High-Energy Physics at the Tip of a Pencil

## Igor Shovkovy

## Arizona State University

## Part 1 INTRODUCTION

## ExTREME ENVIRONMENTS

- Examples of relativistic matter
- Electrons, protons, quarks inside compact stars (very dense matter)
- Quark gluon plasma in heavy ion collisions (a very hot fireball)

- Hot matter in the Early Universe (an extremely hot world)
- Massless particles in graphene (quasiparticles behave as massless particles)


Relativistic Matter

- Non-relativistic

- Particles move much slower than the speed of light
- Kinetic energies are much smaller than the rest energy

$$
E_{\mathrm{kin}} \ll E_{\mathrm{rest}}: \quad E=c \sqrt{p^{2}+m^{2} c^{2}} \approx m c^{2}+\frac{p^{2}}{2 m}
$$

- Relativistic
- Particle velocities approach the speed of light
- Kinetic energies are comparable to, or larger than $E_{\text {rest }}$

$$
E_{\mathrm{kin}} \geq E_{\mathrm{rest}}: \quad E=c \sqrt{p^{2}+m^{2} c^{2}} \approx c p
$$

## Super-dense Matter

- What happens when you squeeze matter to very high density? (e.g., neutrons inside neutron stars)

Pauli exclusion principle: fermions cannot occupy same quantum states (they end up filling out all states from $p_{\text {min }} \approx 0$ to $p_{\text {max }} \propto \hbar n^{1 / 3}$ )

$$
p_{\max } \propto 200\left(\frac{n}{1 \mathrm{fm}^{3}}\right)^{1 / 3} \mathrm{MeV} / \mathrm{c}
$$



## Super-hot Matter

- What happens when you heat matter to very
high temperature? (e.g., matter in heavy ion collisions)


Heat is equivalent to kinetic energy: average kinetic energy of particles is proportional to temperature:
$p \propto k_{B} T / c \sim 200\left(\frac{k_{B} T}{200 \mathrm{MeV}}\right) \mathrm{MeV} / \mathrm{c}$ (assuming $p \gg m c$ )

## Massless Particles

- Can matter be made of massless particles?

Yes! Electron quasiparticles masquerade as massless particles in some materials (no rest mass energy)

- Examples:
- Graphene


2D (planar) materials

$$
E=v_{F} \sqrt{k_{x}^{2}+k_{y}^{2}}
$$

$-\mathrm{Bi}_{1-x} \mathrm{Sb}_{x}$ alloy with $x \approx 0.03$

- cadmium arsenide $\mathrm{Cd}_{3} \mathrm{As}_{2}$
- potassium bismuthide $\mathrm{Na}_{3} \mathrm{Bi}$


## Part 2 CHIRAL SYMMETRY

## Symmetry Breaking

- Underlying laws are symmetric, but the system/ground state changes under a symmetry transformation

- Symmetry may refer to "internal" symmetries (e.g. rotations in color/flavor spaces, rescaling, etc.)


## Mass vs. Symmetry

- Massless fermions enjoy chiral symmetry (rotation of left-handed and right-handed particles in flavor space)



## Righ-handed

## Left-handed

- Massive fermions (e.g., quarks, nucleons, etc.) "break" chiral symmetry

$$
|m\rangle \propto C_{1}|L\rangle+C_{2}|R\rangle
$$

- Hadron physics reveals traces of the original chirally symmetric laws, which are broken in the ground state


## How Symmetry Breaks (1)

- Particles \& anti-particles form bound states

- Let's assume that the binding energy is $E_{b}$ per pair
- Bound states are bosons with mass $M=2 m_{\mathrm{dyn}}-E_{b}$
- If binding sufficiently strong $M=0$


## How Symmetry Breaks (2)

- Bosons can (and will) occupy the same lowest energy quantum state (with $p=0$ and $E=0$ )
- The result is a Bose condensation in ground state

- The properties of the ground state change (and its fermionic excitations become massive)

$$
m_{\mathrm{dyn}}=E_{b} / 2
$$

## Part 3

## MAGNETIC CATALYSIS

Review: arXiv:1207.5081

## Magnetic Fields in Nature

- Strong magnetic fields are common inside compact stars
- $\mathbf{1 0}^{10}$ to $\mathbf{1 0}^{15}$ Gauss
- In heavy ion collisions, positive ions generate short-lived ( $\Delta \mathrm{t} \approx 10^{-24} \mathrm{~s}$ ) magnetic fields
- $\mathbf{1 0}^{18}$ to $\mathbf{1 0}^{19}$ Gauss
- Early Universe - up to $10^{24}$ Gauss

