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MAGNETIC CATALYSIS: PLAN OF LECTURES

Dirac fermions 1in magnetic field
Dimensional reduction
Magnetic catalysis: basics

Magnetic catalysis 1n toy model

Magnetic catalysis in QED

Magnetic catalysis in QCD
Anisotropic confinement
Inverse catalysis

Phase diagram
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QCD IN MAGNETIC FIELDS

* Relativistic collisions of Zeavy ions
produce quark-gluon plasma & strong
magnetic fields

1018 - 10'° Gauss (./|eB|~ 100 MeV)

* Quark matter may form inside magnetars

104 - 1016 Gauss (./|eB|~1 MeV to 10 MeV) //

* Strong magnetic field is an instructive

theoretical tool to study confined gauge CreditzScientific American
theories such as QCD

= 10'° Gauss (,/|eB| =100 MeV to 10 MeV)
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DIRAC FERMIONS

* Lagrangian density for charged Dirac fermions (units with ¢ = 1):
L=y (iy*D, —m)y

where D, = 0, + ied,, y*yY+yy#=2g*" and g"*'=(1,-1,-1,-1)

WU

* Consider the following two types of global transformations:

Electric charge S~
conservation

Chiral charge
conservation

W > e®p | and | - e Yl

where y°=iylyly?y3

The corresponding Noether’s currents are
jF=ygyip | and | g =yYrEySy
They satisfy the relations:

0, j* =0 and |d,js =2imyy>y

Both transformations are symmetries when m = 0, but chiral symmetry 1s

broken when m # 0.  [The chiral anomaly may complicate the situation]
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DIRAC VACUUM

e m = 0: Dirac vacuum is a/semimetal

— No energy gap between the filled Dirac sea states

and the empty positive-energy states (E = +p)

— However, the density of states vanishes at E=0

— A nonzero electric current could be produced by

an arbitrarily small electric field

e m #* 0: Dirac vacuum i1s an/insulator

— Energy gap AE = 2m between the antiparticle and

particle states (E = +,/p% + mz)

— the density of states (@ E=0 vanishes (no states)

— electric current 1s exponentially small, 1.e.,

—mm

e~ ™m*/IeEl (due to Schwinger pair creation)
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DIRAC FERMIONS AT B#0
* Dirac equation for charged fermions:
(iy“Dﬂ — m)1p =0
where A, = (AO, —Z) and the Landau gauge A= (—By,0,0) is used.
* Look for a solution in the form: Y = (i]/”Du + m)(/). Then,
|—0¢ + (0 + ieBy)? + 02 + 0% + iy*y?eB — m?|¢=0

* Normalized solutions for ¢ have the form
1 + isgn(eB)yly?

¢k,i o6 2 gok(y)e—lwtﬂpxxﬂpzz

where ¢, are harmonic oscillator wave functions, 1.e.,
2

O X H(Ee 2, &= % + p,lsgn(eB) and [ =

1

JIeB|

* The dispersion relation 1s given by
w = Ef = +\/2n|eB| + p2 + m?

wheren =k + % + sgn(eB)s, and s, = i% is an eigenvalue of %ylyz

W J \ )

orbital spin
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DEGENERACY OF LANDAU LEVELS

* The Landau level energies are independent of p,,

,;—F = +./2nleB| + pZ + m?

* This means that each level is highly degenerate

* Let’s calculate the degeneracy by confining the

system in a finite box of size L, XL, with periodic boundary conditions

* The wave function is a plane wave in the x direction: Y (x) < e'Px*

2Tn

YvO0) =y, = ePlx=1 = p, = —, n=12,.,N,

7 Tmax
X

* The value of p, sets the center of the Landau orbit in y-direction:

2N 1 N leB]|
~p > = 1’°sL, = max __— [, — -—max 7
Ve Px Px,max y L, |eB]| y LyLy 2T

 The degeneracy is proportional to the field strength and the size

(area) of the system in the spatial directions perpendicular to B

leB|
Nmax ~ ﬁl‘xl'y
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LLANDAU ENERGY SPECTRUM

* Landau energy levelsatm =0 S s EL(IiZ) _—
EX = +,/2n|eB| + p2

i

i

where n = k + % + sgn(eB)s,

orbital spin
* Lowest Landau level is spin polarized

1
Oi:ipz (k =0, Sz:_z)

* Density of states at £=0:

dn leB| 1 _ |eB|

dEIg=0 2w 2T o 4772

* Higher Landau levels (n = 1) are

twice as degenerate:

() k=n & s=-—=

2

\

N

(ik=n—-1 & s=+
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DIRAC PROPAGATOR AT B#(
* By definition,
G(r,r') = i<r‘(iy”Du - m)*‘w) I= Z Ik, D2, 52) (k, Pz, 54 }

= i(iy"D, +m), {r|[(iy*D, — m) iy Dy + )]

= i(iy*D, + m)r <r |-DHD, + iy'y?eB — m?]

