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Dirac (semi-)metals 
•  3D materials with Dirac quasiparticles 

– Bi1-xSbx alloy (at x ≈ 4%) 
– Na3Bi  
– Cd3As2 

•  Near Dirac points: 
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[Z. K. Liu et al., arXiv:1310.0391] 
[M. Neupane et al., arXiv:1309.7892] 
[S. Borisenko et al., arXiv:1309.7978] 

€ 
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Dirac vs. Weyl semimetal 
•  Low-energy Hamiltonian of Dirac/Weyl 

semimetal 

Dirac semimetal   Weyl semimetal 
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B≠0: Chiral separation effect 
•  Axial current density induced by the chemical 

potential 

        (free theory!) 
 [Vilenkin, Phys. Rev. D 22 (1980) 3067] 

 [Metlitski & Zhitnitsky, Phys. Rev. D 72, 045011 (2005)] 
 [Newman & Son, Phys. Rev. D 73 (2006) 045006] 

•  This result is connected to the chiral anomaly 
relation (µ → eΦ) 

•  However, axial current gets radiative corrections 
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Landau spectrum at B≠0 
•  Dirac equation with massless fermions (e<0) 

•  Energy spectrum 

 where 
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Asymmetry: LLL ︎➟ hLLs  
•  LLL is spin polarized and chirally asymmetric 

– states with p3<0 (and s=↓) are R-handed 
– states with p3>0 (and s=↓) are L-handed 

•  This indeed implies axial current density 
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Spin vs. orbital motion 
•  Helicity/chirality of massless (ultrarelativistic) 

fermions is (≈) conserved 

•  Chirality does not change in elementary QED 
interactions 
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R-handed 

L-handed 



Asymmetry: LLL ︎⇒ hLLs  
•  What is the effect of interactions? 

•  To preserve chirality, particle momenta have to 
“flip” whenever the spin “flips” 

•  B-field ⇒ preferred spin orientation s=↓ 

•  Interactions ⇒ chiral asymmetry in hLLs 

 L-handed prefer   s=↓   and, thus,   p3<0 

 R-handed prefer   s=↓   and, thus,   p3>0 
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Chiral asymmetry 
•  Anticipated outcome: L- & R-handed Fermi 

surfaces shift in p3 direction 

Note: p⊥ is not well-defined 

p⊥2 is replaced by 2n|eB| 
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Chiral shift at low energies 
•  Ground state expectation value of the axial 

current (CSE) 

[Metlitski & Zhitnitsky, Phys. Rev. D 72, 045011 (2005)] 

 should induce a dynamical (chiral shift) 
parameter Δ associated with the condensate, 

[E. Gorbar, V. M., I. Shovkovy, Phys. Rev. C 80, 032801(R) (2009)] 

(Δ=0 is not protected by any symmetry) 
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δL = Δψγ 3γ 5ψ
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NJL model: quick check 
•  NJL model (local interaction) 

•  The equation for the chiral shift 
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•  Chirality is  ≈  well-defined at Fermi surface (|p3|≫m) 
•  L-handed Fermi surface: 

•  R-handed Fermi surface: 

Chiral shift @ Fermi surface 
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[Gorbar, Miransky, Shovkovy, Phys. Rev. D 83, 085003 (2011)] 
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QED in weak field (B→0) 
•  The result has the form 

 Near Fermi surface (p0→0, |p|→pF) 
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[Gorbar, Miransky, Shovkovy, Wang, Phys. Rev. D 88, 025043 (2013)] 



Dispersion relations in QED 
•  Let us use the condition (for a small B) 
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[Gorbar, Miransky, Shovkovy, Wang, Phys. Rev. D 88, 025043 (2013)] 



QED in strong field 
 Self-energy in the Landau-level representation: 

where δµn, Δn, µ5,n, … are “projections” of the 
self-energy on the nth Landau level, 

where 
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[Gorbar, Miransky, Shovkovy, Wang, Phys. Rev. D 88, 025043 (2013)] 



QED in strong field: Δn 
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[Xia, Gorbar, Miransky, Shovkovy, Phys. Rev. D 90, 085011 (2014)] 



QED in strong field: µ5,n 
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[Xia, Gorbar, Miransky, Shovkovy, Phys. Rev. D 90, 085011 (2014)] 



QED in strong field: δp3 
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[Xia, Gorbar, Miransky, Shovkovy, Phys. Rev. D 90, 085011 (2014)] 



How large is the asymmetry? 
In QED: 

In QCD:  
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Neutrino asymmetry 
•  Neutrinos equilibrate with the “flow” of L-

handed fermions via 

•  An asymmetric L-handed Fermi surface with 

δp3 ~ α |eB|/µ 

should scatter νe’s more preferably in the 
direction of the field 
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Neutrinos from protoneutron star 
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[Pons, Reddy, Prakash, Lattimer, Miralles, Astrophys.J. 513 (1999) 780] 

LE ≈ 2×1051 erg/s

    ≈1057  MeV/s

Ntot ≈
1057  MeV/s

5 MeV
20 s

       ≈ 4×1057  

Eν ≈ 5 to 10 MeV



Pulsar kicks 
•  Sizeable kick carry momenta of order 

 i.e., average momentum asymmetry per 
neutrino should be about  
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(1000 km/s)×1.4MSun ≈ 3×1036  kg ⋅m/s

                           ≈ 9×1044  J/c
                           ≈ 6×1057  MeV/c

6×1057  MeV/c
4×1057

≈1.5 MeV/c



Total momentum estimate 
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•  Total momentum carrier by L-handed 
fermions 
– QED (B=1018 G and µ=100 MeV): 

– QCD (B=1018 G and µ=400 MeV): 

•  Pulsar kicks? Possible, but questions remain… 

P ~ N δ p ~1057
α eB
µ

~ (70 km/s)×1.4MSun

P ~ N δ p ~1057
αs eB
µ

~ (1700 km/s)×1.4MSun



Summary 
•  LLL chiral asymmetry plus interactions 

generate chiral shift/asymmetry in higher LLs 

•  Chiral asymmetry shifts the L-handed and R-
handed Fermi surfaces along B-field direction 

•  Chiral asymmetry can produce asymmetric 
neutrino emission and generate pulsar kicks 

•  The mechanism is more promising for quark 
stars, but may even affect all compact stars 
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