

VIRTUAL MEETING

Electromagnetic probes of strongly magnetized quark-gluon plasma Igor Shovkovy Arizona State University

[X. Wang, I. Shovkovy, L. Yu, and M. Huang, Phys. Rev. D 102, 076010 (2020), arXiv:2006.16254]
 [X. Wang and I. Shovkovy, Phys. Rev. D 104, 056017 (2021), arXiv:2103.01967]
 [X. Wang and I. Shovkovy, Eur. Phys. J. C 81 (2021), to appear, arXiv:2106.09029]

[X. Wang and I. Shovkovy, work in preparation]

October 11-14, 2021

Magnetic field in HICs

• QGP produced at RHIC/LHC is **hot** and **magnetized**

 $T \sim 350 \text{ MeV}$ and $B \sim m_{\pi}^2 \sim 10^{18} \text{ G}$ to 10^{19} G

General proposal:

- Electromagnetic probes serve not only as a **thermometer** but also as a **magnetometer** of QGP

Photon emission at B = 0

• Compare with the rate of thermal photon emission at B=0

 $\operatorname{Im}[\Pi^{\mu}_{R,\mu}(\Omega,\mathbf{k})] = \operatorname{resource}_{\mathcal{T}} + \operatorname{resource}_{\mathcal{T}} +$

[Kapusta, Lichard, Seibert, Phys. Rev. D 44, 2774 (1991)] [Baier, Nakkagawa, Niegawa, Redlich, Z. Physik C 53 (1992) 433] [Arnold, Moore, Yaffe, JHEP 12 (2001) 009; hep-ph/0111107] [Ghiglieri et al., JHEP 05 (2013) 010; arXiv:1302.5970]

• The approximate result is given by

$$\mathcal{R}_{2\to 2}: \qquad E\frac{dR}{d^3p} = \frac{5}{9}\frac{\alpha\alpha_s}{2\pi^2}T^2e^{-E/T}\ln\left(\frac{2.912}{g^2}\frac{E}{T}\right)$$

• Processes $(2 \rightarrow 2)$:

Data for direct photons (ALICE)

ALICE Collaboration / Physics Letters B 754 (2016) 235–248

• Also, a large v_2 for direct photons is observed (larger than theoretical models predict)

Igor Shovkovy @ Fall 2021 DNP Meeting

Photon emission rates

• The expression for the rate is

$$\Omega \frac{d^3 R}{d^3 \mathbf{k}} = -\frac{1}{(2\pi)^3} \frac{\mathrm{Im}[\Pi^{\mu}_{R,\mu}(\Omega, \mathbf{k})]}{\exp(\frac{\Omega}{T}) - 1}$$

[Wang, Shovkovy, Yu, Huang, Phys. Rev. D 102, 076010 (2020), arXiv:2006.16254]
[X. Wang and I. Shovkovy, Phys. Rev. D 104, 056017 (2021), arXiv:2103.01967]
[X. Wang and I. Shovkovy, Eur. Phys. J. C 81 (2021), to appear, arXiv:2106.09029]

• At $\vec{B} \neq 0$, the imaginary part of the polarization tensor

$$\operatorname{Im}[\Pi_{R,\mu}^{\mu}(\Omega,\mathbf{k})] = \bigwedge_{(n', p_z - k_z)}^{k} \bigwedge_{(n', p_z - k_z)}^{(n, p_z)}$$

is nonzero at leading order in $\alpha_s!$

Ŕ

 $(n', p_z - k_z)$

 (n, p_z)

Physics processes

• Relevant physics processes (0th order in α_s):

The energy momentum conservation

$$E_{n,p_z,f} - \lambda E_{n',p_z-k_z,f} + \eta \Omega = 0$$

is satisfied for these $1 \rightarrow 2$ and $2 \rightarrow 1$ processes

[Wang, Shovkovy, Yu, Huang, Phys. Rev. D 102, 076010 (2020), arXiv:2006.16254] $\mu \neq 0$: [X. Wang and I. Shovkovy, Eur. Phys. J. C 81 (2021), to appear, arXiv:2106.09029]

- At very small k_T , the emission rate is maximal at $\phi = \frac{\pi}{2}$ (i.e., emission **perpendicular** to the reaction plane)
- Effectively, this gives photon "flow" with $v_2 < 0$

Igor Shovkovy @ Fall 2021 DNP Meeting

- At large k_T , the emission rate is maximal at $\phi = 0$ (i.e., parallel to the reaction plane)
- Effectively, this gives photon "flow" with $v_2 > 0$

Nonzero elliptic "flow" (v_2)

Igor Shovkovy @ Fall 2021 DNP Meeting

Dilepton emission rates

• The expression for the rate is

$$\frac{dN}{d^4x d^4k} = -\frac{\alpha}{12\pi^4} \frac{n_B\left(\Omega\right)}{k^2} \left(1 + \frac{2m_l^2}{k^2}\right) \left(1 - \frac{4m_l^2}{k^2}\right)^{1/2} \operatorname{Im}\left[\Pi^{\mu}_{\mu}\left(\Omega,\mathbf{k}\right) + \frac{2m_l^2}{k^2}\right]^{1/2} \operatorname{Im}\left[\Pi^{\mu}_{\mu}\left(\Omega$$

where

$$\operatorname{Im}[\Pi_{R,\mu}^{\mu}(\Omega,\mathbf{k})] = \underset{(n', p_z - k_z)}{\overset{(n, p_z)}{\underset{(n', p_z - k_z)}{\overset{(n, p_z)}{\underset{(n', p_z - k_z)}{\overset{(n, p_z)}{\underset{(n', p_z - k_z)}{\overset{(n, p_z)}{\underset{(n, p_z)}{\underset{(n, p_z)}{\overset{(n, p_z)}{\underset{(n, p$$

• Compare with the B=0 rate (Born approximation):

$$\frac{dR_{Born}}{d^4x d^4k} = \frac{5\alpha^2 T}{18\pi^4 K} n_B(\Omega) \ln\left(\frac{\cosh\frac{\Omega+K}{4T}}{\cosh\frac{\Omega-K}{4T}}\right)$$

[Cleymans, Fingberg, and Redlich, Phys. Rev. D 35, 2153 (1987)]

 \dot{q}_1

 (n, p_z)

 \vec{B}

Spectrum ($T = 350 \text{ MeV}, eB = m_{\pi}^2$)

 $V_2 (T = 350 \text{ MeV}, eB = m_{\pi}^2)$

Igor Shovkovy @ Fall 2021 DNP Meeting

13

Summary

• $\vec{B} \neq 0$: photons are produced at 0th order in α_s

(i)
$$q \to q + \gamma$$
, (ii) $\overline{q} \to \overline{q} + \gamma$, (iii) $q + \overline{q} \to \gamma$

• Photon emission has pronounced ellipticity

- Dilepton emission is anisotropic, with possible $v_2 > 0$
- A nonzero ellipticity of photon & dilepton (?) emission are indirect "measures" of the magnetic field in collisions