

ARIZONA STATE UNIVERSITY



# Chiral anomaly effects in pulsar magnetospheres\* Igor Shovkovy

\*For more details see [Gorbar & Shovkovy, arXiv:2110.11380]







### Neutron stars

• Neutron stars are laboratories of matter under extreme conditions

[Baade & Zwicky, *Proc. Nat. Acad. Sci.* **20**, 259 (1934)] [Hewish, Bell, Pilkington, Scott & Collins, *Nature* **217**, 709 (1968)]

- Neutron stars (pulsars) are
  - rapidly rotating ( $P \sim 1 \text{ ms to } 10 \text{ s}$ )
  - very dense ( $n \lesssim 10^{18} \text{ kg/m}^3$ )
  - strongly magnetized ( $B \sim 10^8$  to  $10^{15}$  G)
- The pulsar **magnetosphere** is made of **hot** plasma ( $T \leq 10$  MeV)



• Main claim: anomalous chiral plasma can be produced in the magnetosphere and can affect the pulsar activity



## What is chiral plasma?

- Relativistic plasma is **chiral** if it can allow a chiral asymmetry with  $n_L \neq n_R$  to exist on macroscopic time/distance scales
- Evolution of  $n = n_R + n_L$  and  $n_5 = n_R n_L$  is governed by the continuity equations

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0$$

and

$$\frac{\partial n_5}{\partial t} + \vec{\nabla} \cdot \vec{j}_5 = \underbrace{\frac{e^2 \vec{E} \cdot \vec{B}}{2\pi^2}}_{2\pi^2} - \Gamma_{\rm m} n_5$$

where the chirality flip rate is  $\Gamma_{\rm m} \propto \alpha^2 T (m/T)^2$ , provided  $T \leq m/\sqrt{\alpha}$ 



- Pulsars have highly conducting magnetospheres (their specific plasma composition is irrelevant here)
- The co-moving **electric field** in the rotating magnetosphere is

$$\vec{E}' = \vec{E} + \frac{\vec{\Omega} \times \vec{r}}{c} \times \vec{B} = 0$$

implying that  $E_{\parallel}=0$ 

• Intermittent gaps with  $E_{\parallel} \neq 0$ develop due to charge/current starvation

[Ruderman & Sutherland, Astrophys. J. 196, 51 (1975)]

• Background photons induce  $e^+-e^-$  plasma and close the gap





#### • Estimate of the gap size and the electric field

[Ruderman & Sutherland, Astrophys. J. 196, 51 (1975)]

 $E_{\parallel} \simeq Bh/R_{LC}$ 

where  $R_{LC} = c/\Omega$  is the radius of light cylinder and

$$h \simeq 3.6 \ \mathrm{m} \left(\frac{R}{10 \ \mathrm{km}}\right)^{2/7} \left(\frac{\Omega}{1 \ \mathrm{s}^{-1}}\right)^{-3/7} \left(\frac{B}{10^{14} \ \mathrm{G}}\right)^{-4/7}$$

The field scales with pulsar parameters as follows

$$E_{\parallel} \approx 2.7 \times 10^{-8} E_c \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{4/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{3/7}$$

where  $E_c = m_e^2/e = 1.3 \times 10^{18} \text{ V/m}$ 



# Chiral charge production

• When  $E_{\parallel} \neq 0$ , the chiral charge production is governed by

$$\frac{\partial n_5}{\partial t} + \nabla \overline{j_5} = \frac{e^2 E \cdot B}{2\pi^2} - \Gamma_{\rm m} n_5$$

- Chirality flipping tends to wash away the chiral charge produced by the anomaly
- In the steady-state,

$$n_5 = \frac{e^2}{2\pi^2 \Gamma_{\rm m}} \vec{E} \cdot \vec{B}$$

• For the electron-positron plasma, the chirality flipping rate is

$$\Gamma_{\rm m} \simeq rac{lpha^2 m_e^2}{T} \quad (T \lesssim m_e/\sqrt{lpha}) \quad {\rm or} \quad \Gamma_{\rm m} \simeq rac{lpha \, m_e^2}{T} \quad (T \gg m_e/\sqrt{lpha})$$

[Boyarsky, Cheianov, Ruchayskiy, Sobol, Phys. Rev. Lett. 126, 021801 (2021)]



• The gap formation time

$$t_h \sim h/c \sim 10^{-8} {
m s}$$

• Timescale for chiral charge production

$$t^* \sim 1/\Gamma_{\rm m} \sim 10^{-17} {\rm s}$$

• Since

$$t_h \gg t^*$$
,

#### the chirality production is nearly instantaneous



• The estimate for the chiral charge reads

$$n_5 \simeq \frac{e^2 E_{\parallel} B}{2\pi^2 \Gamma_m} \simeq 1.5 \times 10^{-5} \text{ MeV}^3 \left(\frac{T}{1 \text{ MeV}}\right) \\ \times \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{4/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{10/7}$$

• The corresponding chiral chemical potential is

$$\mu_5 \simeq \frac{3n_5}{T^2} \simeq 4.6 \times 10^{-5} \text{ MeV} \left(\frac{T}{1 \text{ MeV}}\right)^{-1} \\ \times \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{4/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{10/7}$$