= i(iy"D, +m) XArlk,p,,s,) (02 — ER) "Nk, py, 5, r")

* Note that the explicit form of the wave functions 1s the same as before
2

Yiep,s, (1) = (rlk, 0z, 5,) « H(§)e 7™ @+ P22 Uy - where & =2+ p,l

* The final expression for the propagator has the form
G(w: Pz FJ_: FJ,_) — eiCD(FJ_,Fi)G"(a)’ Pz FJ_ o FJ,_)

where ®(7,7]) = —e ;,l A, drV is the Schwinger phase (!), and
1L
d’p,

2m)z° () G (w, B)

6((&), Pz FJ_ o FJI_) —
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DIRAC PROPAGATOR AT B#(

* The Fourier transform of the translation invariant part reads

(— 1)"D (w p)
G(w p) = ie ~pil* z Laguerre

polynomials

J

where
Dp(w,p) = 2(wy® — pyv° + m)[PyL,(2p71%) — P_Ly_1 (2p717)]
+4(P V1) Ly—q 2P117)
and the following notation for the spin projectors is used
1+ isgn(eB)yly?
:P_|_ —
- 2
* Similarly, in momentum-coordinate space representation:

N ) .e—Ff/(zllz) = Fn(a), Pz:ﬁ) Laguerre
G(w,p,;7) =1 P 2 = polynomials
n=0
> 0 3 i
where E(w,p,;7) =2(wy’ —p,y> +m) [?+Ln (le
L - - T'Z
_1_2(71 . VJ_)L}”L—I (2;)
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DIMENSIONAL REDUCTION

* The low-energy dynamics is determined En(APS)
by the lowest Landau level (n=0) R

EF = 4p,

 Thisisa (1+1)D spectrum!

low energies
A

* Propagator 1s also (1+1)D:

12 wy®—p,y3 1+isgn(eB)yly*
w2—p2 2

G (w,P) = 2ie P1

* In addition, there 1s a nonzero density of states at £=0:

dn 1 (Npay fSEde ~ |eB|
dE| . SE\LyL,/)\J, 2m) 4n?

E=0
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PAIRING INSTABILITY

* Thought experiment:

— Create a particle-antiparticle
pair (energy price: AL)

— The pair can form a bosonic
bound state (energy gain: —¢;)

— If ¢, > AE, copious formation
of bound states 1s beneficial

— Note, AE can be arbitrarily small when m = 0 (!)
— The bound states of fermions are bosons

— Bosons can (and will) occupy the lowest energy state
(P = (), and thus form a Bose condensate (1/)1/)) * 0

— Ground state (vacuum) changes its properties (e.g., chiral
symmetry breaks down, an energy gap opens in spectrum)
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DO BOUND STATES ALWAYS FORM IN 3D?

* Consider a 3D potential well in quantum mechanics
[Landau-Lifshitz, Quantum Mechanics]

Th*
U(r)=1"° 8m.a’
0 for

* Bound states form only when the well 1s deep enough
(namely, g > 1):

a*h’

7 2
2'a"m,

(g—l)z, assuming 0<g-1<<l

‘Ew‘z

* There are no bound states when g < 1, 1.e., when the
well 1s not deep enough (in other words, when the
coupling constant 1s not strong enough)
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COMPARE: BOUND STATES IN 1D

A

* Bound states always form {

* This 1s a perturbative result (!)
E,,|*g>, when U(x)—gU(x)

* Rigorous statement: at least one bound state
exists 1f

f(1+\x\)\U(x)\dx <o & fU(x) dx <0

[B. Simon, Annals Phys. 97 (1976) 279]
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HOW ABOUT BOUND STATES IN 2D‘>
w1

* Bound states always form A

2 2
‘EZD‘~ L exp| — L f rU(r)dr 1)

m* m,

* This i1s a non-perturbative result
C

‘Ew‘ ocexp(— , when U(x)—=gU(x)
8

* Rigorous statement: at least one bound state
exists 1f

[ U™ d*x <o, [(+x*F|U@)|d*x <o & [ U(x)d*x <0

[B. Stmon, Annals Phys. 97 (1976) 279]
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UNIVERSAL MAGNETIC CATALYSIS
* Quantum field theory of charged fermions (m=0) at B+0

— Dimensional reduction (caused by a nonzero l_f)
— Nonzero density of states (« |eB|) at E=0
— Attraction between particles and antiparticles
* Universal outcome:
— Copious particle-antiparticle pairing at low energies
— Condensation of boson pairs that destabilizes the trivial
Dirac vacuum
— Spontaneous rearrangement of the ground state
— Breakdown of chiral symmetry

— Opening a nonzero gap 1n the Dirac spectrum

[Gusynin, Miransky, Shovkovy, Phys. Rev. Lett. 73, 3499 (1994)]
[Shovkovy, Lect. Notes Phys. 871, 13 (2013)]

* The mechanism 1s similar to superconductivity in metals due to
Cooper pairing of electrons
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TOY MODEL

Let us consider a Nambu-Jona-Lasino model (m = 0) with

four-fermion contact interaction

£ = (iy"D,)y + ()2 + (PiyS)?]

