```
POLYTECHNIC CAMPUS
```


Lecture \#1

MAGNETIC CATALYSIS: BASICS

Igor Shovkovy Arizona State University

Reading material: V.A. Miransky \& I.A. Shovkovy, Physics Reports 576 (2015)
Summer School on Frontiers in Theoretical Physics and Huada School on QCD: Chiral Anomaly and Strong Magnetic Fields in Heavy-ion Collisions

Magnetic Catalysis: Plan of Lectures

- Dirac fermions in magnetic field
- Dimensional reduction
- Magnetic catalysis: basics
- Magnetic catalysis in toy model
- Magnetic catalysis in QED
- Magnetic catalysis in QCD
- Anisotropic confinement
- Inverse catalysis
- Phase diagram

QCD in magnetic Fields

- Relativistic collisions of heavy ions produce quark-gluon plasma \& strong magnetic fields
$10^{18}-\mathbf{1 0}^{19}$ Gauss ($\sqrt{|e B|} \sim 100 \mathrm{MeV}$)
- Quark matter may form inside magnetars $10^{14}-\mathbf{1 0}^{16}$ Gauss ($\sqrt{|e B|} \sim 1 \mathrm{MeV}$ to 10 MeV)
- Strong magnetic field is an instructive theoretical tool to study confined gauge theories such as QCD
$\gtrsim 10^{19}$ Gauss ($\sqrt{|e B|} \gtrsim 100 \mathrm{MeV}$ to 10 MeV)

DIRAC FERMIONS

- Lagrangian density for charged Dirac fermions (units with $c=1$):

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi
$$

where $D_{\mu}=\partial_{\mu}+i e A_{\mu}, \quad \gamma^{\mu} \gamma^{v}+\gamma^{v} \gamma^{\mu}=2 g^{\mu \nu}$ and $g^{\mu v}=(1,-1,-1,-1)$

- Consider the following two types of global transformations:

$$
\psi \rightarrow e^{i \alpha} \psi \quad \text { and }
$$

$$
\psi \rightarrow e^{i \alpha \gamma^{5}} \psi
$$

Chiral charge conservation

 where $\gamma^{5}=\mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$The corresponding Noether's currents are

$$
j^{\mu}=\bar{\psi} \gamma^{\mu} \psi \quad \text { and } \quad j_{5}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi
$$

They satisfy the relations:

$$
\partial_{\mu} j^{\mu}=0 \quad \text { and } \quad \partial_{\mu} j_{5}^{\mu}=2 i m \bar{\psi} \gamma^{5} \psi
$$

Both transformations are symmetries when $m=0$, but chiral symmetry is broken when $m \neq 0$. [The chiral anomaly may complicate the situation]

DIRAC VACUUM

- $m=0$: Dirac vacuum is a semimetal
- No energy gap between the filled Dirac sea states and the empty positive-energy states $(E= \pm p)$
- However, the density of states vanishes at $E=0$
- A nonzero electric current could be produced by an arbitrarily small electric field
- $m \neq 0$: Dirac vacuum is an insulator
- Energy gap $\Delta E=2 m$ between the antiparticle and particle states $\left(E= \pm \sqrt{p^{2}+m^{2}}\right)$
- the density of states @ $E=0$ vanishes (no states)
- electric current is exponentially small, i.e., $e^{-\pi m^{2} /|e E|}$ (due to Schwinger pair creation)

DIRAC FERMIONS AT B$\neq 0$

- Dirac equation for charged fermions:

$$
\left(i \gamma^{\mu} D_{\mu}-m\right) \psi=0
$$

where $A_{\mu}=\left(A_{0},-\overrightarrow{\boldsymbol{A}}\right)$ and the Landau gauge $\overrightarrow{\boldsymbol{A}}=(-B y, 0,0)$ is used.

