

Anomalous chiral transport in nuclear physics and beyond

Igor Shovkovy

The 2023 Fall Meeting of the Division of Nuclear Physics of the American Physical Society and Physical Society of Japan

(Quasi-) Relativistic Matter

- Heavy-ion collisions (temperature ~ 100 MeV)
- Early Universe (extremely high temperature ~ 100 GeV)
- Magnetospheres of magnetars (electron-positron plasma at temperatures ≤ 10 MeV)
- Super-dense matter in compact stars (high densities $\leq 10^{17} \text{ kg/m}^3$)
- Electron plasma in Dirac/Weyl (semi-)metals (chiral quasiparticle plasma at temperatures ≤ 10 meV)
- Other: cold atoms, superfluid ³He-A, etc. (chiral quasiparticles at temperatures ~ 10⁻³ K)

ANOMALOUS MATTER

[Miransky & Shovkovy, Phys. Rep. **576**, 1 (2015)] [Kharzeev, Liao, Voloshin, Wang, Prog. Part. Nucl. Phys. **88**, 1 (2016)] [Becattini, Liao, Lisa, Lect. Notes Phys. **987**, 1 (2021)]

November 26, 2023

Chirality

• Only massless Dirac/Weyl fermions have a well-defined chirality $(\gamma^5 \psi = \pm \psi)^*$:

Right-handed (spin parallel to momentum)

Left-handed (spin opposite to momentum)

- The chirality of *massive* Dirac fermions is *almost* well-defined in the *ultra-relativistic* regime*
 - -High temperature: $T \gg m$
 - -High density: $\mu \gg m$

*Note: like the particle spin, chirality is a quantum property

- Relativistic matter made of chiral fermions may allow $n_L \neq n_R$ existing on *macroscopic* time/distance scales
- The spacetime dynamics of $n = n_R + n_L$ and $n_5 = n_R n_L$ is governed by continuity equations

where the chirality flip rate: $\Gamma_{\rm m} \propto \alpha^2 T (m/T)^2$

• Chiral anomaly can produce *macroscopic* effects in plasmas

- **Theory**: Many *macroscopic* chiral anomalous effects were proposed
- Some are triggered by an external magnetic field
 - Chiral magnetic effect
 - Chiral separation effect
 - Chiral magnetic wave
 - Negative magnetoresistance
- Others are triggered by vorticity
 - Chiral vortical effect
 - Chiral vortical wave

Review: [Becattini, Liao, Lisa, Lect. Notes Phys. 987, 1 (2021)]

CHIRAL ANOMALOUS EFFECT

$$\langle \vec{j}_5 \rangle = -\frac{e\vec{B}}{2\pi^2}\mu \quad \& \quad \langle \vec{j} \rangle = \frac{e^2\vec{B}}{2\pi^2}\mu_5$$

[Vilenkin, Phys. Rev. D 22 (1980) 3067] [Metlitski & Zhitnitsky, Phys. Rev. D 72, 045011 (2005)] [Newman & Son, Phys. Rev. D 73 (2006) 045006]

November 26, 2023

Chiral Separation Effect ($\mu \neq 0$)

- Spin polarized LLL is chirally asymmetric
 states with p₃<0 (and s=↓) are R-handed
 states with p₃>0 (and s=↓) are L-handed
 - i.e., a nonzero chiral current is induced

$$\langle \vec{j}_5 \rangle = -tr[\vec{\gamma}\gamma^5 S(x,x)] = -\frac{eB}{2\pi^2}\mu$$

Chiral Magnetic Effect ($\mu_5 \neq 0$)

Assume a *transient* state with a nonzero chiral charge $(\mu_5 \neq 0)$

Spin polarized LLL (s= \downarrow for particles of a *negative* charge):

- Some R-handed states (p₃ < 0 & E < μ₅) are occupied
- Some L-handed states (p₃ < 0 & |E| < μ₅) are empty (i.e., holes with p₃ > 0)

CME current:

$$\langle \vec{j} \rangle = -tr[\vec{\gamma}S(x,x)] = \frac{e^{2}B}{2\pi^{2}}\mu_{5}$$

