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Pulsars
• Neutron stars are laboratories of matter under extreme conditions

• Prediction 
[Baade & Zwicky, Proc. Nat. Acad. Sci. 20, 259 (1934)]

• Observation 
[Hewish, Bell, Pilkington, Scott & Collins, Nature 217, 709 (1968)]

• Pulsars are neutron stars that are 
– rapidly rotating (𝑃 ~ 1 ms to 10 s)

– strongly magnetized (𝐵 ~ 10! to 10"# G)

• Pulsar radiation is beamed along the magnetic field direction (the 
“lighthouse” effect)
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Credit: B. Saxton, NRAO/AUI/NSF



Pulsars in 𝑃-�̇� plane
• Characteristic age 

𝜏 ≃ !
"!̇

• Spin-down luminosity
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• Characteristic magnetic field 
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Image credit: Condon & Ransom, “Essential Radio Astronomy” (2016)
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MAGNETOSPHERES
Image credit: Aurore Simonnet, Sonoma State University



Pulsar electrodynamics (VDM)
• Vacuum dipole model (VDM) (𝜌 = 0& 𝐽 = 0 outside the star)
• Stellar interior (good conductor):

𝑬()* = 𝑬() +
𝜴×𝒓
.
×𝑩() = 0

• Fields outside the pulsar are

𝑩 = !!""

#$" 3 '𝒎 ) *𝒓 *𝒓 − '𝒎

𝑬 = ⋯
where 𝒎 is the magnetic moment and Ω is the angular frequency
• There is a nonzero charge density and a strong electric field on the 

surface (𝐸"#$% ~ 𝛺𝑅𝐵&~ 10'( to 10') V/m)
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𝑬𝑩

[see Deutsch, Ann. Astrophys. 18, 1 (1955)]
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Pulsar electrodynamics (VDM)
• Charged particles 

i. pulled up from the surface (𝑬 ≠ 0)

ii. move along curved trajectories (𝑩 ≠ 0)

iii. produce curvature radiation 

iv. γ-quanta produce 𝑒*𝑒+ pairs

𝑙, ≃
(-!
')

.!
.
/"
%&

v. Secondary particles produce synchrotron & curvature radiation

• End result: (I) magnetized vacuum is nontransparent for 
photons with 𝜀/ ≳ 2𝑚0; (II) vacuum turns into plasma

October 27, 2022 Workshop on Electromagnetic Effects in Strongly Interacting Matter, São Paulo, Brazil 6

𝑬

𝑬

𝑩

𝑩

(ii)

(iii)

+−
(iv)

+−

(v)

−(i)



Pulsar electrodynamics (RMM)
• Rotating magnetosphere model (RMM) (assuming a highly 

conducting plasma outside the star)

𝑬′ = 𝑬 + 𝜴×𝒓
) ×𝑩 = 0

i.e., 𝐸∥=0
• Plasma motion is determined by 

𝒗+,-./ = 𝑐 𝑬×𝑩!' = 𝜴×𝒓 + 𝑗∥𝑩

• Corotating plasma is charged

ρ23 = 𝛁 ) 𝑬 = − #
)𝜴 ) 𝑩
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[Goldreich & Julian, Astrophys. J. 157, 869 (1969)] 

Image credit: NASA



Gaps in magnetosphere
• If one assumes that 𝐸∥=0 everywhere, the magnetic field lines 

are equipotential (𝑉 = const)

• Then,

0 = $𝑬 & 𝑑𝒍 = * 𝛁×𝑬 & 𝑑𝒔 = −
𝜕
𝜕𝑡
*𝑩 & 𝑑𝒔

• Thus, 𝐸∥=0 cannot be enforced everywhere if 𝑩 changes in time
• Regions (“gaps”) with unscreened 𝐸∥ will necessarily develop 

(they result from dynamical charge/current starvation)
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[Ruderman & Sutherland, Astrophys. J. 196, 51 (1975)]
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Gaps in magnetosphere
• Gaps can develop at various locations

• Intermittent gaps are caused by rapid 
outflow of charge  

• The gap size ℎ grows at a speed close to 
the speed of light

• Electric potential difference grows like 
∆𝑉 = 𝐸∥ℎ ∝ ℎ#

• ∆𝑉 & photon flux cause an avalanche 
production of electron-positron pairs
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• Since 𝐵 ∝ 1/𝑟4, anomalous effects are strongest near polar caps
[Ruderman & Sutherland, Astrophys. J. 196, 51 (1975)]



Pulsar gaps
• Estimates for the electric field and the gap size

where 𝑅56 = 𝑐/Ω is the radius of light cylinder
The field scales with pulsar parameters as follows 

where 𝐸) = 𝑚7
#/𝑒 = 1.3 × 1089 V/m.
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[Ruderman & Sutherland, Astrophys. J. 196, 51 (1975)]



Charge in the gap
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[Timokhin, Mon. Not. R. Astron. Soc. 408, 2092–2114 (2010)]
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Gap parameters
• Quantitative estimate of the gap size and fields

where 

𝐸) = 𝑚7
#/𝑒 = 1.3 × 1089 V/m

𝐵) = 𝑚7
#/𝑒 = 4.4 × 1084 G
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Chiral charge production
• The evolution of the chiral charge is determined by

𝜕𝑛:
𝜕𝑡

+ ∇ ) 𝚥: =
𝑒#𝐸 ) 𝐵
2𝜋#

− 𝛤;𝑛:

