

Electromagnetic Probes of Magnetized Quark Gluon Plasma

IFT Colloquium, October 26, 2022 Instituto de Física Teórica - UNESP, São Paulo, Brazil

Quark-gluon plasma

• **Quark–gluon plasma** (QGP) is a state of (relativistic) matter at high energy density, made of *deconfined* quarks and gluons

Review: [Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004)]

Heavy-ion collisions

• Photons & leptons are emitted at all stages of evolution

• How to measure the temperature of QGP?

PHOTONS AS A THERMOMETER OF QGP

[Kapusta, Lichard, & Seibert, Phys. Rev. D44, 2774 (1991)] [Paquet et al., Phys. Rev. C93, 044906 (2016); arXiv:1509.06738] Review: [Gabor David, Rept. Prog. Phys. 83, 046301 (2020); arXiv:1907.08893]

October 26, 2022

Photon sources in HIC

• $p_T \leq 2$ GeV: thermal emission from QGP dominates

• The rate of the thermal emission of photons (more precisely, the energy loss rate) from QGP is

$$k^{0} \frac{d^{3}R}{dk_{x}dk_{y}dk_{z}} = -\frac{1}{(2\pi)^{3}} \frac{\operatorname{Im}\left[\Pi^{\mu}_{\mu}(k)\right]}{\exp\left(\frac{k_{0}}{T}\right) - 1}$$

[Kapusta, Lichard, Seibert, Phys. Rev. D 44, 2774 (1991)] [Baier, Nakkagawa, Niegawa, Redlich, Z. Physik C 53 (1992) 433]

• In the case of hot QCD plasma @ B = 0

Thermal photons (B = 0)

• The approximate result is given by

$$E\frac{dR}{d^{3}p} = \frac{5}{9}\frac{\alpha\alpha_{s}}{2\pi^{2}}T^{2}e^{-E/T}\ln\left(\frac{2.912}{g^{2}}\right)$$

[Kapusta, Lichard, Seibert, Phys. Rev. D 44, 2774 (1991)]

• Sub-leading order corrections are not small

[Arnold, Moore, Yaffe, JHEP 12 (2001) 009; hep-ph/0111107] [Ghiglieri et al., JHEP 05 (2013) 010; arXiv:1302.5970]

Puzzle: Large photon v_2

• Most photons are produced early (before elliptic flow develops) and cannot have large $v_2 \dots$

[Adare et al., Phys. Rev. C 94, 064901 (2016)]

• It suggest that theory is missing something

Image credit: Brookhaven National Laboratory

MAGNETIZED QUARK-GLUON PLASMA

[Kharzeev, Landsteiner, Schmitt, Yee, Lect.Notes Phys. 871, 1 (2013)] [Miransky & Shovkovy, Phys. Rep. 576, 1 (2015)]

Heavy-ion collisions: $B \neq 0$

- QGP produced at RHIC/LHC is magnetized
 - -10^{18} to 10^{19} G $\sim m_\pi^2 \sim (100 \text{ MeV})^2$

• Using Lienard-Wiechert potential, one finds

$$e\mathbf{E}(t, \mathbf{x}) = \alpha_{\text{EM}} \sum_{n \in \text{protons}} \frac{1 - v_n^2}{R_n^3 \left(1 - [\mathbf{R}_n \times \mathbf{v}_n]^2 / R_n^2\right)^{3/2}} \mathbf{R}_n$$
$$e\mathbf{B}(t, \mathbf{x}) = \alpha_{\text{EM}} \sum_{n \in \text{protons}} \frac{1 - v_n^2}{R_n^3 \left(1 - [\mathbf{R}_n \times \mathbf{v}_n]^2 / R_n^2\right)^{3/2}} \mathbf{v}_n \times \mathbf{R}_n$$

[Rafelski & Müller, PRL, 36, 517 (1976)]
[Kharzeev et al., arXiv:0711.0950]
[Skokov et al., arXiv:0907.1396]
[Voronyuk et al., arXiv:1103.4239]
[Bzdak &. Skokov, arXiv:1111.1949]
[Deng & Huang, arXiv:1201.5108]
[Bloczynski et al, arXiv:1209.6594]

Magnetic field in HIC

- Magnetic field
 - strong in magnitude ~ m_{π}^2
 - short lived
 - depends strongly on b
 - fluctuates from event to event

Magnetometer for HICs

• How to measure the magnetic field of QGP in HICs?