[Fukushima, Kharzeev, Warringa, Phys. Rev. D 78, 074033 (2008)]

HEAVY-ION COLLISIONS

November 26, 2023

\vec{B} and $\vec{\omega}$ in little Bangs

- Rotating & magnetized QGP created at RHIC/LHC
- Electromagnetic fields are induced by the currents of passing charged ions

[Rafelski & Müller, PRL, 36, 517 (1976)], [Kharzeev et al., arXiv:0711.0950], [Skokov et al., arXiv:0907.1396], [Voronyuk et al., arXiv:1103.4239], [Bzdak &. Skokov, arXiv:1111.1949], [Deng & Huang, arXiv:1201.5108], ...

• Vorticity estimate: [Adamczyk et al. (STAR), Nature 548, 62 (2017)]

 $\omega \sim 9 \times 10^{21} s^{-1} (\sim 10 \text{ MeV})$

• Magnetic field estimate:

 $B\sim 10^{18}$ to $10^{19}~G~(\sim 100~MeV)$

Source of chirality in QCD

• Chiral charge can be produced by topological configurations in QCD

$$\frac{d(N_{R} - N_{L})}{dt} = -\frac{g^{2}N_{f}}{16\pi^{2}}\int d^{3}x F_{a}^{\mu\nu}\tilde{F}_{\mu\nu}^{a}$$

A random fluctuation with nonzero chirality should produce

$$N_R - N_L \neq 0 \implies \mu_5 \neq 0$$

• The latter leads to an electric CME current $\langle \vec{j} \rangle = \frac{e^2 \vec{B}}{2 r^2} \mu_5$

Dipole CME

• Dipole pattern of *charged particle correlations* in heavy-ion collisions $\langle \cos(\varphi_{\alpha}^{\pm} + \varphi_{\beta}^{\mp} - 2\Psi_{RP}) \rangle > 0 \quad \& \quad \langle \cos(\varphi_{\alpha}^{\pm} + \varphi_{\beta}^{\pm} - 2\Psi_{RP}) \rangle < 0$

[Kharzeev, McLerran, Warringa, Nucl. Phys. A **803**, 227 (2008)] [Fukushima, Kharzeev, Warringa, Phys. Rev. D **78**, 074033 (2008)]

CME: Experimental evidence

November 26, 2023

Isobar collisions

Image credit: Brookhaven National Laboratory, https://www.bnl.gov/newsroom/news.php?a=119062

Isobar collisions (experiment)

- Isobar run was completed by STAR in 2018
- \approx 3.8 billion collisions of ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr at \sqrt{s} = 200 GeV
- Blind analysis by 5 groups of the STAR Collaboration (2021)
- Under the pre-defined criteria, **no CME** signature observed [STAR Collaboration, Phys.Rev.C **105**, 014901 (2022)]
- The results are also inconsistent with the existing theoretical models
- Difference in backgrounds (RuRu and ZrZr) could make results consistent with a finite CME signal ~ (6.8 ± 2.6)%.

[Kharzeev, Liao, Shi, Phys.Rev.C 106, L051903 (2022)]

• Improved background estimates are still consistent with no CME (and set the upper limit of CME fraction ~ 10%) [STAR Collaboration, arXiv:2310.13096]

November 26, 2023

Image credit: Aurore Simonnet, Sonoma State University

MAGNETARS

- Gaps can develop in magnetosphere
- Electric field in the gap

 $E_{\parallel} \simeq Bh/R_{LC}$

$$h \simeq 3.6 \text{ m} \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{-3/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{-4/7}$$

 $R_{LC} = c/\Omega$ is the light cylinder radius

where $E_c = m_e^2/e = 1.3 \times 10^{18} \text{ V/m}.$

• The estimate for the field

$$E_{\parallel} \approx 2.7 \times 10^{-8} E_c \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{4/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{3/7}$$

[Ruderman & Sutherland, Astrophys. J. 196, 51 (1975)]