After the Hubbard—Stratonovwh transformation, this 1s
equivalent to
g% + *

— 7 (i )5
L-l/)(ly“Dﬂ—a—ly n)z,b— Y
where the following composite fields were introduced

c=—GYyY and w=-GYiy>Y

* The effective action for the composite fields reads

[(o,m) = —%f d*x(0? + n?) — i Trln|iy#D, — 0 — iy>7]
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SYMMETRY OF THE MODEL

U (1) symmetry transformations, ¢ — eiiL(l—V‘r’)/ 24
Y > cosa, PP —sinay 1/Jil/51/)
iy Y - sina; Yy + cos ay Piy>y
Ug(1) symmetry transformations, ¥ — elarR(1+Y°)/2y,
I/ﬂIJ — COS AR l/Jl/J + sin ap 1/)1)/51/)
iy Y —» —sinag Py + cos ag Yiy Y
* In terms of the composite fields, U, (1) / Ug(1) transformations:
0 —Ccosq; o0 —Ssina;
T —sina; T+ cosa; o

(Note that p? = ¢ + 7 remains an invariant.)

» Just like the original action [ £ d*x, the effective action I'(o, 1)
should be invariant under the symmetry transformations, 1.¢.,

1
I'(o,m) =T(p) + Eff“’(aﬂaava + 6”n0vn) + .-
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EFFECTIVE POTENTIAL: DERIVATION

* Let us consider a homogeneous ground state with a uniform o
o=—G(Yyp)=+0

(Because of the chiral symmetry, we can always set m = 0.)

* In this case, I'(0) = — [ V(0)d*x, where the effective action is

2 : co
vy =2 L f s <x‘6_iS<DuDu_iylyzeB+m) x> (@)
0

2G 2
* By using the Schwinger result [Phys. Rev. 82, 664 (1951)]

S

eBs[coteBs + y1y?]

. L , e—isaz—in/4
<x‘e—lS(D”Du—l)/ y2eB+a?) > _

8(1s)3/2

* We derive the effective potential (after s - —is):

d
L5 [®  256-50% coth eBs — (c0)

52
V(o) = 26 T g2 J1/A? s2
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EFFECTIVE POTENTIAL: RESULTS
dVv (o)

Lowest energy ground state 1s defined by: o

= 0 (gap equation)

064 —'5-\.\ 47'[2
= eB=04R>~. ~ 0G=09Ge, G=—7

& 0.62
®©
< 0.60
« 0.58
(@
2 0.56
c
- )
c 0.54
0.52
>

0.50

0.2 0.3 0.4 0.5
all\

At weak coupling (G — 0), the analytical solution for the minimum
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COMPARE WITH B=0 CASE

* Effective potentials for different coupling constants

O
o
o

O
&)
=

O
a
S

NR
k
<

ﬂ'\
<
< 0.52
@
@
=
>
g
5
>

GA%—41?

In fact, the gap equation at B=0 reads

It has a nontrivial solution g,,ij, # 0 only when the coupling
strength is sufficiently strong, i.e., G > G, = 41w?/\*
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DYNAMICAL MASS
e Recal: L=1 (iV“Du _ i)’sﬂ)lp - 022+Gn2

* The ground state expectation value (o) = 0,,j, determines the

dynamical mass of fermions mg,,,, in the new Dirac vacuum
1

0.001

107°F

<
S

1077

10712F 7

A [ .. |
0.005 0.010 0.050 0.100 0.500 1.000
leB|/A?

10—15 )

 Also, the chiral symmetry is broken in a state with (o) # 0
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NAMBU-GOLDSTONE BOSONS

 When a continuous global symmetry breaks down, massless
Nambu-Goldstone bosons appear in the particle spectrum

_8'™

- +itr[G(x,0)iy°G (0, x)iy°]

 The dispersion relation of NG bosons at p = 0

Er = \/U%Lﬁjz_ + pZ

where v, , < 1 at weak coupling

e The relation for the o-boson
o= M2+ 0,53 + 13

where M, = 2\/§mdyn & v, K1
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NONZERO TEMPERATURE

e Partition function:

H — uN
=l (-£52)