- Graphene (High Magnetic Field Laboratory) $-4.5 \times 10^{5}$ Gauss


## Idea of Magnetic Catalysis

- Magnetic field constrains perpendicular motion of charged particles
- Particle-antiparticle binding becomes easy
- Even arbitrarily weak attractive interaction is sufficient to form bound states
- Condensate forms and symmetry breaks down
- Fermions become massive


## This is MAGNETIC CATALYSIS

[I.S. arXiv:1207.5081]

## Landau Levels

- Fermions in a magnetic field in $\left(3_{\text {space }}+1_{\text {time }}\right) \mathrm{D}$

$$
\left[i \gamma^{0} \partial_{0}-i \vec{\gamma} \cdot(\vec{\nabla}+i e \vec{A})\right] \Psi=0
$$

- Energy spectrum

$$
E_{n}^{(3+1)}\left(p_{3}\right)= \pm \sqrt{2 n|e B|+p_{3}^{2}}
$$



$$
s= \pm 1 / 2 \quad(\text { spin })
$$

where

$$
n=s+\underbrace{k+\frac{1}{2}}_{k=0,1,2, \ldots \quad \text { (orbital) }}
$$

## DIMENSIONAL REDUCTION

- At low energies, only $\mathrm{n}=0$ (highly degenerate) Landau level is relevant

$$
\begin{aligned}
& n=0: \quad E_{0}^{(3+1)}\left(p_{3}\right)= \pm p_{3} \\
& \left(k=0, s=-\frac{1}{2}\right)
\end{aligned}
$$



- Particles behave like $\left(1_{\text {space }}+1_{\text {time }}\right)$-dimensional
- Only motion in z-direction is unconstrained
- Motion in xy-plane is restricted


## Pairing \& New Ground State

- Particles \& anti-particles in $\mathrm{n}=0$ level form bound states

- Bound states (bosons) can (and will) occupy the same lowest energy quantum state
- Such a Bose condensate modifies the ground state (vacuum)

- Fermions are massive in the new vacuum [Gusynin, Miransky, Shovkovy, PRL 73 (1994) 3499]


## Dynamical Mass

- While $m_{0}=0$ originally, a nonzero "dynamical" mass $m_{\text {dyn }}$ is generated
$m_{d y n}^{(2 D)} \propto \sqrt{\alpha} \sqrt{|e B|}$, and $m_{d y n}^{(3 D)} \propto \sqrt{|e B|} e^{-C / \alpha}$
- This happens even at the weakest interaction ("catalysis")
- The phenomenon is universal (model details are irrelevant)
- Dimensional reduction is the key ingredient (massless bound states form = symmetry breaking)


## Bound states in 1D

- Bound state energy

$$
\left|E_{1 D}\right| \approx \frac{m_{*}}{2 \hbar^{2}}\left(-\int_{-\infty}^{+\infty} U(x) d x\right)^{2}
$$



- This is a perturbative result

$$
\left|E_{1 D}\right| \propto g^{2}, \text { when } U(x) \rightarrow g U(x)
$$

- Bound state exists if

$$
\int(1+|x|)|U(x)| d x<\infty \quad \& \quad \int U(x) d x \leq 0
$$

## BOUND STATES IN 2D

- Bound states energy
$\left|E_{2 D}\right| \approx \frac{\hbar^{2}}{a^{2} m_{*}} \exp \left(-\frac{\hbar^{2}}{m_{*}}\left|\int_{0}^{\infty} r U(r) d r\right|^{-1}\right)$

- This is a non-perturbative result

$$
\left|E_{2 D}\right| \propto \exp \left(-\frac{C}{g}\right), \quad \text { when } \quad U(x) \rightarrow g U(x)
$$

- Bound state exists if

$$
\int|U(x)|^{1+\varepsilon} d^{2} x<\infty, \int\left(1+x^{2}\right)^{\varepsilon}|U(x)| d^{2} x<\infty \quad \& \quad \int U(x) d^{2} x \leq 0
$$

[B. Simon, Annals Phys. 97 (1976) 279]

## Bound states in 3D

- Potential well in 3D

$$
U(r)=\left\{\begin{array}{ccc}
-g \frac{\pi^{2} \hbar^{2}}{8 m_{*} a^{2}} & \text { for } & r \leq a \\
0 & \text { for } & r>a
\end{array}\right.
$$



- Bound state energy exists only when $g>1$

$$
\left|E_{3 D}\right| \approx \frac{\pi^{4} \hbar^{2}}{2^{7} a^{2} m_{*}}(g-1)^{2}, \text { assuming } 0<g-1 \ll 1
$$