- Look for a solution in the form: $\psi=\left(i \gamma^{\mu} D_{\mu}+m\right) \phi$. Then,

$$
\left[-\partial_{0}^{2}+\left(\partial_{x}+i e B y\right)^{2}+\partial_{y}^{2}+\partial_{z}^{2}+i \gamma^{1} \gamma^{2} e B-m^{2}\right] \phi=0
$$

- Normalized solutions for ϕ have the form

$$
\phi_{k, \pm} \propto \frac{1 \pm i \operatorname{sgn}(e B) \gamma^{1} \gamma^{2}}{2} \varphi_{k}(y) e^{-i \omega t+i p_{x} x+i p_{z} z}
$$

where φ_{k} are harmonic oscillator wave functions, i.e.,

$$
\varphi_{k} \propto H_{k}(\xi) e^{-\frac{\xi^{2}}{2}}, \quad \xi=\frac{y}{l}+p_{x} l \operatorname{sgn}(e B) \quad \text { and } \quad l=\frac{1}{\sqrt{|e B|}}
$$

- The dispersion relation is given by

$$
\omega=E_{n}^{ \pm}= \pm \sqrt{2 n|e B|+p_{Z}^{2}+m^{2}}
$$

where $n=k+\frac{1}{2}+\operatorname{sgn}(e B) s_{z}$ and $s_{z}= \pm \frac{1}{2}$ is an eigenvalue of $\frac{i}{2} \gamma^{1} \gamma^{2}$

DEGENERACY OF LANDAU LEVELS

- The Landau level energies are independent of p_{x}

$$
E_{n}^{ \pm}= \pm \sqrt{2 n|e B|+p_{z}^{2}+m^{2}}
$$

- This means that each level is highly degenerate
- Let's calculate the degeneracy by confining the
 system in a finite box of size $L_{x} \times L_{y}$ with periodic boundary conditions
- The wave function is a plane wave in the x direction: $\psi(x) \propto e^{i p_{x} x}$ $\psi(0)=\psi\left(L_{x}\right) \quad \Rightarrow \quad e^{i p_{x} L_{x}}=1 \quad \Rightarrow \quad p_{x}=\frac{2 \pi n}{L_{x}}, \quad n=1,2, \ldots, N_{\max }$
- The value of p_{x} sets the center of the Landau orbit in y-direction:
$y_{c} \approx p_{x} l^{2} \Rightarrow p_{x, \max } l^{2} \leqslant L_{y} \Rightarrow \frac{2 \pi N_{\max }}{L_{x}} \frac{1}{|e B|} \approx L_{y} \Rightarrow \frac{N_{\max }}{L_{x} L_{y}} \approx \frac{|e B|}{2 \pi}$
- The degeneracy is proportional to the field strength and the size (area) of the system in the spatial directions perpendicular to $\overrightarrow{\boldsymbol{B}}$

$$
N_{\max } \approx \frac{|e B|}{2 \pi} L_{x} L_{y}
$$

LANDAU ENERGY SPECTRUM

- Landau energy levels at $m=0$

$$
E_{n}^{ \pm}= \pm \sqrt{2 n|e B|+p_{z}^{2}}
$$

where $n=\underbrace{k+\frac{1}{2}}_{\text {orbital }}+\underbrace{\operatorname{sgn}(e B) s_{z}}_{\text {spin }}$

- Lowest Landau level is spin polarized

$$
E_{0}^{ \pm}= \pm p_{z} \quad\left(k=0, s_{z}=-\frac{1}{2}\right)
$$

- Density of states at $E=0$:

$$
\left.\frac{d n}{d E}\right|_{E=0}=\frac{|e B|}{2 \pi} \frac{1}{2 \pi}=\frac{|e B|}{4 \pi^{2}}
$$

- Higher Landau levels $(n \geq 1)$ are twice as degenerate:
(i) $k=n$
\& $\mathrm{s}=-\frac{1}{2}$
(ii) $k=n-1 \quad \& \quad \mathrm{~s}=+\frac{1}{2}$

