stars (electrons)
 - White dwarfs (electrons)

 Heavy ion collisions [Kharzeev & Zhitnitsky, NPA 797, 67(2007), Kharzeev, McLerran & Warringa, NPA 803, 227 (2008), ...]

Pulsar kicks

• The dynamical chiral shift parameter is driven by chemical potential ($T \ll \mu$)

and is almost independent of temperature

 $\Delta \simeq g\mu_0 eB/\Lambda^2$

 This creates an anisotropy in the distribution of left-handed quarks/electrons

 The anisotropy is transferred to left-handed neutrinos by elastic scattering

O Pulsar gets a kick when neutrinos escape

 Because of the robustness of the axial currents at finite temperatures, even supernova explosions may be affected

 A small early-time neutrino asymmetry may facilitate explosions and give a kick at the same time, e.g., see

[Fryer & Kusenko, Astrophys. J. Supp. 163, 335 (2006)]

Summary

• $\mu < \mu_c$: Chiral symmetry is broken in the ground state (magnetic catalysis)

- $\mu > \mu_c$: Normal ground state of dense relativistic matter in a magnetic field is characterized by
 - Chiral shift parameter (may have dramatic implications for stars)
 - Axial current along the field (physical effects are not obvious)
 - No solution with vanishing Δ exists

Outlook

- Calculation of neutrino emission/diffusion in the state with a chiral shift parameter (work in progress)
- Transport properties of the normal state with nonzero chiral shift parameter
- The fate of the induced axial current in the renormalized models (work in progress)
- Modification of the chiral magnetic effect due to "vector-like" ∆ in heavy ion collisions
 [Fukushima, Kharzeev & Warringa, PRD 78, 074033 (2008)]

Thank you