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Reading material: V.A. Miransky & I.A. Shovkovy, Physics Reports 576 (2015)



• Dirac fermions in magnetic field

• Dimensional reduction

• Magnetic catalysis: basics

• Magnetic catalysis in toy model

• Magnetic catalysis in QED

• Magnetic catalysis in QCD

• Anisotropic confinement

• Inverse catalysis

• Phase diagram

MAGNETIC CATALYSIS: PLAN OF LECTURES
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QCD IN MAGNETIC FIELDS

• Relativistic collisions of  heavy ions 

produce quark-gluon plasma & strong 

magnetic fields

1018 - 1019 Gauss ( |��|$ ~ 100 MeV)

• Quark matter may form inside magnetars

1014 - 1016 Gauss ( |��|$ ~1 MeV to 10 MeV)

• Strong magnetic field is an instructive 

theoretical tool to study confined gauge 

theories such as QCD

≳	1019 Gauss ( |��|$ ≳100 MeV to 10 MeV)

Credit: Brookhaven National Laboratory

Credit: Scientific American

Credit: Internet
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• Lagrangian density for charged Dirac fermions (units with � = 1):

ℒ = �-	 ��0�0 −� �
where �0 = �0 + ���0,   �0�8+	�8�0=2�08 and  �08=(1,-1,-1,-1)

• Consider the following two types of global transformations:

� →	�;<� and     � →	�;<=>�
where   �?=i�@�A�B�C
The corresponding Noether’s currents are

�0 = �-�0� and         �?0 = �-�0�?�
They satisfy the relations:

�0�0 = 0 and �0�?0 = 2�	�	�-�?�
Both transformations are symmetries when � = 0, but chiral symmetry is 

broken when � ≠ 0.     [The chiral anomaly may complicate the situation]

DIRAC FERMIONS

Electric charge 
conservation

Chiral charge 
conservation
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• � = 0:  Dirac vacuum is a semimetal

! No energy gap between the filled Dirac sea states 

and the empty positive-energy states (� = ±�)

! However, the density of states vanishes at E=0

! A nonzero electric current could be produced by 

an arbitrarily small electric field

• � ≠ 0:  Dirac vacuum is an insulator 

! Energy gap Δ� = 2� between the antiparticle and 

particle states � = ± �B +�B$

! the density of states @ E=0 vanishes (no states)

! electric current is exponentially small, i.e., 

�LM	NO/|QR| (due to Schwinger pair creation)

DIRAC VACUUM E

Δ�

E

p

p
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• Dirac equation for charged fermions:��0�0 −� � = 0
where �0 = �@, −� and  the Landau gauge  � = −��, 0,0 is used.

• Look for a solution in the form:  � = ��0�0 +� �. Then,

−�@B + �X + ���� B + �YB + �ZB + ��A�B�� −�B �=0

• Normalized solutions for � have the form

�[,± ∝ 1 ± �sgn(��)�
A�B

2 �[ � �L;cde;fgXe;fhZ
where �[ are harmonic oscillator wave functions, i.e., 

�[ ∝ �[ � �Lk
O
O ,     � = Y

l + �X� sgn(��) and    � =	 A
Qn$

• The dispersion relation is given by

� = �p± = ± 2� �� + �ZB +�B$

where � = � + A
B + sgn(��)�Z and  �Z = ± A

B is an eigenvalue of    
;
B �A�B

DIRAC FERMIONS AT B≠0

spinorbital
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DEGENERACY OF LANDAU LEVELS

• The Landau level energies are independent of �X
�p± = ± 2� �� + �ZB +�B$

• This means that each level is highly degenerate

• Let’s calculate the degeneracy by confining the

system in a finite box of size Lx⨉Ly with periodic boundary conditions

• The wave function is a plane wave in the x direction: �(�) ∝ �;fgX
� 0 = � �X ⟹ �;fgwg = 1 ⟹ �X = BMp

wg ,				� = 1,2, …,Nmax
• The value of �X sets	the	center	of	the	Landau	orbit	in	y-direction:
�� ≈ �X�B 		⟹				 �X,����B≲�Y ⟹ BM����

wg
A
|Qn| ≈ �Y ⟹ ����

wgw� ≈ |Qn|
BM

• The	degeneracy	is	proportional	to	the	field	strength	and	the	size	
(area)	of	the	system	in	the	spatial	directions	perpendicular	to	�

���� ≈ |��|
2� �X�Y

Lx

Ly

�
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LANDAU ENERGY SPECTRUM

• Landau energy levels at � = 0
�p± = ± 2� �� + �ZB$

where � = � + A
B+ sgn(��)�Z

• Lowest Landau level is spin polarized 

�@± = ±�Z (� = 0, 	�Z = − A
B)

• Density of states at E=0:

�p
�R�R�@ =

|Qn|
BM 	 ABM = |Qn|

 MO
• Higher Landau levels (� ≥ 1) are

twice as degenerate:

(i) � = � &  s = − A
B

(ii) � = � − 1 &  s = + A
B

Occupied

spinorbital

En(pz)

pz
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DIRAC PROPAGATOR AT B≠0
• By definition,

� �, �¤ = � � ��0�0 −� LA �¤
= � ��0�0 +� ¥ � ��0�0 −� ��8�8 +� LA �¤
= � ��0�0 +� ¥ � −�0�0 + ��A�B�� −�B LA �¤
= � ��0�0 +� ¥ ∑ � �, �Z, �Z$$ �B − �pB LA �, �Z, �Z �¤

• Note that the explicit form of the wave functions is the same as before

�[,fh,§h � = � �, �Z, �Z ∝ �[ � �Lk
O
O �L;cde;fhZ	�§h,   where  � = Y

l + �X�
• The final expression for the propagator has the form

� �, �Z; �⃗«, �⃗«¤ = �;¬(¥⃗­,¥⃗­® )�̄ �, �Z; �⃗« − �⃗«¤
where Φ �⃗«, �⃗«¤ = −e∫ �8��8¥⃗­¥⃗­® is the Schwinger phase (!), and 

�̄ �, �Z; �⃗« − �⃗«¤ = ³ �B�⃗«(2�)B �;f⃗­´ ¥⃗­L¥⃗­
®

$

$
�̄ �, �⃗

� =¶|�, �Z, �Z⟩
$

$
¸�, �Z, �Z|
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DIRAC PROPAGATOR AT B≠0
• The Fourier transform of the translation invariant part reads

�̄ �, �⃗ = ��Lf⃗­O lO ¶ −1 p�p �, �⃗
�B − �pB

¹

p�@where�p �, �⃗ = 2 ��@ − �Z�C +� �e�p 2�⃗«B�B −�L�pLA 2�⃗«B�B+4 �⃗« ´ �⃗« �pLAA  2�⃗«B�Band	the	following	notation	for	the	spin	projectors	is	used
�± = 1 ± �sgn(��)�A�B

2
• Similarly,	in	momentum-coordinate	space	representation:

�̄ �, �Z; �⃗« = � �L¥⃗­
O/( lO)
2��B ¶�p �, �Z; �⃗«

�B − �pB
¹

p�@
where       �p �, �Z; �⃗« = 2 ��@ − �Z�C +� �e�p ¥⃗­OBlO −�L�pLA ¥⃗­OBlO

− ;
lO �⃗« ´ �⃗« �pLAA  

¥⃗­OBlO

Laguerre	

polynomials

Laguerre	

polynomials
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Occupied

DIMENSIONAL REDUCTION

• The low-energy dynamics is determined 

by the lowest Landau level (n=0)

�@± = ±�Z
• This is a (1+1)D spectrum!

• Propagator is also (1+1)D:

�̄www �, �⃗ = 2��Lf⃗­O lO c=ÀLfh=ÁcOLfhO 	Ae;ÂÃÄ(Qn)=Å=OB

• In addition, there is a nonzero density of states at E=0:

��
��ÆR�@ =

1
��

�����X�Y ³ ��Z2�
ÈR
@

= |��|
4�B

lo
w

 e
n
er

g
ie

s
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• Thought experiment:

– Create a particle-antiparticle 

pair (energy price: Δ�)

– The pair can form a bosonic 

bound state (energy gain: −�Ê)

– If �Ê > Δ�, copious formation 

of bound states is beneficial

PAIRING INSTABILITY

Δ�

– Note, Δ� can be arbitrarily small when � = 0 (!)