• While the chiral anomaly produces 𝑛:, the chirality flipping tries 
to wash it away

• The chiral charge 𝑛: approaches the following steady-state value:

𝑛: =
𝑒#

2𝜋#𝛤;
𝐸 ) 𝐵

• The estimates for the chirality flip rate in a hot plasma 

𝛤; ≃ <'=(
'

>
(𝑇 ≲ 𝑚0/ 𝛼) and      𝛤; ≃ <=(

'

>
(𝑇 ≫ 𝑚0/ 𝛼) 
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[Boyarsky, Cheianov, Ruchayskiy, Sobol, Phys. Rev. Lett. 126, 021801 (2021)]



Time scales
• The gap formation time

𝑡1~ℎ/𝑐~1023 s

• Timescale for chiral charge production

𝑡⋆~1/𝛤(~102$5 s

• Note that 

𝑡1 ≫ 𝑡⋆

• Thus, the chirality production is nearly instantaneous
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Estimate for 𝑛! in magnetars
• The estimate for the chiral charge is given by

• The corresponding chiral chemical potential is
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Values of 𝑛! and 𝜇<
• The corresponding numerical values for chiral charge and 

chiral chemical potential are
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CHIRAL PLASMA INSTABILITY
[]
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Image credit: European Southern Observatory



Plasma with 𝜇! ≠ 0
• Nonzero 𝜇: and 𝐵 drive the chiral 

magnetic effect (CME)

𝚥 =
𝑒#𝐵
2𝜋#

𝜇:

• The effect comes from the spin-
polarized LLL (s=↓)
– L-handed states (𝑝$ < 0 & 𝐸 < 𝜇#) 

are empty (holes with 𝑝$ > 0)

– R-handed states (𝑝$ < 0 & 𝐸 < 𝜇#)
are occupied

October 27, 2022 Workshop on Electromagnetic Effects in Strongly Interacting Matter, São Paulo, Brazil 18

R-handedL-handed

• However, plasma at 𝜇: ≠ 0 is unstable



Maxwell equations at 𝜇! ≠ 0
• The total current (CME + Ohm)

• By substituting 𝒋 into Ampere’s law

and solving for the electric field, one derives

• Finally, by calculating the curl and using Faraday’s law, 
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where 𝑘⋆ =
%&'#
(



Helical modes at 𝜇! ≠ 0
• Search for a solution as a superposition of helical eigenstates

e.g., 

Then, for a fixed eigenmode, the evolution equation reads

• The two solutions for the frequency are
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Long-wavelength modes
• For a plasma with high conductivity

• The 1st mode is damped	by	charge	screening:

𝐵@,8 ∝ 𝐵B𝑒CDE

• The	2nd mode is unstable when 𝑘 < 𝜆𝑘⋆:

𝐵@,# ∝ 𝐵B𝑒FE@(H@⋆C@)/D

• The momentum of the fastest growing mode 𝐵.,0 is
1
2
𝑘⋆
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[Joyce & Shaposhnikov, PRL 79, 1193 (1997)]
[Boyarsky, Frohlich, Ruchayskiy, PRL 108, 031301 (2012)]

[Tashiro, Vachaspati, Vilenkin, PRD 86, 105033 (2012)]
[Akamatsu & Yamamoto, PRL 111, 052002 (2013)]

[Tuchin, PRC 91, 064902 (2015)]
[Manuel & Torres-Rincon, PRD 92, 074018 (2015)]

[Hirono, Kharzeev, Yin, PRD 92, 125031(2015)]
[Sigl & Leite, JCAP 01, 025 (2016)]



Instability in pulsars
• The estimate for 𝑘⋆

𝑘⋆ ≃ 2.2×10+2 MeV
𝑇

1 MeV

+' 𝑅
10 km

(/2 Ω
1 s+'

4/2 B
10'4 G

'&/2
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Observational consequences
• Unstable plasma in the gaps produces helical (circularly 

polarized) modes in the frequency range

0 ≲ ω ≲ 𝑘⋆
• For magnetars, these span radio frequencies and may reach 

into the near-infrared range

• Available energy is of the order of 𝛥ℰ~𝜇:#𝑇#ℎ4, i.e.,

• The energy is sufficient to feed the fast radio bursts (FRB)
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Outstanding problems
• Interplay of chiral charge and electron-positron pair production

induced by energetic photons should be studied in detail

• The modification of the chiral flip rate 𝛤; ≃ <*=+
*

>
by the 

strong magnetic field (extra suppression?)
• The role of the inverse magnetic cascade and the chiral-

magnetic turbulence should be quantified
• Self-consistent dynamics of chiral plasma in the gap regions 

should be simulated in detail
• Detailed mechanism of the energy transfer from unstable 

helical modes to radio emission in FRBs
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Summary
• Chiral anomaly can have macroscopic implications in pulsars

• It leads to a significant chiral charge production (up to 1054 m+5)
in strongly magnetized magnetospheres

• The chiral chemical potential 𝜇: can be up to 10C4 MeV

• This is sufficient to trigger emission of helical waves with 
frequencies up to about 𝑘⋆ ≃

#
K
𝛼𝜇: (radio to infrared range)

• Helical waves can affect the pulsar jets and observable features 
of the fast radio bursts

• For quantitative effects, further detailed studies are needed
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