• The evolution of the chiral charge is governed by

- The chiral anomaly produces n_5 and chirality flipping destroys it
- The steady-state value is quickly $(t^* \sim 1/\Gamma_m \sim 10^{-17} \text{ s})$ achieved:

$$n_5 = \frac{e^2}{2\pi^2 \Gamma_{\rm m}} \vec{E} \cdot \vec{B}$$

• where estimate for the chirality flipping rate is

$$\Gamma_{\rm m} \simeq \frac{\alpha^2 m_e^2}{T} \quad (T \lesssim m_e / \sqrt{\alpha})$$

[Boyarsky, Cheianov, Ruchayskiy, Sobol, Phys. Rev. Lett. 126, 021801 (2021)]

The Many Faces of Relativistic Fluid Dynamics, KITP, University of California Santa Barbara

Chiral plasma instability

• Collective modes of a chiral plasma

$$\omega_{1,2} \simeq \begin{cases} -i\left(\sigma + \frac{k(\lambda k_{\star} - k)}{\sigma}\right) \\ i\frac{k(\lambda k_{\star} - k)}{\sigma} \end{cases}$$

[Joyce & Shaposhnikov, PRL 79, 1193 (1997)] [Boyarsky, Frohlich, Ruchayskiy, PRL 108, 031301 (2012)] [Tashiro, Vachaspati, Vilenkin, PRD 86, 105033 (2012)] [Akamatsu & Yamamoto, PRL 111, 052002 (2013)] [Tuchin, PRC 91, 064902 (2015)] [Manuel & Torres-Rincon, PRD 92, 074018 (2015)] [Hirono, Kharzeev, Yin, PRD 92, 125031(2015)] [Sigl & Leite, JCAP 01, 025 (2016)]

• The 1st mode is damped by charge screening:

 $B_{k,1} \propto B_0 e^{-\sigma t}$

• The 2nd mode is unstable when $k < \lambda k_{\star}$:

$$B_{k,2} \propto B_0 e^{+tk(\lambda k_\star - k)/\sigma}$$

 $\frac{1}{2}k_{\star}$

Note:
$$k_{\star} = \frac{2\alpha\mu_5}{\pi}$$

• The momentum of the fastest growing mode $B_{k,2}$ is

• Unstable plasma in the gaps produces **helical** (circularly polarized) **modes** in the frequency range

 $0\lesssim\omega\lesssim k_\star$

- For magnetars, these span **radio frequencies** and may reach into the **near-infrared** range
- Available energy is of the order of $\Delta \mathcal{E} \sim \mu_5^2 T^2 h^3$, i.e.,

$$\begin{split} \Delta \mathcal{E} &\simeq 2.1 \times 10^{25} \ \mathrm{erg} \ \left(\frac{T}{1 \ \mathrm{MeV}}\right) \left(\frac{R}{10 \ \mathrm{km}}\right)^{6/7} \\ &\times \ \left(\frac{\Omega}{1 \ \mathrm{s}^{-1}}\right)^{-9/7} \left(\frac{B}{10^{14} \ \mathrm{G}}\right)^{2/7} \end{split}$$

• The energy may be sufficient to feed some radio bursts

Credits: Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)

DIRAC & WEYL SEMIMETALS

[Gorbar, Miransky, Shovkovy, Sukhachov, *Electronic Properties of Dirac and Weyl Semimetals* (World Scientific, Singapore, 2021)]

November 26, 2023

6th Joint Meeting of the APS Division of Nuclear Physics and the Physical Society of Japan

ELECTRONIC PROPERTIES OF

Dirac/Weyl fermions

• Electron quasiparticles with a wide range of properties are possible

• They may even have the emergent spinor structure of *massless* Weyl fermions,

 $H_W \approx \pm v_F \big(\vec{\sigma} \cdot \vec{k} \big)$

Such nodes are not uncommon! Na₃Bi, Cd₃As₂, ZrTe₅, TaAs, NbAs, ...