– The bound states of fermions are bosons

– Bosons can (and will) occupy the lowest energy state 

(� = 0), and thus form a Bose condensate �-� ≠ 0
– Ground state (vacuum) changes its properties (e.g., chiral 

symmetry breaks down, an energy gap opens in spectrum)
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DO BOUND STATES ALWAYS FORM IN 3D?

• Consider a 3D potential well in quantum mechanics 
[Landau-Lifshitz, Quantum Mechanics]

• Bound states form only when the well is deep enough 
(namely, g > 1):

• There are no bound states when g < 1, i.e., when the 
well is not deep enough (in other words, when the 
coupling constant is not strong enough)

  

U(r) =
−g

π 2!2

8m*a
2
for r ≤ a

0 for r > a

% 

& 
' 

( ' 

  

E3D ≈
π 4!2

27a2m*

g −1( )
2
, assuming 0 < g −1 <<1
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COMPARE: BOUND STATES IN 1D

• Bound states always form

• This is a perturbative result (!)

• Rigorous statement: at least one bound state 

exists if

[B. Simon, Annals Phys. 97 (1976) 279]

U(x)

ψ
2

x

  

E
1D
≈
m
*

2!
2
− U(x)dx

−∞

+∞

∫( )
2

E1D ∝ g
2
, when U(x)→gU(x)

1+ x( ) U(x) dx <∞∫ & U(x) dx ≤0∫
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HOW ABOUT BOUND STATES IN 2D?

• Bound states always form

• This is a non-perturbative result

• Rigorous statement: at least one bound state 

exists if

[B. Simon, Annals Phys. 97 (1976) 279]

U(r)

x
y

ψ
2

  

E2D ≈
!
2

a
2
m*

exp −
!
2

m*

rU(r)dr
0

∞

∫
−1& 

' 
( 

) 

* 
+ 

E2D ∝ exp −
C

g

$ 

% 
& 

' 

( 
) , when U(x)→gU(x)

U(x)
1+ε

d
2
x <∞∫ , (1+ x

2
)
ε
U(x) d

2
x <∞ & U(x) d

2
x∫ ≤0∫
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UNIVERSAL MAGNETIC CATALYSIS

• Quantum field theory of charged fermions (m=0) at � ≠ �
– Dimensional reduction (caused by a nonzero �)

– Nonzero density of states (∝ |��|) at E=0 

– Attraction between particles and antiparticles

• Universal outcome:

– Copious particle-antiparticle pairing at low energies

– Condensation of boson pairs that destabilizes the trivial 

Dirac vacuum

– Spontaneous rearrangement of the ground state

– Breakdown of chiral symmetry

– Opening a nonzero gap in the Dirac spectrum
[Gusynin, Miransky, Shovkovy, Phys. Rev. Lett. 73, 3499 (1994)]

[Shovkovy, Lect. Notes Phys. 871, 13 (2013)]

• The mechanism is similar to superconductivity in metals due to 

Cooper pairing of electrons
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MAY 30, 2017

Reading material: V.A. Miransky & I.A. Shovkovy, Physics Reports 576 (2015)



• Let us consider a Nambu-Jona-Lasino model (� = 0) with 

four-fermion contact interaction

ℒ = �-	 ��0�0 � + �2 �-� B + �-��?� B

• After the Hubbard–Stratonovich transformation, this is 

equivalent to 

ℒ = �-	 ��0�0 − � − ��?� � − �B + �B2�
where the following composite fields were introduced

� = −� �-� and � = −G �-��?�
• The effective action for the composite fields reads

Γ �, � = − A
BÑ ∫� � �B + �B$

$ − �	Tr ln ��0�0 − � − ��?�

TOY MODEL
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• UL(1) symmetry transformations,  � →	�;<Ò(AL=>)/B��-� → cos �w	�-� −sin �w	�-��?��-��?� → sin �w	�-� + cos �w	�-��?�
• UR(1) symmetry transformations,  � → �;<Ô(Ae=>)/B��-� → cos �Õ	�-� +sin �Õ	�-��?��-��?� → −sin �Õ	�-� + cos �Õ	�-��?�
• In terms of the composite fields, UL(1) / UR(1) transformations:� → cos �w	� − sin �w	�� → sin �w	� + cos �w �
(Note that ρB = �B + �B remains an invariant.)