New idea:

• Photons and dileptons can serve also as a **MAGNETOMETER**

PHOTON RATE

[Wang, Shovkovy, Yu, Huang, Phys. Rev. D 102, 076010 (2020), arXiv:2006.16254]
 [Wang, Shovkovy, Phys. Rev. D 104, 056017 (2021), arXiv:2103.01967]
 [Wang, Shovkovy, Eur. Phys. J. C 81 (2021), 901, arXiv:2106.09029]

October 26, 2022

Photon emission (a) $B \neq 0$

• The expression for the rate is

$$\Omega \frac{d^3 R}{d^3 \mathbf{k}} = -\frac{1}{(2\pi)^3} \frac{\mathrm{Im}[\Pi^{\mu}_{R,\mu}(\Omega, \mathbf{k})]}{\exp(\frac{\Omega}{T}) - 1}$$

[Wang, Shovkovy, Yu, Huang, Phys. Rev. D 102, 076010 (2020), arXiv:2006.16254] [Wang, Shovkovy, Phys. Rev. D 104, 056017 (2021), arXiv:2103.01967] [Wang, Shovkovy, Eur. Phys. J. C 81 (2021), 901, arXiv:2106.09029]

• At $\vec{B} \neq 0$, the imaginary part of the polarization tensor

$$\operatorname{Im}[\Pi_{R,\mu}^{\mu}(\mathbf{\Omega},\mathbf{k})] = \bigwedge_{(n',p_z-k_z)}^{k} \bigwedge_{(n',p_z-k_z)}^{(n,p_z)}$$

is nonzero at leading order in $\alpha_s!$

Physics processes

• Relevant physics processes (0th order in α_s):

The energy momentum conservation

$$E_{n,p_z,f} - \lambda E_{n',p_z-k_z,f} + \eta \Omega = 0$$

is satisfied for these $1 \rightarrow 2$ and $2 \rightarrow 1$ processes

[Wang, Shovkovy, Yu, Huang, Phys. Rev. D 102, 076010 (2020), arXiv:2006.16254] μ ≠ 0: [Wang, Shovkovy, Eur. Phys. J. C 81 (2021), 901, arXiv:2106.09029]

Angular dependence (1)

- At very small k_T , the emission rate is maximal at $\phi = \frac{\pi}{2}$ (i.e., emission perpendicular to the reaction plane)
- Effectively, this gives photon "flow" with $v_2 < 0$

Angular dependence (2)

- At large k_T , the emission rate is maximal at $\phi = 0$ (i.e., parallel to the reaction plane)
- Effectively, this gives photon "flow" with $v_2 > 0$

Nonzero elliptic "flow" (v_2)

Previous studies: [Tuchin, Phys. Rev. C 88, 024910 (2013)] [Sadooghi, Taghinavaz, Annals Phys. 376, 218 (2017)] [Bandyopadhyay et al., Phys. Rev. D 94, 114034 (2016)] [Bandyopadhyay, Mallik, Phys. Rev. D 95, 074019 (2017)] [Ghosh, Chandra, Phys. Rev. D 95, 076006 (2018)] [Islam et al., Phys. Rev. D 98, 076006 (2018)] [Das et al., Phys. Rev. D 99, 094022 (2019)] [Ghosh et al., Phys. Rev. D 99, 094022 (2019)] [Ghosh et al., Phys. Rev. D 101, 096002 (2020)] [Chaudhuri et al., Phys. Rev. D 103, 096021 (2021)] [Das et al., arXiv:2109.00019]

DILEPTON RATE

[Wang and Shovkovy, arXiv:2205.00276]

W

Dilepton rate (1)

• The differential lepton multiplicity per unit spacetime volume reads [Weldon, Phys. Rev. D 42, 2384 (1990)]

$$dR_{l\bar{l}} = 2\pi e^2 e^{-\beta\Omega} L_{\mu\nu}(Q_1, Q_2) \rho^{\mu\nu}(\Omega, \mathbf{k}) \frac{d^3\mathbf{q}_1}{(2\pi)^3 E_1} \frac{d^3\mathbf{q}_2}{(2\pi)^3 E_2}$$

here the leptonic tensor (plane-wave final states) is

$$L_{\mu\nu}(Q_1, Q_2) = Q_{1\mu}Q_{2\nu} + Q_{1\nu}Q_{2\mu} - (Q_1 \cdot Q_2 + m_l^2) g_{\mu\nu}$$