[Liu et al., Science 343, 864 (2014)]
[Neupane et al., Nature Commun. 5, 3786 (2014)]
[Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)]
[Li et al., Nature Physics 12, 550 (2016)]
[S.-Y. Xu et al., Science 349, 613 (2015)]
[B. Q. Lv et al., Phys. Rev. X5, 031013 (2015)]
[S.-Y. Xu et al., Nature Physics 11, 748 (2015)]
[S.-Y. Xu et al., Science Adv. 1, 1501092 (2015)]
[F. Y. Bruno et al., Phys. Rev. B 94, 121112 (2016)]

November 26, 2023

Berry curvature & topology

• For Weyl eigenstates, the Berry curvature is

$$\boldsymbol{\Omega}_{k} \equiv \boldsymbol{\nabla}_{k} \times \boldsymbol{a}_{k} = \lambda \frac{\boldsymbol{k}}{2k^{3}}$$

- The Chern number (topological charge) $C = \frac{1}{2\pi} \oint \mathbf{\Omega}_k \cdot d\mathbf{S}_k = \frac{\lambda}{2\pi} \oint \frac{\vec{k}}{2k^3} \cdot \frac{\vec{k}}{k} k^2 \sin\theta \, d\theta d\varphi = \lambda$
- In a solid state material, the Brillouin zone is compact
- A closed surface around a node at \vec{k}_0 is also a closed surface around the rest of the Brillouin zone
- Thus, Weyl fermions come in pairs of opposite chirality [Nielsen & Ninomiya, Nucl. Phys. B 193, 173 (1981); B 185, 20 (1981)]

[Morimoto & Nagaosa, Scientific Reports 6, 19853 (2016)]

Idealized Dirac and Weyl model

• Low-energy Hamiltonians of a Dirac and Weyl materials

$$H = \int d^{3}\mathbf{r} \,\overline{\psi} \Big[-iv_{F} \Big(\vec{\gamma} \cdot \vec{\mathbf{p}} \Big) - \Big(\vec{b} \cdot \vec{\gamma} \Big) \gamma^{5} + b_{0} \gamma^{0} \gamma^{5} \Big] \psi$$

Dirac (e.g., Na₃Bi, Cd₃As₂, ZrTe₅)

Weyl (e.g., TaAs, NbAs, TaP, NbP,WTe₂)

Anomalous effects in semimetals

- Observable properties of Dirac/Weyl semimetals are sensitive to (i) the chiral anomaly, (ii) the values of b_0 and \vec{b} , and (iii) nontrivial topology
- Partial list of potential anomalous effects:
 - Negative magnetoresistance (ρ_{\parallel} decreasing with *B*)
 - New types of collective modes (anomalous Hall waves, pseudo-magnetic helicons, chiral zero sound, etc.)
 - Anomalous thermoelectric effects (e.g., $\vec{J}_Q \propto \vec{b} \times \vec{E}$ and $\vec{J}_Q \propto \vec{b} \times \vec{\nabla}T$)
 - Strain/torsion induced CME $(\vec{J} \propto u_{33}\vec{B} \text{ and } \vec{J} \propto \mu \vec{B}_5)$
 - Strain/torsion dependent conductivity/resistance
 - Quantum oscillations in thin films $[T \propto v_F/(\mu b)]$
 - Strain/torsion induced quantum oscillations (pseudo-Landau levels)
 - Nonlocal anomalous transport

Image credit [Zhang et al., Nat. Commun. 7, 10735 (2016)]

NEGATIVE MAGNETORESISTANCE & MORE

November 26, 2023

Steady CME current

• Homogeneous chiral plasma:

[Nielsen & Ninomiya, Phys. Lett. B **130**, 390 (1983)] [Son & Spivak, Phys. Rev. B **88**, 104412 (2013)]

$$\frac{\partial n_5}{\partial t} + \sqrt[7]{\tau_5} = \frac{e^2 \vec{E} \cdot \vec{B}}{2\pi^2} - \frac{n_5}{\tau_{\rm ch}}$$

• Steady state $(\tau_{ch} \sim 1 \text{ ps to } 1 \text{ ns})$

$$\overrightarrow{B} \xrightarrow{\overrightarrow{E}}$$

$$n_5 = \frac{e^2 \vec{E} \cdot \vec{B}}{2\pi^2} \tau_{ch} \longrightarrow \mu_5 = \frac{n_5}{\chi_5} \approx \frac{3v^3 n_5}{T^2 + \mu^2 / \pi^2}$$