• Just like the original action ∫ℒ	� �$
$ , the effective action Γ �, �

should be invariant under the symmetry transformations, i.e.,

Γ �, � = Γ ρ + 12�A08 �0��8� + �0��8� +⋯

SYMMETRY OF THE MODEL
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• Let us consider a homogeneous ground state with a uniform �
� = −� �-� ≠ 0

(Because of the chiral symmetry, we can always set � = 0.)

• In this case, Γ � =	−∫� � � �$
$ , where the effective action is

� � = �B
2� −

�
2³

��
� 	tr � �L;§ Ú

ÛÚÛL;=Å=OQneÜO � − (∞)¹
@

• By	using	the	Schwinger	result	[Phys.	Rev.	82,	664	(1951)]
� �L;§ ÚÛÚÛL;=Å=OQneÜO � = �L;§ÜOL;M/ 

8 �� C/B ��� cot ��� + �A�B
• We	derive	the	effective	potential	(after	� → −��):

� � = ÜO
BÑ + Qn

êMO ∫ �§
§O

¹
A/ëO �L§ÜO coth ��� − (∞)

EFFECTIVE POTENTIAL: DERIVATION
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EFFECTIVE POTENTIAL: RESULTS

At weak coupling (� → 0), the analytical solution for the minimum

��ìÄ ≃ ��
� exp ΛB

|��| exp − 4�B
|��|�

Lowest energy ground state is defined by:    
�ï(Ü)
�Ü = 0 (gap equation)
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• Effective potentials for different coupling constants 

In fact, the gap equation at B=0 reads    
ÑëOL MO

Ñ = �B ln ëOÜO
It has a nontrivial solution ��ìÄ ≠ 0	only when the coupling 

strength is sufficiently strong, i.e., � > �� = 4�B/ΛB

COMPARE WITH B=0 CASE
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• Recall:       ℒ = �-	 ��0�0 − � − ��?� � − ÜOeMO
BÑ

• The ground state expectation value � = ��ìÄ	determines the 

dynamical mass of fermions ��Yp	in the new Dirac vacuum

• Also, the chiral symmetry is broken in a state with � ≠ 0

DYNAMICAL MASS
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• When	a	continuous	global	symmetry	breaks	down,	massless		
Nambu-Goldstone bosons appear in the particle spectrum

�M LA =																																			= � (�)
� + �	tr � �, 0 ��?� 0, � ��?

• The dispersion relation of NG bosons at �⃗ → 0

NAMBU-GOLDSTONE BOSONS

�M = �M,«B �⃗«B + �ZB$

where	�M,« ≪ 1 at	weak	coupling
• The relation for the �-boson

�Ü = �ÜB + �Ü,«B �⃗«B + �ZB$

where �Ü = 2 3$ ��Yp &  �M,« ≪ 1

+
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• Partition function:

�ö,0 = Tr exp −� − ��� 	
= ³ ����-����

$

$
exp � ³ ��³�C�

$

$
�-	 ��0�0 − � − ��?� � − �B + �B2�

L;/ö
@

where the fermion/boson fields satisfy (anti)periodic boundary 

conditions in imaginary time, e.g., � 0 = −� −�/�
• Note #1: �ö,0 is similar to the generating functional at T=0

• Note #2: Hubbard–Stratonovich trick ⟺ Gaussian integral

• The effective potential is similar to that at T=0, but with the 

energy integration replaced by the Matsubara sum:

³ ��
2� �;§c

O¹
L¹

(… ) → �� ¶ �;§(;cû)O(… )
¹

p�L¹
where � → ��p = ���(2� + 1)

NONZERO TEMPERATURE
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EFFECTS OF NONZERO TEMPERATURE

� = 0
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EFFECTS OF NONZERO CHEMICAL POTENTIAL

� = 0

Notice that at � = 0 the chemical potential �	has no effect on the 

effective potential when � > � (This is not true at � ≠ 0)
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• Effective potential for the composite field, e.g., � = −� �-�
�ï(Ü)
�Ü = 0 (gap equation)