Note: leptons are Landau-level states |n_l> inside QGP but turn into plane waves when leaving it, i.e.,

 $\sum |n_l\rangle \langle n_l|Q\rangle = \langle Q|$

• The electromagnetic spectral function (to leading order in α) is

$$\rho^{\mu\nu}\left(\Omega,\mathbf{k}\right) = -\frac{1}{\pi} \frac{e^{\beta\Omega}}{e^{\beta\Omega} - 1} \frac{\operatorname{Im}\left[\Pi^{\mu\nu}\left(\Omega,\mathbf{k}\right)\right]}{K^4}$$

92

 $(n', p_z - k_z)$

Dilepton rate (2)

[Wang, Shovkovy, Yu, Huang, Phys. Rev. D **102**, 076010 (2020), arXiv:2006.16254] [Wang and Shovkovy, Phys. Rev. D **104**, 056017 (2021), arXiv:2103.01967]

Dilepton rate: explicit expression

• Explicit expression for the rate [Wang, Shovkovy, arXiv:2205.00276]

$$\begin{aligned} \frac{dR_{l\bar{l}}}{d^4K} &= \frac{\alpha^2 N_c}{48\pi^5} \frac{n_B(\Omega)}{M^2} \sum_{f=u,d} \frac{q_f^2}{\ell_f^4} \left[\sum_{n=0}^{\infty} \frac{g_0(n)\theta\left(\sqrt{M^2 + k_\perp^2} - (k_+^f)\right)}{\sqrt{(M^2 + k_\perp^2)\left[M^2 + k_\perp^2 - (k_+^f)^2\right]}} \mathcal{F}_{n,n}^f(\xi) \right. \\ &- 2\sum_{n>n'}^{\infty} \frac{g(n,n')\left[\theta\left(k_-^f\right) - \sqrt{M^2 + k_\perp^2}\right) - \theta\left(\sqrt{M^2 + k_\perp^2} - (k_+^f)\right)\right]}{\sqrt{\left[(k_-^f)^2 - (M^2 + k_\perp^2)\right]\left[(k_+^f)^2 - (M^2 + k_\perp^2)\right]}} \mathcal{F}_{n,n'}^f(\xi) \end{aligned}$$

here $g_0(n) = g(n,n)$ and

$$g(n,n') = 2 - \sum_{s_1,s_2=\pm} n_F \left(\frac{\Omega}{2} + s_1 \frac{\Omega(n-n')|e_f B|}{M^2 + k_\perp^2} + \frac{s_2|k_z|}{2(M^2 + k_\perp^2)} \sqrt{\left(M^2 + k_\perp^2 - (k_-^f)^2\right) \left(M^2 + k_\perp^2 - (k_+^f)^2\right)} \right)$$

- $\mathcal{F}_{n,n'}^{f}(\xi)$ are given in terms of generalized Laguerre polynomials
- Notation: $\xi = k_{\perp}^2 \ell_f^2 / 2$ and $k_{\pm}^f = \left| \sqrt{m^2 + 2n|e_f B|} \pm \sqrt{m^2 + 2n'|e_f B|} \right|$

W

Cross-check at k=0 & B=0

• The rate in the limit $k \rightarrow 0$ is related to optical conductivity

$$\frac{dR_{l\bar{l}}}{d^4K}\Big|_{|\boldsymbol{k}|\to 0} \simeq \frac{\alpha}{12\pi^4} \frac{n_B(M)}{M} \left[\sigma_{\parallel}(M) + 2\sigma_{\perp}(M)\right]$$

• The optical conductivity in the limit $B \rightarrow 0$ reads [Wang, Shovkovy, arXiv:2205.00276]

$$\sigma_{\parallel}(\Omega)\big|_{B\to 0} = \sigma_{\perp}(\Omega)\big|_{B\to 0} \simeq \frac{\alpha N_c (q_u^2 + q_d^2)}{3} \Omega \tanh\left(\frac{\Omega}{4T}\right)$$

• Thus, at $k \to 0$ and $B \to 0$, one has

$$\left. \frac{dR_{l\bar{l}}}{d^4K} \right|_{|\boldsymbol{k}| \to 0, B \to 0} \simeq \frac{5\alpha^2}{36\pi^4} n_B\left(M\right) \tanh\left(\frac{M}{4T}\right)$$

