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INTRODUCTION 
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Relativistic Matter 
•  Examples of relativistic matter  

– Electrons, protons, quarks inside 
compact stars (white dwarfs, neutron, 
hybrid or quark stars) 

– Quark gluon plasma in heavy ion 
collisions (kBT ~ 200 MeV ~ 1012 K) 

– Hot matter in the Early Universe 
(kBT ~ 100 GeV at EW transition) 

– Quasiparticles in Dirac semimetals 
(graphene, Na3Bi, Cd3As2 with zero mass 
Dirac fermions) 
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What Means “Relativistic”? 
•  Relativistic matter (                ) 

 compare with nonrelativistic case (              ) 

– High density (e.g., in stars) leads to occupation of 
states with large momenta: 

– High temperature (e.g., heavy ion collisions) means 
energetic particles, 

– Vanishing mass (e.g., graphene) works too… 
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Magnetic Fields 
•  Strong magnetic fields exist inside compact stars   

–  1010 to 1015 Gauss 

•  In heavy ion collisions, positive ions generate short-
lived (!t " 10-24 s) magnetic fields 

–  1018 to 1019 Gauss  
•  Early Universe  

–  up to 1024 Gauss  
•  Graphene (High Magnetic Field Laboratory) 

–  up to 5 ! 105 Gauss 
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MAGNETIC CATALYSIS 
Review: arXiv:1207.5081 
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Landau levels 
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•  Fermions in magnetic field 

•   Free energy spectrum 

 where 
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Dimensional reduction 
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•  Low-energy is due to n=0 Landau level 

•  This is (1+1)D spectrum! 

•  Propagator also looks like in (1+1)D: 

Occupied 
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Magnetic Catalysis (clues) 
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•  Low-energy regime is dimensionally reduced 

  
•  Density of states at E = 0 

•  Attractive interaction ! gap in the spectrum 
(This may remind superconductivity…) 

[Gusynin, Miransky, Shovkovy, Phys. Rev. Lett. 73 (1994) 3499] 
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Magnetic Catalysis (physics) 
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•  n=0: particles & anti-particles 

•  Bound states are energetically favorable (an 
energy gain of Eb per pair)  

•  Bound states are bosons 

•  Bosons can (and will) occupy same zero 
momentum quantum state 

•  Bose condensate forms 

•  Symmetry breaking ! energy (mass) gap 
 [Gusynin, Miransky, Shovkovy, Phys. Rev. Lett. 73 (1994) 3499] 



Dynamical Mass 
• While m0=0 originally, a nonzero “dynamical” 

mass mdyn is generated 

            ,   and 

•  This happens even at the weakest interaction 
(“catalysis”) 

• Dimensional reduction and finite density of 
states at E=0 play the key role 

•  The phenomenon is largely insensitive to model 
details 
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MAGNETIC CATALYSIS IN 
QCD 
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Credit: Centre for the Subatomic Structure of Matter, University of Adelaide 



QCD in a magnetic field 
•  Weak coupling, (semi-)perturbative regime: 

•  Running QCD coupling  
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[Miransky & I.S., Phys. Rev. D 66 (2002) 045006] 



Dynamical quark masses 
•  Approximate dynamical mass:  
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Catalysis at T=0 (lattice) 
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[Bali et al., Phys. Rev. D86, 071502 (2012)] 



(Inverse) Catalysis at T#0 
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[Bali et al., Phys. Rev. D86, 071502 (2012)] 

[Bali et al., JHEP 02 (2012) 044] 



Tc vs. B (inverse catalysis) 
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[Bali et al., JHEP 02, 044 (29012)] 



Valence vs. sea 
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[Bruckmann, G. Endrodi, T. G. Kovacs, arXiv:1303.3972] 

•  Hints of gluon screening (?) 

•  See also [Ilgenfritz et al. Phys. Rev. D 89, 054512 (2014)]  



MAGNETIC CATALYSIS IN 
GRAPHENE 
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Dirac Fermions in graphene 
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Low-energy theory 
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•  Low energy quasiparticles are massless Dirac fermions 
(              ) 

•  Spinor: 

•  Low-energy model with U(4) global symmetry: 

[Wallace, Phys. Rev. 71, 622 (1947)] 
[Semenoff, Phys. Rev. Lett. 53, 2449 (1984)] 
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Quantum Hall Effect 
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[Gusynin, Sharapov, Phys. Rev. Lett. 95, 146801 (2005)]  
[Peres, Guinea, Castro Neto, Phys. Rev. B 73, 125411 (2006)]  
[Novoselov et al., Nature 438, 197 (2005)], [Zhang et al., Nature 438, 201 (2005)] 



Anomalous QHE 
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• New plateaus at 
 "=0 

 "=±1 
 "=±3 
 "=±4 

•  Some Landau level 
degeneracy is lifted 

Zhang et al., PRL 96, 136806 (2006) 
!=4 

!=1 

!=-1 

!=-4 

!=0 

[Novoselov et al., Science 315, 1379 (2007)] 
[Abanin et al., Phys. Rev. Lett. 98, 196806 (2007)] 
[Checkelsky et al., Phys. Rev. Lett. 100, 206801 (2008)] 
[Xu Du et al., Nature 462, 192 (2009)]  