• In NJL, e.g.,  ��üw � = ÜO
BÑ + �	tr ln ��0�0 − � , giving

Ü
Ñ − �	tr A

;=ÛÚÛLÜ = 0									 ⟹ 									� = �	tr �(�, �)
• The same gap equation can be obtained from the Schwinger-

Dyson equation for the fermion self-energy/propagator

�LA �, �¤ − �@LA �, �¤ = −��¶Γ; � �, � Γ; − tr � �, � Γ;
$

;
Γ;�  � − �¤

where ansatz �LA �, �¤ = −� ��0�0 −��Yp �  � − �¤ is used

SYMMETRY BREAKING: METHODS USED

= + + +
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• Homogeneous Bethe-Salpeter equation for a massless bound state 

with quantum numbers of the NG boson

• As we’ll see, in NJL model in the strong-field limit, the pion’s 

wave function in momentum space should have the structure:

� �; � → 0 = �(�∥)�Lf­O lO ��
@ − �Z�C −��B − �ZB −�B �?�e��

@ − �Z�C −��B − �ZB −�B
where �(�∥) with �∥ = (�, �Z) satisfies a simple integral equation 

� �∥,R = �|��|
4�C ³� �∥,R �B�∥,R

�∥,RB +�B
$

$

ANOTHER WAY: PION AS A BOUND STATE

(here mass parameter m is treated as a variational parameter)

= +�ÿ �ÿ �ÿ
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• It is instructive to recast the problem in terms of

Ψ �∥ = ³ �B�∥(2�)B
�L;¥∥⋅[∥
�∥B +�B

$

$
� �∥

• Function Ψ �∥ satisfies the following 2D Schrodinger equation:

−�¥∥B +�B + � �∥ Ψ �∥ =0

where −�B plays the role of energy �, and � �∥ is a model-

dependent potential (as we will see later)

• In the NJL model, � �∥ is proportional to a �-function

� �∥ = −� ��
� �ëB �∥ = −� ��

� ³ �B�∥(2�)B
ë
@

�L;¥∥⋅[∥
• There exists a bound state solution (�Ê < 0) in this Schrodinger 

problem and, thus, also a real solution for �, i.e., 

�B = −�Ê ≃ ΛBexp −  MO
|Qn|Ñ (LLL & weak coupling) ✓

AUXILIARY SCHRODINGER PROBLEM
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MAY 31, 2017

Reading material: V.A. Miransky & I.A. Shovkovy, Physics Reports 576 (2015)



• Lagrangian density invariant under  SUL(Nf)✕SUR(Nf)✕U(1)

ℒ = −14�08�08 + �-% ��0�0 �%
where �0 = �0 + �� �0 + �0 and    �08 = �0�8 − �8�0
• The Bethe–Salpeter equation for NG states (� = 1,… ,�%B − 1):

where the wave function is defined by

Diagrammatically  

where the kernel (in the ladder approximation) is

MAGNETIC CATALYSIS IN QED

= +�ÿ �ÿ �ÿ

Hartree term	plays	no	

role	for	NG	bound	states
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• Structure of the NG-boson wave function (�0 = �0 − �0¤ ):

• In the LLL approximation, the equation reduces to 

where we introduced

and

• The solution should have the following Dirac structure

• Finally, the equation for � �∥ reads

� �∥ = �
2�B³

� �∥ �B�∥
�∥B +��YpB
$

$
³ ��¹
@

�LXlO/B
� + �∥ − �∥ B

SOLUTION IN STRONG FIELD LIMIT

Compare	with	

the	NJL	model
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• Rewrite the problem in terms of

Ψ � = ³ �B�∥(2�)B
�;�´[∥

�∥B +��YpB
$

$
� �∥

• Function Ψ � satisfies the following 2D Schrodinger equation:

−��B +��YpB + � � Ψ � =0

where

	
• The potential is long-ranged with the following asymptote 

• The lowest energy bound state gives

��Yp ≃ � ��$ 	exp − M
B

M
B<

A/B
(LLL & weak coupling) ✓

REDUCE TO A SCHRODINGER PROBLEM

exp −�/ �$ is	the	

result	of	a	long-

range	interaction
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• Photon exchange interaction is screened in a strong B-field

where  Π08 ≡																									≃ �0∥�8∥ − �∥B�08∥ 	�L.­O lOΠ �∥B
• Then, the screened photon propagator reads

where the polarization function has the asymptotes

NO SCREENING➖ NOT GOOD

strong-B	limit

⟹
where the effective photon screening mass is  

(extremely narrow range in �∥B) 
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• Let us re-analyze the problem with screening