—i/T L,
= | [dydydadn] exp| i dt | a3x |9 (iy*D, — o — iySn 1/)—0 + 7
0 U

2G

where the fermion/boson fields satisfy (anti)periodic boundary
conditions in imaginary time, e.g., Y(0) = =y (—i/T)

Note #1: Z1 , 1s similar to the generating functional at 7=0

Note #2: Hubbard—Stratonovich trick < Gaussian integral

The effective potential 1s similar to that at 7=0, but with the
energy integration replaced by the Matsubara sum:

0.0)

f ‘;—:eiswz () 21T ) elstion’(.)

n=-—oo

where w = iw,, = inT(2n + 1)
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EFFECTS OF NONZERO TEMPERATURE
/ Vs {in |14 ¢ (Ve +61)
0

Vg . (0) = V(p) — 2B 2P

(0, 0] . 2 .
n ZZln 1 +e ,3(\/,02+k3+2n/12 u) = )
n=1

0.00651 |
0.00650 t7—p
0.00649 |

0.00648 }

| o
ﬁ-
<
=
(T
@)
%)
=
-
=
=
il
—
b
—_~
z
< Q
SN

0.00647 |
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EFFECTS OF NONZERO CHEMICAL POTENTIAL

0.006505
0.006500 F=-<

0.006495 |

ﬁf-—
<
=,
g
o
)
—
o y—(
S
=
S
:J
—
b
~
n
<

0.006490

3

%

015

Notice that at T = 0 the chemical potential u has no effect on the
effective potential when o >y (This 1s not true at T # 0)
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SYMMETRY BREAKING: METHODS USED

* Effective potential for the composite field, e.g., 0 = —G 1/71/)
dVv (o)

= 0 (gap equation)

2
* InNJL,e.g., Vy;.(0) = ;—G +itr ln[iy“D” — o/, giving

c . 1 . .
St [iyﬂDﬂ_a] = ( = o = G tr[G(x, x)]
* The same gap equation can be obtained from the Schwinger-

Dyson equation for the fermion self-energy/propagator

L0209

G, x") — Gyt (x,x") = —iG z [ [G(x, )T — tr{G (x, x)[;}] T;6% (x — x)

where ansatz G~ (x,x") = —i (iy#D, — Mgy )6*(x — x') is used

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD



ANOTHER WAY: PION AS A BOUND STATE

* Homogeneous Bethe-Salpeter equation for a massless bound state
with quantum numbers of the NG boson

O IO <

* Aswe’ll see, in NJL model 1n the strong-field limit, the pion’s
wave function in momentum space should have the structure:

lzwyo_pzyg_m 5D a)yo_pzyg_m
w2 — p2 —m? Yo w2 — p2 —m?

2
x(p; P - 0) =A(py)e Pt

where A(p,) with p; = (w, p,) satisfies a simple integral equation

GleB| [ A(kygr)d%k,
A(PM,E) _ o= ( IIE) I,E

(here mass parameter m 1s treated as a variational parameter)
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AUXILIARY SCHRODINGER PROBLEM

* It 1s instructive to recast the problem in terms of
de" e—i?""'k"

LIJ(T'”) — (27‘[)2 k”2 n mzA(k”)

* Function W(ry) satisfies the following 2D Schrodinger equation:
=72 +m? + V()| $(ry) =0

where —m? plays the role of energy €, and V (ry) is a model-
dependent potential (as we will see later)

* In the NJL model, V(ry) is proportional to a §-function

GleBl GleBl A de” :
V = — 52 — _ j — L e Tk
(1) —3x(m) 7 ) @nz®
* There exists a bound state solution (€, < 0) in this Schrodinger
problem and, thus, also a real solution for m, 1.e.,

2

) (LLL & weak coupling) v

2 41T
—€5, = N“ex (—
b P\ ™ eslc
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MAGNETIC CATALYSIS IN QED
* Lagrangian density invariant under SU (V) X SUgp(N)XU(1)

1 _
L= =g OB + 3, (7D, )y

where D, = 0, + ie(Au + au) and F,, =0d,a, —0,q,

* The Bethe—Salpeter equation for NG states (f = 1, ..., Nfz —1):

XAﬂB(U, u'; P) = _i/d4u1d4u/1d4u2d4ulchA1 (u, u1)Ka,B,:4,8, (U117, uzu’z)xszz(uz, uy; P)Gp,p(uy, u')

where the wave function is defined by XfB = (0|TYa(u) ¥ (W)|P; B)

Diagrammatically = +

. . . i Hartree term plays no
where the kernel (in the ladder approximation) 1S |role for NG bound states
Ka,By:4,8, (W1Uy, Up, Uy) = —4T0i080,0, 8,01 Vs, Vimymy Puv Uy — U2)S (Ug — )8 (U] — )