DIrac Propagator at B$\neq 0$

- By definition,

$$
\begin{aligned}
G\left(r, r^{\prime}\right) & =i\langle r|\left(i \gamma^{\mu} D_{\mu}-m\right)^{-1}\left|r^{\prime}\right\rangle \\
& \left.=i\left(i \gamma^{\mu} D_{\mu}+m\right)_{r}\langle r|\left[\left(i \gamma^{\mu} D_{\mu}-m\right)\left(i \gamma^{v} D_{v}+m\right)\right]^{-1}\left|r^{\prime}\right\rangle, p_{z}, s_{z}\right\rangle \\
& =i\left(i \gamma^{\mu} D_{\mu}+m\right)_{r}\langle r|\left[-D^{\mu} D_{\mu}+i \gamma^{1} \gamma^{2} e B-m^{2}\right]^{-\gamma}\left|r^{\prime}\right\rangle \\
& =i\left(i \gamma^{\mu} D_{\mu}+m\right)_{r} \sum\left\langle r \mid k, p_{z}, s_{z}\right\rangle\left(\omega^{2}-E_{n}^{2}\right)^{-1}\left\langle k, p_{z}, s_{Z} \mid r^{\prime}\right\rangle
\end{aligned}
$$

- Note that the explicit form of the wave functions is the same as before

$$
\psi_{k, p_{z}, S_{z}}(r)=\left\langle r \mid k, p_{z}, s_{z}\right\rangle \propto H_{k}(\xi) e^{-\frac{\xi^{2}}{2}} e^{-i \omega t+i p_{z} z} U_{S_{z}}, \quad \text { where } \xi=\frac{y}{l}+p_{x} l
$$

- The final expression for the propagator has the form

$$
G\left(\omega, p_{z} ; \vec{r}_{\perp}, \vec{r}_{\perp}^{\prime}\right)=e^{i \Phi\left(\vec{r}_{\perp}, \vec{r}_{\perp}^{\prime}\right)} \tilde{G}\left(\omega, p_{z} ; \vec{r}_{\perp}-\vec{r}_{\perp}^{\prime}\right)
$$

where $\Phi\left(\vec{r}_{\perp}, \vec{r}_{\perp}^{\prime}\right)=-\mathrm{e} \int_{\vec{r}_{\perp}^{\prime}}^{\vec{r}_{\perp}} A_{\nu} d r^{v}$ is the Schwinger phase (!), and

$$
\tilde{G}\left(\omega, p_{z} ; \vec{r}_{\perp}-\vec{r}_{\perp}^{\prime}\right)=\int \frac{d^{2} \vec{p}_{\perp}}{(2 \pi)^{2}} e^{i \vec{p}_{\perp} \cdot\left(\vec{r}_{\perp}-\vec{r}_{\perp}^{\prime}\right)} \tilde{G}(\omega, \vec{p})
$$

DIrac Propagator at B$\neq 0$

- The Fourier transform of the translation invariant part reads

$$
\tilde{G}(\omega, \vec{p})=i e^{-\vec{p}_{\perp}^{2} l^{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n} D_{n}(\omega, \vec{p})}{\omega^{2}-E_{n}^{2}}
$$

where

$$
\begin{aligned}
D_{n}(\omega, \vec{p})= & 2\left(\omega \gamma^{0}-p_{z} \gamma^{3}+m\right)\left[\mathcal{P}_{+} L_{n}\left(2 \vec{p}_{\perp}^{2} l^{2}\right)-\mathcal{P}_{-} L_{n-1}\left(2 \vec{p}_{\perp}^{2} l^{2}\right)\right] \\
& +4\left(\vec{p}_{\perp} \cdot \vec{\gamma}_{\perp}\right) L_{n-1}^{1}\left(2 \vec{p}_{\perp}^{2} l^{2}\right)
\end{aligned}
$$

and the following notation for the spin projectors is used

$$
\mathcal{P}_{ \pm}=\frac{1 \pm i \operatorname{sgn}(e B) \gamma^{1} \gamma^{2}}{2}
$$