- No bound states when $\mathrm{g}<1$


## Universality of MC

- Input
- Spin- $1 / 2$ charged particles and $\mathrm{B} \neq 0$
- Attractive particle-antiparticle interaction
- Output
-Dimensional reduction D->D-2 (low energies)
- Bound state can and do form
- Symmetry breaking happend
- Dynamical mass is generated


## Part 4 APPLICATIONS

## Graphene

- It is a single atomic layer of graphite [Novoselov et al., Science 306, 666 (2004)]
- 2 D crystal with hexagonal lattice of carbon atoms

- Interesting basic physics
- Great promise for applied physics



## Emergence of Dirac fermions

- Translation vectors of the lattice

$$
\mathbf{a}_{1}=a\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad \mathbf{a}_{2}=a\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
$$

Lattice constant: $a \approx 1.42 \AA$


- Two carbon atoms per primitive cell
- Reciprocal lattice

$$
\mathbf{b}_{1}=\frac{2 \pi}{a}\left(1, \frac{1}{\sqrt{3}}\right), \quad \mathbf{b}_{2}=\frac{2 \pi}{a}\left(1,-\frac{1}{\sqrt{3}}\right)
$$



- Two Dirac points in the Brillouin zone


## Tight binding model

- There are strong covalent sigma-bonds between nearest neighbors
- Hamiltonian

$$
H=-t \sum_{\mathbf{n}, \delta_{i}, \sigma}\left[a_{\mathbf{n}, \sigma}^{+} \exp \left(\frac{i e}{\hbar c} \mathbf{A} \cdot \delta_{i}\right) b_{\mathbf{n}+\delta, \sigma}^{+}+c . c .\right]
$$

$a_{\mathbf{n}, \sigma} / b_{\mathbf{n}+\delta, \sigma}$ are annihilation operators in A/Bsublattice \& spin $\sigma=\uparrow, \downarrow$

- The nearest neighbor vectors are

$$
\delta_{1}=\frac{\mathbf{a}_{1}-\mathbf{a}_{2}}{3}, \quad \delta_{2}=\frac{\mathbf{a}_{1}+2 \mathbf{a}_{2}}{3}, \quad \delta_{3}=-\left(\delta_{1}+\delta_{2}\right)
$$

## DISPERSION RELATION



## Magnetic Catalysis in Graphene

- Charge carriers are spin- $1 / 2$ fermions with $\mathrm{m}=0$
- $\mathrm{m}_{\mathrm{dyn}} \neq 0$ is expected in a strong magnetic field [Khveshchenko, PRL 87, 206401 (2001)]
[Gorbar, Gusynin, Miransky, Shovkovy, PRB 66 (2002) 045108]
- Possible complications:
- many types of "Dirac" masses in 2D
- competition with quantum Hall ferromagnetism
- nonzero electron/hole density
- impurities, lattice defects, ripples, etc.
- How to test this experimentally?


## Quantum Hall Effect

- General setup
- Current starts to run:

- Steady state:

- Hall conductivity $\boldsymbol{\sigma}_{\mathbf{x y}}$ :

$$
\mathbf{j}_{x}=\sigma_{x y} \mathbf{E}_{y}
$$

## QHE in Graphene


$E_{n}=\operatorname{sgn}(n) \sqrt{2 e \hbar v_{\mathrm{F}}^{2}|n| B}$

[Gusynin, Sharapov, PRL 95, 146801 (2005)] [Peres, Guinea, Castro Neto, PRB 73, 125411 (2006)] [Novoselov et al., Nature 438, 197 (2005)] [Zhang et al., Nature 438, 201 (2005)]

## ANOMALOUS QHE

- New plateaus are observed at

$$
\begin{aligned}
v & =0 \\
v & = \pm 1 \\
v & = \pm 3 \\
v & = \pm 4
\end{aligned}
$$

[Novoselov et al., Science 315, 1379 (2007)]
[Abanin et al., PRL 98, 196806 (2007)]

[Checkelsky et al., PRL 100, $\underline{206801 \text { (2008)] }}$
[Xu Du et al., Nature 462, 192 (2009)]

## EXPLANATION OF QHE

- Generation of different dynamical "masses": all integer plateaus are possible!