� �∥ = �
4�B³

� �∥ �B�∥
�∥B +�B

$

$
³ ��¹
@

�LXlO/B
� + �∥ − �∥ B + �LXlO/B

� + �∥ − �∥ B +�=B

• Improved vs. simple ladder approximations: � → �/2
• Note, the dynamical mass is very sensitive to small � (or �/2): 

��Yp ≃ � ��$ 	exp − M
B

M
B<

A/B
(ladder approximation)

аnd, thus, changes drastically with inclusion of screening

• The bigger problem is that the improved ladder approximation 

is not reliable either

– The vertex corrections will change the result too 

– Singularities ~ ln �� /��YpB ~1/ �$ 	in higher-order diagrams

• Re-summation of infinitely many diagrams is needed (!)

IMPROVED LADDER APPROXIMATION
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• QED in a strong field looks almost like (1+1)D

• Lesson from exactly solvable (1+1)D Schwinger model: find a 

gauge in which all (singular) vertex corrections vanish!

• Such a (non-local) gauge exists

where 

• The corresponding full photon propagator reads 

• All potentially dangerous infrared singularities vanish because

�e�0�e = �∥,0 and     �∥,<	�∥,0Å	�∥,0O …�∥,0Oû/Å 	�∥<= 0

TOWARD EXACT RESULT
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• Let us use the method of Schwinger-Dyson equation this time:

�̄ � = �̄@ � − 4π�³� �� �
$

$
�L;¬(X,Y)L;¬(Y,Z)�̄@ � − � �0�̄ � − � �8�̄ � �08(� − �)

where	all Schwinger phases were carefully accounted for, and the 
nonlocal gauge is assumed in the photon propagator 

�08LA � − � = �08LA � − � − 4π�	tr �0�̄ � − � �8�̄ � − �
• Perform Fourier transform and use LLL approximation,

�̄@ �∥ = 2��Lf⃗­O lO f3∥f∥O�e and   �̄ �∥ = 2��Lf⃗­O lO f3∥e4 f∥
f∥OL4O f∥ �e

• Derive the following gap equation:

� �∥ = �
2�B³

�B�∥� �∥
�∥B + �B �∥
$

$
³ ��¹
@

�LXlO/B
� + �∥ − �∥ B +�=B�LXlO/B

• Compare with the gap equations in the (improved) ladder QED, 
obtained with Bethe-Salpeter method

RELIABLE STRONG-B LIMIT IN QED 
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• The numerical result is fitted well by

��Yp ≃ 2 ��$ 	 ��% A/Cexp − M
< 5Ä 6Å

789

,    �A ≈ 1.82 ± 0.06

DYNAMICAL MASS IN QED
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• QCD is strongly coupled & nonperturbative

• There are theoretical tools that provide insight

– High-energy (weak-coupling) expansion

– Large Nc expansion

– High temperature limit (� ≫ Λ;<=)

– High density limit (� ≫ Λ;<=)

– Lattice QCD

• Strong magnetic field B is yet another tool

– it probes physics at short distances ℓ~1/ |��|$

QCD IN MAGNETIC FIELD

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD 40



• Lagrangian density of QCD in an external magnetic field

ℒ = − A
B�408�084 + �-% ��0�0 �%

where �0 = �0 + ���04�4/2 + ��%�0@�A
�084 = �0�84 − �8�04 + ��4nB�0n�8B

• The global chiral symmetry of the model

��w �D ×��Õ �D ×��w �� ×��Õ �� ×�4L 1

• Quark masses �D ≠ �� ≠0 break the symmetry down to

��ï �D ×��ï ��

SET THE STAGE

chiral symmetry 

of up-flavors

chiral symmetry 

of down-flavors

anomaly-free combination 

of �4D (1) and �4� (1)
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• Coupling constant in QCD runs with the energy scale,

A
<F(0) ≃ � ln 0O

ëH6IO ,    where    � = AA	�JLB�9
ABM

• The question is: What happens in a strong magnetic field?

