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CHIRAL MATTER
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Chiral fermions

• Massless Dirac fermions:

For particles (p0 > 0): chirality = helicity

For antiparticles (p0 < 0): chirality = - helicity

• Massive Dirac fermions in ultrarelativistic regime

- High temperature: T >> m

- High density: µ >> m
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Chiral matter

• Matter made of chiral fermions with  nL ≠ nR

• Unlike the electric charge (nR + nL), the chiral

charge (nR - nL) is not conserved

• The chiral symmetry is anomalous in quantum 

theory
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DIRAC & WEYL MATERIALS

Credits: Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)
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Dirac semimetals
• Solid state materials with Dirac quasiparticles:

– Bi1-xSbx alloy

• “New” 3D Dirac materials (ARPES):

– Na3Bi (Potassium bismuthide) [Liu et al., Science 343, 864 (2014)]

– Cd3As2 (Cadmium arsenide)       [Neupane et al., Nature Commun. 5, 3786 (2014)]

[Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)]
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Dirac materials
• Bi1-xSbx alloy (at x ≈ 4%)

• Na3Bi 

• Cd3As2

• ZrTe5

[Z. K. Liu et al., Science 343, 864 (2014)]

[M. Neupane et al., Nature Commun. 5, 3786 (2014)]

[S. Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)]

[X. Li et al., Nature Physics 12, 550 (2016)]
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Dirac vs. Weyl materials

• Low-energy Hamiltonian of a Dirac/Weyl

material

Dirac Weyl

H = d
3
rψ −iv
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Weyl materials
• TaAs (tantalum arsenide)

• NbAs (niobium arsenide)

• TaP (tantalum phosphide)

• NbP (niobium phosphide)

• WTe2 (tungsten telluride)

[S.-Y. Xu et al., Science 349, 613 (2015)]

[B. Q. Lv et al., Phys. Rev. X5, 031013 (2015)]

[S.-Y. Xu et al., Nature Physics 11, 748 (2015)] 

[S.-Y. Xu et al., Science Adv. 1, 1501092 (2015)]

[I. Belopolski et al. arXiv:1509.07465]

[F. Y. Bruno et al., Phys. Rev. B 94, 121112 (2016)]
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• The Hamiltonian for massless Dirac fermions is given by

�" = �% � ' �⃗ 0
0 −�% � ' �⃗

• This can we viewed as a combination of two Weyl fermions

�, = ��% � ' �⃗
where � = ±1 is a chirality

The Weyl energy eigenstates are given by

�1, = 1
2�14 �5

�1 + ��74 	�9
� �1 − ��74 	�5

They described particles of energy �1 = �% �:; + �<; + �7;4

The mapping  � → �1, has a nontrivial topology

Low-energy Hamiltonian
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• Consider evolution from �� to ��?@�:

�� ��?@� ≈ 1 + �� ' �� �� �� ≈ �E��'@�
where �� = −� �� �� �� is the Berry connection

• The Berry curvature is defined as follows:

�1 = �1×��
• Note the similarity with gauge fields, but �� and �1 are 

defined in the momentum space

• It is convenient to define the Chern number (flux of �1)

� = 1
2�L�1

4

4
' ���

• A nonzero (integer) Chern number indicates a nonzero 

(topological) charge inside the �-volume surrounded by the 

closed surface (Gauss’s law)

Berry connection & curvature
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Gauge theory vs. Berry effects

Gauge theory Berry effects

Local at coordinate space Local at momentum space

Gauge field � Berry connection �
Magnetic field 

� = ��×�
Berry curvature 

� = ��×�
Aharonov-Bohm phase 
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• In the case of Weyl fermions,

�1 = � �
2�^

(Note: this looks like a field of a monopole at � = 0)

• Let us calculate the total flux of �1-field through the 

spherical surface of radius K with the center at � = 0
� = 1

2�L�
�
2�^

4

4
' �� �; sin � ���� = � = ±1

• Thus, the electronic structure of massless Weyl fermions 

is characterized by a topological monopole at � = 0
• Is the Berry monopole just a mathematical curiosity? 

• Are there any observable consequences?

Berry curvature for Weyl fermions
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• In solid state physics, the momentum space (Brillouin zone) 
is compact 

• Thus, Weyl fermions come in pairs of opposite chirality 
[Nielsen & Ninomiya, Nucl. Phys. B 193, 173 (1981); B 185, 20 (1981)]

Weyl fermions on a lattice

• A closed surface around a 

single Weyl node is also a 

closed surface (of opposite 

orientation) around a the rest 

of the Brillouin zone

• Flipping surface orientation 

changes the sign of the flux

• There must be an opposite 

charge somewhere in the rest 

of the zone
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PSEUDO-ELECTROMAGNETIC FIELDS

[Zubkov, Annals Phys. 360, 655 (2015)]