## Is "3D Graphene" Possible?

- 3D materials with Dirac quasiparticles:
$-\mathrm{Bi}_{1-x} \mathrm{Sb}_{x}$ alloy

- "New" 3D Dirac materials (ARPES):
$-\mathrm{Na}_{3} \mathrm{Bi} \quad$ [Z. K. Liu et al., arXiv:1310.0391]
$-\mathrm{Cd}_{3} \mathrm{As}_{2} \quad$ [M. Neupane et al., arXiv:1309.7892]
[S. Borisenko et al., arXiv:1309.7978]

CADMIUM ARSENIDE

3D Dirac semimetal $\mathrm{Cd}_{3} \mathrm{As}_{2}$

[S. Borisenko et al., arXiv:1309.7978]

Potassium bismuthide


In the vicinity of 3D Dirac points:

$$
E=v_{x} k_{x}+v_{y} k_{y}+v_{z} k_{z}
$$

[Z. K. Liu et al., arXiv:1310.0391]

# Part 5 CHIRAL MAGNETIC EFFECTS (NONZERO DENSITY OF MATTER) 

## Chiral Magnetic Effect

- A specific spatial pattern of electric currents (or charge correlations) in heavy ion collisions

[Kharzeev, McLerran, Warringa, Nucl. Phys. A 803, 227 (2008)] [Fukushima, Kharzeev, Warringa, Phys. Rev. D 78, 074033 (2008)]


## EXPERIMENTAL EVIDENCE


[B. I. Abelev et al. [The STAR Collaboration], arXiv:0909.1739] [B. I. Abelev et al. [STAR Collaboration], arXiv:0909.1717]

## Helicity/Chirality

- Helicities of massless (or ultra-relativistic) particles are (approximately) conserved


## Righ-handed

## Left-handed

- Conservation of chiral charge is a property of massless Dirac theory (classically)
- At quantum level, however, such symmetry is anomalous


## "Continuity" EQUATION

- Continuity equation for the chiral charge

$$
\frac{\partial \rho_{5}}{\partial t}-\vec{\nabla} \vec{j}_{5}=-\frac{e^{2}}{4 \pi^{2}}(\overrightarrow{\boldsymbol{E}} \cdot \overrightarrow{\boldsymbol{B}})
$$

which is of topological nature and exact

- Among its consequences are the relations:

$$
\left\langle\vec{j}_{5}\right\rangle=-\frac{e \vec{B}}{2 \pi^{2}} \mu \quad\langle\vec{j}\rangle=\frac{e^{2} \vec{B}}{2 \pi^{2}} \mu_{5}
$$

- These relations are the key relations leading to the chiral magnetic effect


## CME: Charge Correlations

- Start from a small baryon density and $\mathrm{B} \neq 0$

- Produce back-to-back electric currents [Gorbar, Miransky, Shovkovy, Phys. Rev. D 83, 085003 (2011)]


## Beyond CME

- Axial vector current in relativistic matter in a magnetic field (3+1 dimensions)

$$
\left\langle j_{5}^{3}\right\rangle_{0}=\frac{-e B}{2 \pi^{2}} \mu_{0} \quad(\text { free theory! })
$$

[Metlitski \& Zhitnitsky, Phys Rev D 72, 045011 (2005)]

- Any new physics when interaction is included?
- Yes! Chiral shift is dynamically generated (resembling $\mathrm{m}_{\text {dyn }}$ in the magnetic catalysis)


## Chiral shift and Fermi surface

- Chirality is a "good" concept at large density

$$
\left|k_{3}\right| \gg m
$$

- Fermi surface of L-handed fermions is shifted in negative $z$-direction
- Fermi surface of R-handed ${ }^{0.5}$ fermions is shifted in positive $z$-direction



## Physics due to Chiral Shift

- Chiral shift induces a chiral asymmetry at the Fermi surface
- Chiral shift can be induced in Dirac semimetals (affects magnetoresistance)
- Potential applications:
- Pulsar kicks
- Facilitation of supernova explosions
- modified Chiral magnetic effect
- Making Weyl semimetals from $\mathrm{Na}_{3} \mathrm{Bi} \& \mathrm{Cd}_{3} \mathrm{As}_{2}$


## Summary

- Studies of relativistic matter in magnetic field are relevant for many branches of physics
- The underlying physics is conceptually rich
- Recent developments include
- Magnetic catalysis
- Chiral magnetic effect [Fukushima, Kharzeev, Warringa, PRD 78, 074033 (2008)]
- Chiral shift [Gorbar, Miransky, Shovkovy, PRC 80, 032801 (R) (2009)]
- Chiral magnetic spiral [Basar, Dunne, Kharzeev, PRL 104, 232301 (2010)]
- Magnetic properties of Dirac semimetals [arXiv:1312.0027]
- Quantum Hall Effect in graphene [...]
- and many others