+ 47Tia8a1b1 8b2€lz ‘yrﬁml‘yT‘r);W@WGH'l_— u2)8(u1 — ull)s(uz — u,Z)
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SOLUTION IN STRONG FIELD LIMIT

* Structure of the NG-boson wave function (1, = u,, — uy,):

xby(u, /s P) = Miye ™ exp [—ier A (R)] Xnm(R, T; P)
* Inthe LLL approximation, the equation reduces to

o)) = 2 05)4 /dzkn (1—iy'y?) p* - || m2 y’ (1—iy'y?)D), (k) — py)

dyn
where we introduced (B — Mayn) X (0) D) — Mayn) = exp(—=Fp7)e ()
> dx exp(—I%x/2)
(ky — py)? + x
* The solution should have the following Dirac structure

90(p||) — A)/5 (1 — i)/1 )/2) Compare with]

the NJL model

and DL (ky —pp) = i, fo

* Finally, the equation for A(p,) reads

(94 A(k”)dzk" foo e—xlz/Z
A = dx
(P) = x + (ky — py)?

k + mdyn
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REDUCE TO A SCHRODINGER PROBLEM

* Rewrite the problem in terms of
dZ k” eil"kn

(2m)? k"2 + mcziyn

Y(r) =

A(ky)

* Function W(r) satisfies the following 2D Schrodinger equation:
-2 +mG,, + V()| ¥@) =0

where

o [ dxexp(—x/2) @« 2\ [ r?
V - d2 ip-r _ — )Fil ——
0 =52 / pe /0 Pp? +x =xP (212 '\ T2

* The potential 1s long-ranged with the following asymptote

N 20 1
V(r) = _; r_2’ F—= 00 exp(—=C/\a) is the}

 The lowest energy bound state gives result of a long-
range interaction

T/ \1/2
Mayn = C/ |eB| exp [— Py (z) (LLL & weak coupling) v
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NO SCREENING ™ NOT GOOD

* Photon exchange interaction 1s screened 1n a strong B-field

o«’l);vl (u u/) — (u —Uu ) _|_ v(u, u/) [strong—B Iimit]

where [, EV\{}’V (qu% CI||291|W [e_cﬁlzn(ql%)]

* Then, the screened photon propagator reads

]. q v ] qu v
(@) = —i| 5&,+ v
P ™" ?q  q*+qiII(qT, q7) q;

where the polarization function has the asymptotes
,. & |eB]
I1(qy) ~

2
3 Mgyn

_ 2a|eB| ) ) \ 1
() = oo ST 7 @ rgng.e)

. . . o
where the effective photon screening mass 1s M)% — —|eB|
T

2 2 :
, as|qy| K mgy, (extremely narrow range in q”Z )
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IMPROVED LADDER APPROXIMATION
* Let us re-analyze the problem with screening

A(ky)d?k, food ( e X1/ . p—x1%/2 )
X -
kl% + m2 0 X + (k" — p")z X+ (k" — p")z = M)%

* Improved vs. simple ladder approximations: & = a/2

* Note, the dynamical mass 1s very sensitive to small a (or a/2):

T

n 1/2 L
Mayn = C+/|eB]| exp [_E (—) ] (ladder approximation)

2a
and, thus, changes drastically with inclusion of screening

* The bigger problem 1s that the improved ladder approximation
1s not reliable either

— The vertex corrections will change the result too }>NW

— Singularities ~ ln(leB |/ m?lyn) ~1/+/a in higher-order diagrams

* Re-summation of infinitely many diagrams 1s needed (!)
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TOWARD EXACT RESULT
* QED 1n a strong field looks almost like (1+1)D

* Lesson from exactly solvable (1+1)D Schwinger model: find a
gauge 1n which all (singular) vertex corrections vanish!

* Such a (non-local) gauge exists

dndv q

1
v(q) = —i— (g p — —) id(q7 , q7) ——
M q 2 q2 1 | q

qj
where

d=—q'1/[¢* + ¢ 1] + ¢ /q°
* The corresponding full photon propagator reads
| g S Gy T 49+,
1 2 N 2)2
q°+qI1(qL.qp) 4 (q°)
* All potentially dangerous infrared singularities vanish because

PoYuPr =Yiu ad  ViaViu Yips = Vipgnes Vi = O

IIJ-

i)uv (q) =
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RELIABLE STRONG-B LIMIT IN QED

* Let us use the method of Schwinger-Dyson equation this time:

G(x) = Go(x) — 4ma j d*yd*z eI PENTIROAG (x — y)yHG(y — 2)yVG(2)Dyy, (y — 2)

where all Schwinger phases were carefully accounted for, and the
nonlocal gauge 1s assumed in the photon propagator