[Cortijo, Ferreiros, Landsteiner, Vozmediano. Phys. Rev. Lett. 115, 177202 (2015)]

[Grushin, Venderbos,Vishwanath, Ilan, arXiv:1607.04268]

[Cortijo, Kharzeev, Landsteiner, Vozmediano, arXiv:1607.03491]

[Pikulin, Chen, Franz, Phys. Rev. X 6, 041021 (2016)]
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Strain in Weyl materials
• Strains affect low-energy quasiparticles in Weyl

materials

where the components of the chiral gauge fields are

The associated pseudo-EM fields are
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Equilibrium vs. nonequilibrium
�, = � + ��e

1) �e = �g = 0

�
Transmission electron 

microscopy (TEM)

2) � = �g = 0

2�e

3) � = �e = 0

2�g
Atomic force  microscopy

4) �e = �g, � = 0

2�g �e �e
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Chiral effects in Weyl materials
• Any qualitative properties of Weyl materials directly 

sensitive to �g and � ?

• Some proposals:

– Anomalous Hall effect

– Anomalous Alfven waves

– Strain/torsion induced CME

– Strain/torsion induced quantum oscillations

– Strain/torsion dependent resistance 

– etc.

• Spectrum of chiral (pseudo-)magnetic plasmons
[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]
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General question
• What are the properties of plasmons in magnetized 

chiral material with �g ≠ 0 and � ≠ 0 ? 

• Chiral matter (µR≠µL)

– This is the case in equilibrium when �g ≠ 0 (�e = −��g)

• Magnetic or pseudomagnetic field is present

• In general,  
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MODEL & METHOD

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]
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Chiral kinetic theory

• Kinetic equation:

where ,  ,

and                           is the Berry curvature

[Son and Yamamoto, Phys. Rev. D 87, 085016 (2013)]

[Stephanov and Yin, Phys. Rev. Lett. 109, 162001 (2012)]
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Current and chiral anomaly

• The definitions of density and current are

They satisfy the following anomalous relations:

✔

✘
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Consistent definition of current
• Additional Bardeen-Zumino term is needed,

• In components, 

• Its role and implications:

– Electric charge is conserved locally (�j	�j = 0)

– Anomalous Hall effect is reproduced

– CME vanishes in equilibrium (�e = −��g) 
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Collective modes
We search for plane-wave solutions with

and the distribution function                              ,

where

The polarization vector & susceptibility tensor:

The plasmon dispersion relations follow from
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RESULTS

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]
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Chiral magnetic plasmons
Non-degenerate plasmon frequencies @ k=0:

where the Langmuir frequency is

and 

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]
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Plasmon frequencies, � ⊥ �

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

�5 = 0.2ℏΩq/�

�tu? − �tu9 ≈ 2���%�5
��ℏ
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Plasmon frequencies, � ∥ �
�∥ = 0.2ℏΩq/�

�g⋆ ∝ �	�	�∥			@		� = 0

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]
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Plasmons with � ≠ 0, � ∥ �e
• The longitudinal mode is sensitive to �e

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]

�∥ ∝ �	��e/Ωq;
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Plasmons with � ≠ 0, � ∥ �, �e
The transverse modes split (in different ways) when (i) � ≠ 0	&	� ≠ 0, 

or (ii) �e ≠ 0		&	�e ≠ 0, or (iii) �∥ ≠ 0, or (iv) �5 ≠ 0. 

For example, 
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PSEUDOMAGNETIC 

HELICONS
[E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, and P.O. Sukhachov, Phys. Rev. B 95, 115422 (2017)]
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Pseudo-magnetic helicons
• Usual helicons are transverse low-energy gapless 

excitations propagating along the background magnetic 

field �g in uncompensated media (e.g., metals with 

different electron and hole densities)
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Helicon in the ionosphere 

(Whistler) and its spectrogram



(Pseudo-)magnetic helicon

• Helicon dispersion law at � → 0:

• Properties:

– Gapless electromagnetic wave propagates in metals without 

magnetic field!

– Chiral shift modifies effective helicon mass

– In the equilibrium regime ��g = −�e, the linear in the wave 

vector term is absent

[E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, and P.O. Sukhachov, Phys. Rev. B 95, 115422 (2017)]
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Helicons at different �∥
��g = −�e, �g,e = 109;T, �e = 5 meV, � = 0, ��∗ = 0.3�ℏ�%/�^
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Helicons at different T

��g = −�e, �g,e = 109;T, �∥ = 0.5�∗, �e = 5 meV, � = 0
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Summary

• Consistent chiral kinetic theory is needed

• Chiral magnetic plasmons (�MPs) are sensitive 

to local charge (non-)conservation

• Properties of �MPs carry information about �g
and �

• �MPs are not only due to the oscillation of 

electric charge, but also chiral charge

• New types of collective modes, pseudomagne-

tic helicons, may exist in Weyl materials
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