• The CME current

$$J_{i} = \frac{e^{2}}{2\pi^{2}} \mu_{5} B_{i} = \left(\frac{e^{2}}{2\pi^{2}}\right)^{2} \tau_{ch} \frac{B_{i}B_{k}}{\chi_{5}} E_{k} \rightarrow \sigma_{CME}^{\parallel} = \left(\frac{e^{2}}{2\pi^{2}}\right)^{2} \tau_{ch} \frac{B^{2}}{\chi_{5}}$$

i.e.,
$$\rho_{\text{total}}^{\parallel} = \frac{1}{\sigma_{0} + a(T)B^{2}}$$

Negative Magnetoresistance

[Q. Li et al, Nature Physics 12, 550 (2016)] • Experimental confirmation 0.06 $\rho_{\text{total}}^{\parallel} = \frac{1}{\sigma_0 + a(T)B^2}$ 2.0 0.04 σ 0.02 Dirac semimetals: Theory 0.00 [Kim et al, Phys. Rev. Lett. 111, 246603 (2013)] **E** 1.5 40 80 **Measurement** [Li et al., Nat. Mater. 12, 550 (2016)] (mΩ T (K) [Xiong et al., Science **350**, 413 (2015)] [Feng, et al., Phys. Rev. B 92, 081306 (2015)] 1.0 [Li et al., Nat. Commun. 6, 10137 (2015)] [Li et al., Nat. Commun. 7, 10301 (2016)] Weyl semimetals: 0.5 T = 20 K[Huang et al., Phys. Rev. X 5, 031023 (2015)] [Zhang et al., Nat. Commun. 7, 10735 (2016)] [Hirschberger et al., Nat. Mater. **15**, 1161 (2016)] 0.0 [Wang et al., Phys. Rev. B 93, 121112 (2016)] -9 3 6 9 ()[Du et al., Sci. China Phys. Mech. Astron. **59**, 657406 (2016)] B(T) [Li et al., Front. Phys. 12, 127205 (2017)]

November 26, 2023

Chiral charge pumping (theory)

- Weyl semimetal TaAs
 - $-\vec{B} \neq 0$ & oscillating $\vec{E} \parallel \vec{B}$
- The nonlinear contribution to chiral charge-pumping conductivity

$$\delta\sigma_{\rm ch}^{\rm NL} = i \frac{9\alpha^2 e^5 v^3}{8h^2 \omega^3} \left(\frac{\mathbf{\tilde{E}}_{\rm pump} \cdot \mathbf{B}}{B}\right)^2 B$$

• The reflection coefficient

$$R(T) = \left| \frac{1 - \sqrt{\epsilon}}{1 + \sqrt{\epsilon}} \right|^2 \quad \text{where} \quad \epsilon = \epsilon_{\infty} + i \frac{\sigma}{\omega \epsilon_0}$$

[Jadidi et al., Phys. Rev. B 102, 245123 (2020)]

Chiral charge pumping (data)

• Experimental setup

• Chiral charge relaxation time $1 \text{ ns} \ll \tau_{ch} < 77 \text{ ns}$

[Jadidi et al., Phys. Rev. B 102, 245123 (2020)]

• Measurements:

Nonlocal anomalous transport

• Theory

[Parameswaran, Grover, Abanin, Pesin, Vishwanath, PRX 4, 031035 (2014)]

• Experiment (challenge: Ohmic diffusion) [Zhang et al., Nat. Commun. 8, 13741 (2017)]

• Measurements:

$$L_V \sim 2 \ \mu m$$

November 26, 2023

Summary

- Chiral anomaly can have macroscopic implications in relativistic plasmas
- (Dipole) chiral magnetic effect can be seen via charged particle correlations in heavy-ion collisions
- Chiral anomaly may affect activity of magnetars
- Chiral anomaly can be realized and tested in Dirac/Weyl semimetals
- Chiral charge is relatively long-lived and can be optically pumped and manipulated (promising new technologies)