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– Electrons, protons, quarks inside 
compact stars (very dense matter) 

– Quark gluon plasma in heavy ion 
collisions (a very hot fireball) 

– Hot matter in the Early Universe 
(an extremely hot world) 

– Massless particles in graphene 
(quasiparticles behave as massless particles) 
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•  Examples of relativistic matter 
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• Non-relativistic 

– Particles move much slower than the speed of light 
– Kinetic energies are much smaller than the rest energy 

• Relativistic 
– Particle velocities approach the speed of light  
– Kinetic energies are comparable to, or larger than Erest
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! 

Ekin " E rest : E = c p2 +m2c 2 # c p

! 

Ekin << E rest : E = c p2 +m2c 2 " mc 2 +
p2

2m
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•  What happens when you squeeze matter to 
very high density? (e.g., neutrons inside neutron stars) 

Pauli exclusion principle: fermions cannot occupy 
same quantum states (they end up filling out all states 
from  pmin! 0  to                     )   
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•  What happens when you heat matter to very 
high temperature? (e.g., matter in heavy ion collisions) 

Heat is equivalent to kinetic energy: average kinetic 
energy of particles is proportional to temperature: 
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•  Can matter be made of massless particles? 

•  Examples: 

– Graphene 

–  Bi1-xSbx alloy with x!0.03 

–  cadmium arsenide Cd3As2 

–  potassium bismuthide Na3Bi 

Yes! Electron quasiparticles masquerade as massless 
particles in some materials (no rest mass energy) 

2D (planar) materials 

3D materials 

! 

E = vxkx + vyky + vzkz
! 

E = vF kx
2 + ky

2
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•  Underlying laws are symmetric, but the system/ground 
state changes under a symmetry transformation 

•  Symmetry may refer to “internal” symmetries (e.g. 
rotations in color/flavor spaces, rescaling, etc.) 
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•  Massless fermions enjoy chiral symmetry (rotation of 
left-handed and right-handed particles in flavor space) 

•  Massive fermions (e.g., quarks, nucleons, etc.) “break” 
chiral symmetry 

•  Hadron physics reveals traces of the original chirally 
symmetric laws, which are broken in the ground state 

Righ-handed 

Left-handed 

uR 

uL 

dR 

dL 

! 

m " C1 L +C2 R
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•  Particles & anti-particles form bound states 

•  Let’s assume that the binding energy is Eb per 
pair  

•  Bound states are bosons with mass M=2mdyn-Eb 

•  If binding sufficiently strong M=0 
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•  Bosons can (and will) occupy the same lowest 
energy quantum state (with p=0 and E=0) 

•  The result is a Bose condensation in ground state 

•  The properties of the ground state change (and 
its fermionic excitations become massive)  

mdyn= Eb/2 
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Review: arXiv:1207.5081 
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•  Strong magnetic fields are common inside 
compact stars   
–  1010 to 1015 Gauss 

•  In heavy ion collisions, positive ions generate 
short-lived ("t ! 10-24 s) magnetic fields 
–  1018 to 1019 Gauss  

•  Early Universe  
–  up to 1024 Gauss  

• Graphene (High Magnetic Field Laboratory) 
–  4.5 ! 105 Gauss 
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• Magnetic field constrains perpendicular 
motion of charged particles 

•  Particle-antiparticle binding becomes easy 

•  Even arbitrarily weak attractive interaction is 
sufficient to form bound states  

•  Condensate forms and symmetry breaks down 

•  Fermions become massive 

This is MAGNETIC CATALYSIS 
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[I.S. arXiv:1207.5081] 
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•  Fermions in a magnetic field in (3space+1time)D 

•   Energy spectrum 

 where 

! 

n = s+ k +
1
2

! 

En
(3+1)(p3) = ± 2n eB + p3

2

! 

s = ± 12 (spin)
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k = 0, 1, 2,… (orbital)
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• At low energies, only n=0 (highly degenerate) 
Landau level is relevant 

•  Particles behave like (1space+1time)-dimensional  

• Only motion in z-direction is unconstrained 

• Motion in xy-plane is restricted  

Occupied 
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n = 0 : E0
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•  Particles & anti-particles in n=0 level form 
bound states 

•  Bound states (bosons) can (and will) occupy 
the same lowest energy quantum state 

•  Such a Bose condensate modifies the ground 
state (vacuum) 

•  Fermions are massive in the new vacuum 
 [Gusynin, Miransky, Shovkovy, PRL 73 (1994) 3499] 
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• While m0=0 originally, a nonzero “dynamical” 
mass mdyn is generated 

            ,   and 

•  This happens even at the weakest interaction 
(“catalysis”) 

•  The phenomenon is universal (model details are 
irrelevant) 

• Dimensional reduction is the key ingredient 
(massless bound states form = symmetry breaking) 
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! 

mdyn
(2D ) " # eB

! 

mdyn
(3D ) " eBe#C /$
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•  Bound state energy 

•  This is a perturbative result 

•  Bound state exists if 

 [B. Simon, Annals Phys. 97 (1976) 279] 
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•  Bound states energy 

•  This is a non-perturbative result 

•  Bound state exists if 

 [B. Simon, Annals Phys. 97 (1976) 279] 
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•  Potential well in 3D 

•  Bound state energy exists only when !"# 

• No bound states when !$#%

22 
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U(r) =
"g # 2!2
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•  Input 

– Spin-1/2 charged particles and B#0 

– Attractive particle-antiparticle interaction 

• Output 

– Dimensional reduction D->D-2 (low energies) 

