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•  Introduction 
– Relativistic matter; graphene 
– Extreme magnetic fields in nature 

•  Magnetic catalysis 
– Dimensional reduction; pairing dynamics 

•  Quantum Hall effect in graphene 
– Observable features; theoretical ideas 

•  Chiral magnetic effect & beyond 
– Anomalous symmetries; chirality; interactions 

•  Summary 
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– Electrons, protons, quarks inside 
compact stars (white dwarfs, neutron, 
hybrid or quark stars) 

– Quark gluon plasma in heavy ion 
collisions (kBT ~ 200 MeV ~ 1012 K) 

– Hot matter in the Early Universe 
(kBT ~ 100 GeV at EW transition) 

– Quasiparticles in graphene (zero 
mass Dirac fermions) 
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•  Examples of relativistic matter 



•  Relativistic matter (                ) 

•  compare with nonrelativistic case (              ) 

– High density (e.g., in stars) leads to occupation of 
states with large momenta: 

– High temperature (e.g., heavy ion collisions) means 
energetic particles, 

– Vanishing mass (e.g., graphene) works too… 
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•  It is a single atomic layer of graphite 
 [Novoselov et al., Science 306, 666 (2004)] 

•  Great promise for basic  
 & applied physics 
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Transmission electron 
microscopy (TEM) 

Atomic force  microscopy 

Scanning electron microscopy (SEM) 

2D crystal with hexagonal 
lattice of carbon atoms 
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•  Translation vectors of the hexagonal lattice 

 Lattice constant: a ≈ 1.42 Å 

•  Two carbon atoms per primitive cell 

•  Reciprocal lattice 

•  Two  (K &  K’) Dirac points in the Brillouin zone 
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•  At low energies, quasiparticles in graphene 
are massless Dirac fermions (vF ≈ c/300)  

[Wallace, Phys. Rev. 71, 622 (1947)] 
[Semenoff, Phys. Rev. Lett. 53, 2449 (1984)] 
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•  Strong magnetic fields are common inside 
compact stars    
–  1010 to 1015 Gauss 

•  In heavy ion collisions, positive ions generate 
short-lived (Δt ≈ 10-24 s) magnetic fields 
–  1018 to 1019 Gauss  

•  Early Universe  
–  up to 1024 Gauss  

•  Graphene (High Magnetic Field Laboratory) 
–  4.5 × 105 Gauss 
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•  Electron wave functions in magnetic field  
 are localized [Gusynin, Miransky, Shovkovy, PRL 73 (1994) 3499] 

•  Effective dimensional reduction 
 D space directions        D-2 space directions 

•  Quantized energy levels: 

– n = 0: zero energy for all states 

– n ≥ 1 states have “high” energies	
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•  Particles & anti-particles live in n=0 level  

•  Forming bound states is energetically 
favorable (an energy gain of Eb per pair)  

•  Bound states are bosons 

•  Bosons can (and will) occupy the same lowest 
energy quantum state 

•  So, they form a Bose condensate 

•  The properties of the ground state change 
 [Gusynin, Miransky, Shovkovy, PRL 73 (1994) 3499] 
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•  Even if m0=0 originally, a nonzero Dirac 
mass mdyn is generated 

2D:         3D:   

•  This happens even at the weakest interaction 
(“catalysis”) 

•  The phenomenon is universal (specific details 
of  interaction are mostly irrelevant) 

•  Dimensional reduction is the key ingredient 
(bound states form easier in low dimensions) 
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•  Charge carriers are Dirac fermions with m=0 
•  Theoretically, mdyn≠0 must be generated in a 

sufficiently strong magnetic field 
 [Khveshchenko, PRL 87, 206401 (2001)] 
 [Gorbar, Gusynin, Miransky, Shovkovy, PRB 66 (2002) 045108] 

•  Possible complications: 
– several types of Dirac masses may exist in 2D 
– competition with quantum Hall ferromagnetism 
– nonzero electron/hole density  
–  impurities, lattice defects, ripples, etc. 