• Nonzero  $\mu_5$  and  $\vec{B}$  modify the local **current density**,

where 
$$k_{\star} = \frac{2\alpha\mu_5}{\pi}$$
 encodes the **chiral magnetic effect**

• Maxwell's equations for helical eigenmodes ( $\lambda = \pm$ ) reduce to

 $\vec{j} = k_{\star}\vec{B} + \sigma\vec{E}$ 

$$\frac{d\mathbf{B}_{\lambda,k}}{dt} = \frac{1}{\sigma} \left( \overline{\lambda k_{\star} k} - k^2 - \frac{\partial^2}{\partial t^2} \right) \mathbf{B}_{\lambda,k}$$

• The corresponding **frequency** solutions read

$$\omega_{1,2} = -\frac{i}{2} \left( \sigma \pm \sqrt{\sigma^2 + 4k(\lambda k_\star - k)} \right)$$





## Chiral plasma instability

• For a highly conducting plasma ( $\sigma \rightarrow \infty$ )

$$\omega_{1,2} \simeq \begin{cases} -i\left(\sigma + \frac{k(\lambda k_{\star} - k)}{\sigma}\right) \\ i\frac{k(\lambda k_{\star} - k)}{\sigma} \end{cases}$$

• While mode #1 is **damped** by charge screening:

$$B_{k,1} \propto B_0 e^{-\sigma t},$$

• Mode #2 is **unstable** for  $k < \lambda k_{\star}$ :

$$B_{k,2} \propto B_0 e^{+tk(\lambda k_\star - k)/\sigma}$$



• The estimate for  $k_{\star}$  reads

$$k_{\star} \simeq 2.2 \times 10^{-7} \text{ MeV} \left(\frac{T}{1 \text{ MeV}}\right)^{-1} \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{4/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{10/7}$$



#### Physical parameters

• Numerical estimates of the key physical parameters

| В                                                     | $10^{12} \mathrm{G}$  | $10^{13} {\rm G}$    | $10^{14} \mathrm{G}$ | $10^{15} \mathrm{G}$ |
|-------------------------------------------------------|-----------------------|----------------------|----------------------|----------------------|
| h                                                     | 50 m                  | 13.4 m               | 3.6 m                | 0.97 m               |
| $\frac{E_{\parallel}}{E_{c}}$                         | $3.8 \times 10^{-9}$  | $1.0 \times 10^{-8}$ | $2.7 \times 10^{-8}$ | $7.3 \times 10^{-8}$ |
| $\frac{\boldsymbol{E} \cdot \boldsymbol{B}}{E_c B_c}$ | $8.6 \times 10^{-11}$ | $2.3 \times 10^{-9}$ | $6.2 \times 10^{-8}$ | $1.7 \times 10^{-6}$ |
| $\frac{n_5}{m_e^3}$                                   | $1.6 \times 10^{-7}$  | $4.3 \times 10^{-6}$ | $1.1 \times 10^{-4}$ | $3.1 \times 10^{-3}$ |
| $\frac{\mu_5}{m_e}$                                   | $1.2 \times 10^{-7}$  | $3.4 \times 10^{-6}$ | $9.0 \times 10^{-5}$ | $2.4 \times 10^{-3}$ |
| $\underbrace{\frac{k_{\star}}{m_e}}$                  | $5.8 \times 10^{-10}$ | $1.6 \times 10^{-8}$ | $4.2 \times 10^{-7}$ | $1.1 \times 10^{-5}$ |

where  $B_c = m_e^2 / e = 4.4 \times 10^{13}$  G and  $E_c = m_e^2 / e = 1.3 \times 10^{18}$  V/m



• Chiral plasma produces **helical** (circularly polarized) **modes** with frequencies

 $0 \lesssim \omega \lesssim k_\star$ 

- For magnetars, these span **radio frequencies** and may extend to the **near-infrared** range
- The energy estimate is  $\Delta \mathcal{E} \sim \mu_5^2 T^2 h^3$ ,

$$\Delta \mathcal{E} \simeq 2.1 \times 10^{25} \text{ erg} \left(\frac{T}{1 \text{ MeV}}\right) \left(\frac{R}{10 \text{ km}}\right)^{6/7} \\ \times \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{-9/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{2/7}$$

• It may be sufficient to feed the fast radio bursts (FRB)



- Chiral charge production can be substantial in gap regions of strongly magnetized pulsar magnetospheres
- The chiral charge should trigger a **plasma instability** and emission of helical waves in radio to infrared range
- The corresponding chiral anomalous physics can be connected with the observed fast radio bursts
- For quantitative effects, however, further detailed studies are needed



- Interplay of chiral charge and e<sup>+</sup>-e<sup>-</sup> pair production induced by energetic photons
- The **chiral flip rate** in a magnetic field (any suppression compared to *B* = 0 case?)
- Self-consistent **simulation** of chiral plasma in the gap regions
- The energy transfer mechanism from unstable helical modes to observable emission