Magnetic Catalysis in Graphene 
•  Charge carriers are massless Dirac fermions 

•  Spectrum in magnetic field: 

•  Degenerate E=0 level with particles & holes 

•  Electron-hole (excitonic) pairing occurs 

•  mdyn#0 is generated 

•  In qualitative agreement with experiment 
 [Gorbar, Gusynin, Miransky, Shovkovy, Phys. Rev. B 66 (2002) 045108] 
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NONZERO DENSITY: CHIRAL 
SHIFT 
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Credit: Illustration by Carin Cain 



Helicity/Chirality 
• Helicities of massless (or ultra-relativistic)  

particles are (approximately) conserved 

•  Conservation of chiral charge is a property of 
massless Dirac theory (classically) 

•  The symmetry is anomalous at quantum level  
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Righ-handed 

Left-handed 
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•  Continuity equation for the chiral charge 

• Among its consequences are the relations: 

•  These are key relations of the chiral  magnetic 
effect 

“Continuity” equation 
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[Kharzeev, McLerran, Warringa, Nucl. Phys. A 803, 227 (2008)] 
[Fukushima, Kharzeev, Warringa, Phys. Rev. D 78, 074033 (2008)] 
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Beyond CSE/CME 
• Any radiative corrections to CSE? 

•  Is there a dynamical parameter ! (“chiral shift”) 
associated with this condensate? 

 ["=0 is not protected by any symmetry] 

• Yes! Chiral shift is dynamically generated 
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[Gorbar, Miransky, Shovkovy, Phys. Rev. D 83 (2011) 085003] 

[Metlitski & Zhitnitsky, Phys Rev D 72, 045011 (2005)] 
[Newman & Son, Phys. Rev. D 73 (2006) 045006] 



Self-energy at B#0 

•  The result has the form 

 where 
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Chiral shift and Fermi surface 
•  QED: Fermi surface of L-handed (R-handed fermions is 

shifted in negative (positive) z-direction 

May 26, 2014 Low Energy Challenges for High Energy Physicists, Perimeter Institute 30 

! 

Det i S "1(p) + # (1)(p)[ ] = 0

[Gorbar, Miransky, Shovkovy, Wang, PRD 88 (2013) 025043] 



•  Final result (loops+counterterms) 

• Unphysical dependence on photon mass 
because infrared physics with 

 not captured properly 

• Note: similar problem exists in calculation of 
Lamb shift 

Corrections to axial current 
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[Gorbar, Miransky, Shovkovy, Wang, PRD 88 (2013) 025025] 



DIRAC SEMIMETALS 
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Credits: Borisenko et al., arXiv:1309.7978 



Dirac semimetals 
•  Solid state materials with Dirac quasiparticles: 

– Bi1-xSbx alloy 

•  “New” 3D Dirac materials (ARPES): 
– Na3Bi  [Z. K. Liu et al., arXiv:1310.0391] 

– Cd3As2  [M. Neupane et al., arXiv:1309.7892] 
   [S. Borisenko et al., arXiv:1309.7978] 
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Cadmium arsenide 
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[S. Borisenko et al., arXiv:1309.7978] 

p-doped  

n-doped  



Potassium bismuthide 
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[Z. K. Liu et al., arXiv:1310.0391] 

! 

E = vxkx + vyky + vzkz

In the vicinity of 3D Dirac points: 



µ=0: Semimetal ! Insulator  
•  Doping ! neutrality point (µ=0) 

•  Magnetic field B and small temperature: mass 
gap generation 

 (assuming that coupling constant $ " 1) 

•  Experimental signatures are expected in 
transport measurements 
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mdyn ~ 10"3 eB # 8 $10"3 B[T] eV # 90 B[T] K



µ#0: Dirac ! Weyl metal 
• Hamiltonian of a Dirac semimetal 

cf. Weyl semimetal 

•  In a Dirac semimetal, a nonzero chiral shift       
will be induced when B#0, i.e., 
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[Gorbar, Miransky, Shovkovy, Phys. Rev. B 88, 165105 (2013)] 
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Negative magnetoresistance  
•  %33 is expected to decrease with B because 

[Son & Spivak, Phys. Rev. B 88, 104412 (2013)] 

[Nielsen & Ninomiya, Phys. Lett. 130B, 390 (1983)] 

•  Experimental confirmation? [Kim, et al., PRL 111, 246603 (2013)] 
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Longitudinal resistivity 
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[Gorbar, Miransky, Shovkovy, Phys. Rev. B 89 (2014) 085126] 
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Transverse off-diagonal %12 
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[Gorbar, Miransky, Shovkovy, Phys. Rev. B 89 (2014) 085126] 



Summary 
•  Relativistic matter in magnetic fields is relevant 

for many branches of physics 

•  The underlying physics is conceptually rich 

•  A short list of recent developments 
– Magnetic catalysis (QCD, graphene, Dirac metals) 
– Chiral magnetic/separation effect (QCD, Dirac 

metals) 
– Chiral shift (QED/QCD plasma, Dirac/Weyl metals) 
– Chiral magnetic spiral … 
– and many others … 
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