Diw (x = ¥) = D} (x — y) — 4ma tr[y, G (x — y), Gy — x)]
* Perform Fourier transform and use LLL approximation,

A _ 9i,—DII2 Pl ~ _ 5. —p212 PitA(p))
Go(py) = 2ie™P1L pﬁﬂf and G(p)) = 2ie™P1L w2 =22(p))

* Derive the following gap equation:
d?kyA(ky) ood e~ ¥1%/2
X
k||2 + AZ(p”) 0 X + (k" — p”)z + M)%e_xlz/z

P

* Compare with the gap equations in the (improved) ladder QED,
obtained with Bethe-Salpeter method
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DYNAMICAL MASS IN QED

10—20 _
10—36 _

10—52 _

o
—
f—
M
L
@\
N
~—
o
>
3

68
1077 — — ladder

10-84 | —-— 1mproved ladder

10~100 ] A S S
0.000 0.005 0.010 0.015 0.020
Q

reliable leading order

* The numerical result 1s fitted well by
1/3
Mayn =~/ 2]eB| (aN;) " “exp [—
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QCD IN MAGNETIC FIELD
* QCD 1s strongly coupled & nonperturbative

* There are theoretical tools that provide insight
High-energy (weak-coupling) expansion

Large N, expansion

High temperature limit (T >> Aqcp)
— High density limit (u > Agcp)
— Lattice QCD

* Strong magnetic field B 1s yet another tool

— 1t probes physics at short distances £~1/,/|eB]|
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SET THE STAGE

* Lagrangian density of QCD in an external magnetic field

£ = =3B + 0 (D, )=y e

charm top

— ] AQA4 I 4.8 MeV 104 MeV 42 GeV
where D, = 0, +igAjA*/2 + iepAy, e |

> |- EA EYA

Ya

A __ A A ABC AB AC - ;, down strange bottom

* The global chiral symmetry of the model
SUL(N,)XSUR (N, )XSUL (Ng) X SUp (Ndj)xUj_)(l)

chiral symmetry chiral symmetry | | anomaly-free combination
of up-flavors of down-flavors | | of U[Eu) (1) and U[Ed) (1)

* Quark masses m,; # m, #0 break the symmetry down to
SUy (N, )XSUy (Ng)
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RUNNING COUPLING & CONFINMENT

* Coupling constant in QCD runs with the energy scale,
11 No—2Ny
121

where b =

1T I I I I 1 1 L I
. Lo _ +0.0063
CMS incl. jets : aS(MZ) =0.1 185_0~0042
CMS R,,
CMS it cross section

I/Illllll_

[ 1
-

CMS inclusive jets

DO inclusive jets
DO angular correlation
H1

L ArXivil410.6765

- . . — 2 3
AQCD H e 1OQ (GeV)

* The question 1s: What happens 1n a strong magnetic field?
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QCD IN STRONG B-FIELD

* Energy scales in the problem at hand
p

4 )

confined | Magnetic catalysis in weakly
gluodynamics, coupled QCD and strong B-

%glueballs ) wg gluon screening

=

' )

O AQCD mdyn V |CIB| X

—— D | T

| _J | _J
a'g D'

WA

pure (anisotropic) gluodynamics, deep-UV region with asymp-

all massive quarks decoupled, totic freedom and weak B-field

1 2
~ pIn l;
as(u) Aocp
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RUNNING a4 IN QCD AT STRONG B
* In deep UV region «; 1s not affected by B-field

e
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SCHWINGER-DYSON EQUATION

* The general form of the equation i1s similar to that in QED
G (x,y) = Gy (x,y) + 4mag yHT4 G(x,y) v'T? DfF (y — x)

Note that the inverse propagator G ~1(x, y) has the same (!)
Schwinger phase as G (x, y)
NZ—1

« Non-Abelian structure of the theory (TAT4 = C,): a — N

aS
* Screening effects are included via the polarization function

PP (x —y) = 4mag tr :yHTAﬁ(x — M ATAG(y — x)|

* Similar to QED, 1n the strong field limit (y/|eB| > Agcp)

Ny
AB.uv . %s oAB (1uqv 2 v |eqB]
P o 8% (KK — Kig™) ) — 5

- , for |kj| « m?