•  How to test this experimentally? 
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•  General setup 

– Current starts to run: 

– Steady state: 

– Hall conductivity σxy: 

jx = σxy Ey 
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Experiment 

Theory (m0=0) 



•  New plateaus are 
observed at 

 ν=0 
 ν=±1 
 ν=±3 
 ν=±4 

[Novoselov et al., Science 315, 
1379 (2007)] 

[Abanin et al., PRL 98, 196806 
(2007)] 
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ν=4	  

ν=1	  

ν=-‐1	  

ν=-‐4	  

ν=0	  

[Checkelsky et al., PRL 100, 206801 (2008)] 
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•  Several different order parameters may be 
generated (pairing from different valleys/sublattices) 

•  Physical meaning of order parameters 

 [Gorbar, Gusynin, Miransky, Shovkovy, PRB 78 (2008) 085437] 
 [Gorbar, Gusynin, Miransky, Shovkovy, arXiv:1105.1360] 
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•  A specific spatial pattern of electric currents 
(or charge correlations) in heavy ion collisions   
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[Kharzeev, McLerran, Warringa, Nucl. Phys. A 803, 227 (2008)] 
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•  Helicities of massless (or ultra-relativistic)  
particles are (approximately) conserved 

•  Conservation of chiral charge is a property of 
massless Dirac theory (classically) 

•  At quantum level, however, such symmetry is 
anomalous 

The University of Texas at El Paso, Physics Department, 
El Paso, Texas, September 16, 2011  19 
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•  Continuity equation for the chiral charge 

 which is of topological nature and exact 
•  Among its consequences are the relations: 

•  These relations are the key relations leading 
to the chiral magnetic effect 
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•  Start from a small baryon density and B≠0 

•  Produce back-to-back electric currents 
[Gorbar, Miransky, Shovkovy, Phys. Rev. D 83, 085003 (2011)] 
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•  Axial vector current in relativistic matter in a 
magnetic field (3+1 dimensions) 

             (free theory!) 

 [Metlitski & Zhitnitsky, Phys Rev D 72, 045011 (2005)] 

•  Is it possible that interactions modify this 
relation? 

•  Is there a dynamical generation of a “chiral 
shift” Δ? (resembling mdyn in the magnetic catalysis) 
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•  The main result was derived from the axial 
anomaly relation… 

 which is an exact result (even with 
interactions!) 

•  Recent developments 
– Axial anomaly relation is robust 
– Chiral shift is generated 
– Axial current may be modified 

 [Gorbar, Miransky, Shovkovy, Phys. Lett. B 695 (2011) 354] 

•  The chiral shift Δ can be of great importance  
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•  Chirality is a “good” concept at 
large density 

•  L-handed Fermi surface: 

•  R-handed Fermi surface: 
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•  Chiral shift induces a chiral asymmetry at the 
Fermi surface 

•  Chiral shift modifies axial current (≈ spin 
polarization) 

•  Potential applications: 
– Pulsar kicks 

– Facilitation of supernova explosions 

– modified Chiral magnetic effect 
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•  Studies of relativistic matter in magnetic field 
are relevant for many branches of physics 

•  The underlying physics is conceptually rich 
•  Recent developments include 
– Magnetic catalysis    [Gusynin, Miransky, Shovkovy, PRL 73, 3499 (1994)] 

–  Chiral magnetic effect   [Fukushima, Kharzeev, Warringa, PRD 78, 074033 (2008)] 

–  Chiral shift      [Gorbar, Miransky, Shovkovy, PRC 80, 032801 (R) (2009)] 

–  Chiral magnetic spiral     [Basar, Dunne, Kharzeev, PRL 104, 232301 (2010)] 

–  Paraelectricity in QED      [Ferrer, Incera, Sanchez, PRL 107, 041602 (2011)] 

– Magnetic color superconductors […] 

–  and many others […] 
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