RUNNING COUPLING & CONFINMENT

ArXiv:1410.6765

ΛKBÚ

� §(
�)

�
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QCD IN STRONG B-FIELD

• Energy scales in the problem at hand

∞|��|$�KBÚ ��Yp0

deep-UV	region	with	asymp-

totic freedom	and	weak	B-field	

A
<F(0) ≃ � ln 0O

ëH6IO

Magnetic	catalysis	in	weakly	

coupled	QCD	and	strong	B-

field,	strong	gluon	screening

pure	(anisotropic)	gluodynamics,	

all	massive	quarks	decoupled,	1
�§(�) ≃ �@ ln �B

ΛKBÚB

confined	

gluodynamics,	

glueballs
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RUNNING �� IN QCD AT STRONG B

• In deep UV region �§ is not affected by B-field

∞|��|$�KBÚ ��Yp

Mg

2 ≈
α s

π
e fB

f

∑

1
�§ ≃ � ln |��|ΛKBÚB

�§(�)

�KBÚ ≪ ΛKBÚ
��YpB ≪ |�∥B| ≪ eB
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• The general form of the equation is similar to that in QED

�LA �, � = �@LA �, � + 4π�§	�0�4	� �, � 	�8�n	�084n(� − �)
Note	that	the	inverse	propagator �LA �, � has the same (!) 

Schwinger phase as � �, � 	
• Non-Abelian structure of the theory (�4�4 = �B): � → �JOLA

B�J �§
• Screening	effects	are	included	via	the	polarization	function

�084n � − � = 4π�§	tr �0�4�̄ � − � �8��4�̄ � − �
• Similar to QED, in the strong field limit ( |��|$ ≫ ΛKBÚ)

SCHWINGER-DYSON EQUATION
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• Electric and magnetic screening masses on the lattice are 

fitted well by   [Bonati et al., Phys. Rev. D 95, 074515 (2017)]

(and similar for the magnetic one)

SCREENING MASSES: LATTICE
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EXPRESSION FOR DYNAMICAL MASS

• In the region ��YpB ≪ |�∥B| ≪ �� , which is most relevant 

for the fermion-pairing dynamics, the gluon has a “mass”

�NB ≃ �§� ¶ �%� = �§3� 2�D +��
$

%

|��|
• As in QED, in order to tame singular infrared corrections in 

higher-order diagrams, a special non-local gauge is assumed 

for the gluon propagator 

• Up to replacements � → �JOLA
B�J �§ and �=B → �NB, the gap 

equation looks as in QED. Thus, 

where  �A ≃ �B ≃ 1 and   �. ≃ 2�D +�� |�|/(6π|�.|)
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QUARK MASS VS. B
• Quantitatively, dynamical masses are ( |��|$ ≫ Λ;<=)

[Miransky & Shovkovy, Phys. Rev. D 66 (2002) 045006]

T=0
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CHIRAL CONDENSATE IN LATTICE QCD

[Bali et al., Phys. Rev. D86, 071502 (2012)]

Σ% = �-%�% ∝ ��Yp,%
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NAMBU-GOLDSTONE BOSONS (PIONS)

• Original global chiral symmetry 

��w �D ×��Õ �D ×��w �� ×��Õ �� ×�4L 1
breaks down to 

��ï �D ×��ï ��
• A total number of broken-symmetry generators: �DB +��B − 1
• Thus, there should be (�DB +��B − 1) massless NG bosons

• The unitary pion fields can be written in terms of the coset

space generators

and

• In a very strong magnetic field another light pseudo-NG boson, 

associated with anomalous �4 1 , may appear
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NAMBU-GOLDSTONE BOSONS (PIONS)

• The low-energy effective action should have the form

• The pion decay constants are defined by

� 0 �-�0�? �42 � �n � = �0�M�4n = −�³ � �
2�   tr �0�? �42 �.n(�, �)