Py ~ _ L 5B (ki'ky — kigt” —l, for m? < |k?| < |eB|
— o7 (ki — ki v q K Ik
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SCREENING MASSES: LATTICE

* Electric and magnetic screening masses on the lattice are
fitted well by  [Bonati et al., Phys. Rev. D 95, 074515 (2017)]

d d
mg 4 4 le|B 2. |e| B
T —CLE 1+01;Eﬁatan T2

d
Cl;E’

(and similar for the magnetic one)

| ! | ¥ [ !
T =200 MeV (XY)
T =200 MeV (Z)
T = 250 MeV (XY)
T =250 MeV (Z)
T =330 MeV (XY)
T =330 MeV (2)

Ft ' ' ' ' — 1 © 1 v T 7
T =200 MeV (XY)
T =200 MeV (Z2)
T =250 MeV (XY)
T =250 MeV (Z)
T =330 MeV (XY)
T =330 MeV (2)

ceoeOm
ceO0@O N
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EXPRESSION FOR DYNAMICAL MASS

» In the region m3,,, < |kj| < |eB]|, which is most relevant

for the fermion-pairing dynamics, the gluon has a “mass”

a
Mgzz?SZ‘efB‘— (2N, + N,) |eB|
f

* As i QED, in order to tame singular infrared corrections in
higher-order diagrams, a special non-local gauge i1s assumed
for the gluon propagator

_Né-1

 Up to replacements a as and My — Mg, the gap

Cc

equation looks as in QED. Thus,

2/3 AN .1
m7 =~ 2C;egB| (cqos) ™™ exp [— - ]

os(N2 — 1) In(Gy /cqos)
where C; = C, =1 and ¢, = (2N, + Ng)le|/(6T|eq])

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD



QUARK MASS VS. B
* Quantitatively, dynamical masses are (/|eB| > Aqcp)

&

— o, 2 0.1 -

[S—
-

my, [N,=1, N;=2] |
— my [N,=1, Ny=2]
my [N,=2, N;=2]
my [N,=2, Ny=2] °

50

a
O
&
<
=
s
a
O
&
<
~
S

In(leBI/Agcp)

[Miransky & Shovkovy, Phys. Rev. D 66 (2002) 045006]

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD



CHIRAL CONDENSATE IN LATTICE QCD

| I I | | L L L | L LI | I |
I I I I I

OO0 0 00Q0
oI
CO000

O
—

% = Py < Myyp r -
T=0 _

L1 1 I L1 1 I L1 1 I L1 1 I L1 1 I |

0.2 0.4 0.6 0.8 1
eB (GeV?)

[Bali et al., Phys. Rev. D86, 071502 (2012)]
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NAMBU-GOLDSTONE BOSONS (PIONS)
* Original global chiral symmetry

SUL(N)XSUR(N)XSUL (N XSUR (Ng) XU (1)
breaks down to
SUV(Nu)XSUV(Nd)
A total number of broken-symmetry generators: N2 + N5 — 1
Thus, there should be (N2 + N7 — 1) massless NG bosons

The unitary pion fields can be written in terms of the coset
space generators

. —N2-1 < N2—1
¥, = exp (z I )&An{:‘/fu), X, = exp (z IS )&Anc’;‘/fd)

and ¥ = exp (iﬁﬁ/f)

* In a very strong magnetic field another light pseudo-NG boson,
associated with anomalous U, (1), may appear
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NAMBU-GOLDSTONE BOSONS (PIONS)

* The low-energy effective action should have the form
2
LNG f4 tr ()"0, Zudy X, + vigh' 9, 2u0,X]) + -
* The pion decay constants are defined by

d*k

A

i<0‘1/7 K 5ﬁlp nB(P)> PHf 548 = —i tr | y# s 5 B(k,P)
y y 2 T (27_[)4 y y 2 Xq

where PH = (Po,vfﬁl,PS)

* The Bethe-Salpeter wave function looks like in QED in LLL
approximation. So, we find that v¥ = 0, and

d2k | d?] K> m?
2 = aN. ¢1a7K| exp (_ <1 ) : q
1 (2m)* legBl / (ki + mg)?

which can be easily calculated, giving

f __ N.|eB|
=

7-[2
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LOW-ENERGY REGION, k| S m§,n,
Massive quarks decouple from the low-energy dynamics
0 Agep Mayn |f[33 | 0
i i - —

Gluons are the only “light” degrees of freedom

Assuming that AéCD K m?lyn, the gluodynamics has a semi-
perturbative region, |k”2| S mcziyn, where

1 1 u?
— —— = bo In >
aS (au') aS mdyn

11 N, leB)|

and — = bln > ( Recall: b =

11 Nc—=2N¢ )
121 A AQCD 121

here by =

e Then, we find that the new confinement scale where &, = oo:

2 b/b
leB| Ao¢p Agcp ’
~ P, In = A =m

2 — Y0 2 QCD — ''tdyn

QCD mdyn |eB|

—b In
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LOW-ENERGY GLUODYNAMICS

* Quadratic part of low-energy effective action for gluons

NZ2 -1

D A=) [g"K — KK+ (gt — KiKT)] AL (k)

A=1

where the susceptibility k 1s extracted from the polarization tensor

P2 in the region |kff| < mg,,, ie.,

1
(2) _
°£glue,eff - _5

1/3
o5 o |egB] 1 K[ 4N,

K== 2 Z 2 €XP 2 > 1
(%4 ‘= M 12Cim Cs as(Ns — 1) In(Gy /cqas)