– Bound state can and do form 

– Symmetry breaking happend 

– Dynamical mass is generated 
23 Department of Physics, Kent State University January 30, 2014 
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•  It is a single atomic layer of graphite 
 [Novoselov et al., Science 306, 666 (2004)] 

•  2D crystal with hexagonal lattice of carbon 
atoms 

•  Interesting basic physics 
• Great promise for applied physics 
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•  Translation vectors of the lattice 

 Lattice constant: a ! 1.42 Å 
•  Two carbon atoms per primitive cell 

•  Reciprocal lattice 

•  Two Dirac points in the Brillouin zone 
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•  There are strong covalent sigma-bonds 
between nearest neighbors 

• Hamiltonian 

 an,!/bn+",! are annihilation operators in A/B-
sublattice & spin !=#,$ 

•  The nearest neighbor vectors are 
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•  Charge carriers are spin-$ fermions with m=0 
• mdyn#0 is expected in a strong magnetic field 
 [Khveshchenko, PRL 87, 206401 (2001)] 
 [Gorbar, Gusynin, Miransky, Shovkovy, PRB 66 (2002) 045108] 

•  Possible complications: 
– many types of “Dirac” masses in 2D 
– competition with quantum Hall ferromagnetism 
– nonzero electron/hole density  
– impurities, lattice defects, ripples, etc. 

• How to test this experimentally? 
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• General setup 

– Current starts to run: 

– Steady state: 

– Hall conductivity "xy: 

jx = "xy Ey 
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• New plateaus are 
observed at 

 %=0 
 %=±1 
 %=±3 
 %=±4 

[Novoselov et al., Science 315, 1379 
(2007)] 

[Abanin et al., PRL 98, 196806 (2007)] 
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[Checkelsky et al., PRL 100, 206801 (2008)] 

[Xu Du et al., Nature 462, 192 (2009)]  
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• Generation of different dynamical “masses”: 
all integer plateaus are possible!     
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arXiv:0806.0846 
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•  3D materials with Dirac quasiparticles: 
– Bi1-xSbx alloy 

•  “New” 3D Dirac materials (ARPES): 
– Na3Bi  [Z. K. Liu et al., arXiv:1310.0391] 

– Cd3As2  [M. Neupane et al., arXiv:1309.7892] 
    [S. Borisenko et al., arXiv:1309.7978] 
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[S. Borisenko et al., arXiv:1309.7978] 

p-doped  

n-doped  

January 30, 2014 



Department of Physics, Kent State University 36 

[Z. K. Liu et al., arXiv:1310.0391] 

! 

E = vxkx + vyky + vzkz

In the vicinity of 3D Dirac points: 
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• A specific spatial pattern of electric currents 
(or charge correlations) in heavy ion collisions   
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[Kharzeev, McLerran, Warringa, Nucl. Phys. A 803, 227 (2008)] 
[Fukushima, Kharzeev, Warringa, Phys. Rev. D 78, 074033 (2008)] 
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[B. I. Abelev et al. [The STAR Collaboration], arXiv:0909.1739] 
[B. I. Abelev et al. [STAR Collaboration], arXiv:0909.1717] 
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• Helicities of massless (or ultra-relativistic)  
particles are (approximately) conserved 

•  Conservation of chiral charge is a property of 
massless Dirac theory (classically) 

• At quantum level, however, such symmetry is 
anomalous 
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Righ-handed 

Left-handed 
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•  Continuity equation for the chiral charge 

 which is of topological nature and exact 
• Among its consequences are the relations: 

•  These relations are the key relations leading 
to the chiral magnetic effect 
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•  Start from a small baryon density and B#0 

•  Produce back-to-back electric currents 
[Gorbar, Miransky, Shovkovy, Phys. Rev. D 83, 085003 (2011)] 
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• Axial vector current in relativistic matter in a 
magnetic field (3+1 dimensions) 

             (free theory!) 

 [Metlitski & Zhitnitsky, Phys Rev D 72, 045011 (2005)] 

• Any new physics when interaction is included? 

• Yes! Chiral shift is dynamically generated 
(resembling mdyn in the magnetic catalysis) 
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•  Chirality is a “good” 
concept at large density 

•  Fermi surface of L-handed 
fermions is shifted in 
negative z-direction  

•  Fermi surface of R-handed 
fermions is shifted in 
positive z-direction 
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! 

k3 >> m
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•  Chiral shift induces a chiral asymmetry at the 
Fermi surface 

•  Chiral shift can be induced in Dirac 
semimetals (affects magnetoresistance) 

•  Potential applications: 
– Pulsar kicks 

– Facilitation of supernova explosions 

– modified Chiral magnetic effect 

– Making Weyl semimetals from Na3Bi & Cd3As2    
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•  Studies of relativistic matter in magnetic field 
are relevant for many branches of physics 

•  The underlying physics is conceptually rich 
•  Recent developments include 
– Magnetic catalysis             […] 

– Chiral magnetic effect   [Fukushima, Kharzeev, Warringa, PRD 78, 074033 (2008)] 

– Chiral shift      [Gorbar, Miransky, Shovkovy, PRC 80, 032801 (R) (2009)] 

– Chiral magnetic spiral     [Basar, Dunne, Kharzeev, PRL 104, 232301 (2010)] 

– Magnetic properties of Dirac semimetals       [arXiv:1312.0027] 

– Quantum Hall Effect in graphene        […] 

– and many others            […] 
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