$

$
where  �0 = �@, �«B�«, �C
• The Bethe-Salpeter wave function looks like in QED in LLL 

approximation. So, we find that �«B ≈ 0, and 

which can be easily calculated, giving

�DB = �J|Qn|
PMO and     ��B = �J|Qn|

ABMO

…
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• Massive quarks decouple from the low-energy dynamics

• Gluons are the only “light” degrees of freedom 

• Assuming	that	ΛKBÚB ≪ ��YpB ,	the	gluodynamics has	a	semi-
perturbative	region,	|�∥B| ≲ ��YpB ,	where	

1
�R§(�) −

1
�§ ≃ �@ ln �B

��YpB

here  �@ = AA	�J
ABM and  

A
<F ≃ � ln |Qn|

ëH6IO ( Recall: � = AA	�JLB�9
ABM )

• Then, we find that the new confinement scale where �R§ = ∞:

−� ln ��
ΛKBÚB ≃ �@ ln �KBÚ

B
��YpB 			⇒ 		�KBÚ = ��Yp

ΛKBÚ
|��|$

Ê/ÊÀ

LOW-ENERGY REGION, |�∥B| ≲ ��YpB
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• Quadratic part of low-energy effective action for gluons 

where the susceptibility � is extracted from the polarization tensor 

�084n in the region �∥B ≪ ��YpB , i.e.,

• The requirement of gauge invariance allows to write down the 

complete expression for the gluon action

where � = 1 + � is a chromo-dielectric constant (note � ≫ 1), �;4 = �@;4 and �;4 = A B⁄ �;W[�W[4 are chromo-fields

LOW-ENERGY GLUODYNAMICS
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• By using the guidance from an analogous anisotropic QED, the 

static potential between a pair of quarks should be given by

which is valid for a range of distance scales ��YpLA ≲ � ≲ �KBÚLA
• Note that the effective coupling constants

�§∥ = NF
O

 MXY∥ ≈
NF
O

 M ,							where					 �N∥ ≈ 1
�§« = NF

O
 M Z$ XY

­ ≈ NF
O

 M , where �N« ≈ A
Z$[

are approximately the same in all directions

• A posteriori, this naïve “isotropy” may justifies the use of 

running behavior as in isotropic gluodynamics (not rigorous) 

EFFECTIVE POTENTIAL
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• Quark-antiquark potential was fitted by Cornell potential,

• where � is the string tension and � is the Coulombic

coefficient

POTENTIAL ON LATTICE

[Bonati et al., Phys. Rev. D 89, 114502 (2014)]

�«
�∥ �«

�∥
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• The dependence of the potential as a function of angle �
between � and ��- orientation [Bonati et al., Phys. Rev. D 94, 094007 (2016)]

• With increasing angle �, the string tension increases

ANISOTROPY IN DETAIL
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• What to expect at nonzero temperature (in strong B limit)?

• Very low temperatures, � ≪ �KBÚ
– Ground state in not affected much 

– Color is confined, lowest energy states are glueballs

– Chiral symmetry is broken (� ≪ �KBÚ ≪ ��Yp)

• Intermediate temperatures, �KBÚ ≪ � ≪ ��Yp
– Color is deconfined; gluons are thermally populated

– Chiral symmetry is still broken (�KBÚ ≪ � ≪ ��Yp)

• Moderately high temperatures, ��Yp ≪ � ≪ ��$

– Chiral symmetry is restored (��Yp ≪ �)

NONZERO TEMPERATURE
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INVERSE CATALYSIS AT T≠0

[Bali et al., Phys. Rev. D86, 071502 (2012)]
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• The temperature dependence at several fixed values of B

• Confinement strongly affects the low-temperature region

INVERSE CATALYSIS AT T≠0
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DEPENDENCE OF TC VS. B

[Bali et al., JHEP 02, 044 (29012)], [Bali et al., PRD86, 071502  (2012)],  [G. Endrodi, JHEP 1507 (2015) 173]
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VALENCE VS. SEA

• Gluon screening (?)

• Polyakov loops (?)

[Bruckmann, G. Endrodi, T. G. Kovacs, JHEP 04 (2013) 112]

or, perhaps, something else (?)
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SUPER-STRONG B: PREDICTION

[Cohen & Yamamoto, PRD89, 054029 (2014)], [G. Endrodi, JHEP 1507 (2015) 173]
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