1 g=1

* The requirement of gauge invariance allows to write down the
complete expression for the gluon action
1 NZ—1
Lalue eff = Y (Bl -E} +€¢E5E; — B - B} — BB))
A=1
where € = 1 + k 1s a chromo-dielectric constant (note € > 1),
E{* = F§; and B{* = 1/, &3 Fj}, are chromo-fields
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EFFECTIVE POTENTIAL

* By using the guidance from an analogous anisotropic QED, the
static potential between a pair of quarks should be given by

Vix,y,z) >~

which 1s valid for a range of distance scales mc_l;n ST S /15%[)

* Note that the effective coupling constants

ol = 95 95
S T 4mu) T am’
g
S am\Jevg  4m’

where vg ~ 1

1.1
where Vg ® /\/E

are approximately the same 1n all directions

* A posteriori, this naive “isotropy’” may justifies the use of
running behavior as in 1sotropic gluodynamics (not rigorous)
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POTENTIAL ON LATTICE
Quark-antiquark potential was fitted by Cornell potential,

o
V(r)= For+V
r
* where o 1s the string tension and « 1s the Coulombic

coefficient

[Bonati et al , Phys. Rev. D 89, 114502 (2014)]

| !

| e L-24XY

=t L=32 XY

| ¢ L=40XY
O L=24Z

12 o L=32Z % %
| 0 L=40Z /I}

/%}M

eB [GeV?1
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ANISOTROPY IN DETAIL
* The dependence of the potential as a function of angle 6
between B and qq orientation [Bonati ct al., Phys. Rev. D 94, 094007 (2016)]

o(0;B)

r

V(r,0;B) = — +0(0;B)r+Vy(6;B)

V(r) [MeV]
) =
8 8

S
8
V() [MeV]

S T SR [ SR S S M T R
03 0.45 0.6 0.75 0.9 1.05 12
r [fm]

* With increasing angle 8, the string tension increases
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NONZERO TEMPERATURE

What to expect at nonzero temperature (in strong B limit)?

°|WTQ” ! o ﬂ I

Very low temperatures, T < Apcp

— Ground state 1n not affected much
— Color 1s confined, lowest energy states are glueballs

— Chiral symmetry 1s broken (T < Agep K Mgyp)

Intermediate temperatures, Agcp K T K myyp

— Color 1s deconfined; gluons are thermally populated
— Chiral symmetry 1s still broken (Agcp K T K Mgyp)

Moderately high temperatures, mg,,,, < T < /|eB|
— Chiral symmetry 1s restored (mgy, < T)
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PREDICTED PHASE DIAGRAM

[Miransky & Shovkovy, Physics Reports 576 (2015) pp. 1-209]

~A

QCD (deconﬁnement)

| | | |
20 30 40 5(

eB [GeV?]
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INVERSE CATALYSIS AT T#0

T=0

T=130 MeV

T=148 MeV

T=153 MeV

T=163 MeV s
T=176 MeV >

’
v

[Bali et al., Phys. Rev. D86, 071502 (2012)]

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD



INVERSE CATALYSIS AT T#0

* The temperature dependence at several fixed values of B

B=1.0 GeV?

IC,
B=0.8 GeV?

B=0.6 GeV?>

B=0.4 GeV?
' B=0.2 GeV?

®00® B=0GeV?

100 150 200
T (MeV)

* Confinement strongly affects the low-temperature region

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD



DEPENDENCE OF T VS. B

strange quark number
=2 suscegptitglnlity

average light quark
Zh condegnsotge .

$ Polyakov loop

[Bali et al., JHEP 02, 044 (29012)], [Bali et al., PRD86, 071502 (2012)], [G. Endrodi, JHEP 1507 (2015) 173]
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VALENCE VS. SEA
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T=114 MeVT g T=142 MeV]

I A B A

0.5 1 0.5 1 0.5 1 0.5 1
eB (GeV?) eB (GeV?) eB (GeV?) eB (GeV?)
[Bruckmann, G. Endrodi, T. G. Kovacs, JHEP 04 (2013) 112]
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* Gluon screening (?)
> or, perhaps, something else (?)

* Polyakov loops (?)
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SUPER-STRONG B: PREDICTION
| | 1 | I | 1 | | I | |

deconfinement transition line

| prediction

e

critical
_ endpoint
------------ %_
first order _

[Cohen & Yamamoto, PRD89, 054029 (2014)], [G. Endrodi, JHEP 1507 (2015) 173]
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PREDICTED PHASE DIAGRAM

[Miransky & Shovkovy, Physics Reports 576 (2015) pp. 1-209]
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