• This agrees with the Born rate at B = 0, i.e.,

$$\frac{dR_{l\bar{l},\text{Born}}}{d^4K} = \frac{5\alpha^2 T}{18\pi^4 |\boldsymbol{k}|} n_B(\Omega) \ln\left(\frac{\cosh\frac{\Omega+|\boldsymbol{k}|}{4T}}{\cosh\frac{\Omega-|\boldsymbol{k}|}{4T}}\right)$$

[Cleymans, Fingberg, Redlich, Phys. Rev. D 35, 2153 (1987)]

NUMERICAL RESULTS: DILEPTONS

[Wang and Shovkovy, arXiv:2205.00276]

Results: integrated rate

- Overall, dilepton rate grows with temperature
- Large enhancement is seen at small invariant masses, $M \leq \sqrt{|eB|}$

[Wang, Shovkovy, Phys. Rev. D 106, 036014 (2022)]

Results: integrated rate

• Dilepton rate tends to decrease with increasing k_T

- The angular dependence indicates a possible nonzero v_2
- A nonvanishing v_2 is most prominent at small M and large k_T

[Wang, Shovkovy, Phys. Rev. D 106, 036014 (2022)]

Ellipticity of dilepton emission

• Definition:

 $v_2(M,k_T) = \frac{\int_0^{2\pi} d\phi \cos(2\phi) \left(dR_{l\bar{l}}/d^4k \right)}{\int_0^{2\pi} d\phi \left(dR_{l\bar{l}}/d^4k \right)}$

- Ellipticity is large $(v_2 \leq 0.2)$ for $M \leq \sqrt{|eB|}$ and $k_T \gg \sqrt{|eB|}$
- On the other hand, $v_2 \approx 0$ for $M \gg \sqrt{|eB|}$ and all k_T

[Wang, Shovkovy, Phys. Rev. D 106, 036014 (2022)]

Angular dependence @ small M

• The ellipticity is well pronounced at small M and large k_T

 $|eB| = m_{\pi}^2$

• Note: magnetic field strongly enhances the rate at small *M*

[Wang, Shovkovy, Phys. Rev. D 106, 036014 (2022)]

 $k_T = 0.5 \text{ GeV}, T = 0.2 \text{ GeV}, |eB| = m_{\pi}^2$

Angular dependence @ small M

• The ellipticity is well pronounced at small M and large k_T

 $|eB| = 5m_{\pi}^2$

• Note: magnetic field strongly enhances the rate at small *M*

[Wang, Shovkovy, Phys. Rev. D 106, 036014 (2022)]

 $k_T = 0.5 \text{ GeV}, T = 0.2 \text{ GeV}, |eB| = 5m_\pi^2$

Angular dependence @ large M

• The ellipticity is approximately vanishing at large *M*

 $|eB| = m_{\pi}^2$

• Note: magnetic field does not affect much dilepton rate M

[Wang, Shovkovy, Phys. Rev. D 106, 036014 (2022)]

 $k_T = 0.5 \text{ GeV}, T = 0.2 \text{ GeV}, |eB| = m_{\pi}^2$

Angular dependence @ large M

• The ellipticity is approximately vanishing at large *M*

 $|eB| = 5m_{\pi}^2$

• Note: magnetic field does not affect much dilepton rate at large M

[Wang, Shovkovy, Phys. Rev. D 106, 036014 (2022)]

 $k_T = 0.5 \text{ GeV}, T = 0.2 \text{ GeV}, |eB| = 5m_{\pi}^2$

- *B* ≠ 0: photons are produced at 0th order in α_s
 (i) q → q + γ, (ii) q̄ → q̄ + γ, (iii) q + q̄ → γ
- Photon emission at *B* ≠ 0 has a well pronounced ellipticity

$$v_2 < 0$$
 for $k_T \lesssim \sqrt{|eB|}$
 $v_0 > 0$ for $k_T \gtrsim \sqrt{|eB|}$

• Nonzero ellipticity of photon emission measures indirectly the magnetic field in HICs

- Magnetic field strongly enhances the dilepton rate at small invariant masses, $M \leq \sqrt{|eB|}$
- Dilepton emission rate is non-isotropic when $B \neq 0$

 $v_2 \lesssim 0.2$ when $M \lesssim \sqrt{|eB|}$ and $k_T \gg \sqrt{|eB|}$

 $v_2 \simeq 0$ when $M \gg \sqrt{|eB|}$ all k_T

• Dilepton rate and ellipticity together can also provide indirect measurements of the magnetic field in HICs