- Similarly, in momentum-coordinate space representation:

$$
\begin{aligned}
& \tilde{G}\left(\omega, p_{z} ; \vec{r}_{\perp}\right)=i \frac{e^{-\vec{r}_{\perp}^{2} /\left(4 l^{2}\right)}}{2 \pi l^{2}} \sum_{n=0}^{\infty} \frac{F_{n}\left(\omega, p_{z} ; \vec{r}_{\perp}\right)}{\omega^{2}-E_{n}^{2}} \\
& F_{n}\left(\omega, p_{z} ; \vec{r}_{\perp}\right)=2\left(\omega \gamma^{0}-p_{z} \gamma^{3}+m\right)\left[\mathcal{P}_{+} L_{n}\left(\frac{\vec{r}_{\perp}^{2}}{2 l^{2}}\right)-\mathcal{P}_{-} L_{n-1}\left(\frac{\vec{r}_{\perp}^{2}}{2 l^{2}}\right)\right] \\
& -\frac{i}{l^{2}}\left(\vec{r}_{\perp} \cdot \vec{\gamma}_{\perp}\right) L_{n-1}^{1}\left(\frac{\vec{r}_{\perp}^{2}}{2 l^{2}}\right)
\end{aligned}
$$

where

DIMENSIONAL REDUCTION

- The low-energy dynamics is determined $\quad E_{n}\left(p_{3}\right)$ by the lowest Landau level ($n=0$)

$$
E_{0}^{ \pm}= \pm p_{z}
$$

- This is a $(1+1) \mathrm{D}$ spectrum!
- Propagator is also $(1+1) \mathrm{D}$:

$$
\tilde{G}_{L L L}(\omega, \vec{p})=2 i e^{-\vec{p}_{\perp}^{2} l^{2}} \frac{\omega \gamma^{0}-p_{z} \gamma^{3}}{\omega^{2}-p_{z}^{2}} \frac{1+i \operatorname{sgn}(e B) \gamma^{1} \gamma^{2}}{2}
$$

- In addition, there is a nonzero density of states at $E=0$:

$$
\left.\frac{d n}{d E}\right|_{E=0}=\frac{1}{\delta E}\left(\frac{N_{\max }}{L_{x} L_{y}}\right)\left(\int_{0}^{\delta E} \frac{d p_{z}}{2 \pi}\right)=\frac{|e B|}{4 \pi^{2}}
$$

Pairing instability

- Thought experiment:
- Create a particle-antiparticle pair (energy price: ΔE)
- The pair can form a bosonic bound state (energy gain: $-\epsilon_{b}$)
- If $\epsilon_{b}>\Delta E$, copious formation of bound states is beneficial

- Note, ΔE can be arbitrarily small when $m=0(!)$
- The bound states of fermions are bosons
- Bosons can (and will) occupy the lowest energy state $(\vec{P}=0)$, and thus form a Bose condensate $\langle\bar{\psi} \psi\rangle \neq 0$
- Ground state (vacuum) changes its properties (e.g., chiral symmetry breaks down, an energy gap opens in spectrum)

DO BOUND STATES ALWAYS FORM IN 3D?

- Consider a 3D potential well in quantum mechanics [Landau-Lifshitz, Quantum Mechanics]

$$
U(r)=\left\{\begin{array}{ccc}
-g \frac{\pi^{2} \hbar^{2}}{8 m_{*} a^{2}} & \text { for } & r \leq a \\
0 & \text { for } & r>a
\end{array}\right.
$$

- Bound states form only when the well is deep enough (namely, $g>1$):

$$
\left|E_{3 D}\right| \approx \frac{\pi^{4} \hbar^{2}}{2^{7} a^{2} m_{*}}(g-1)^{2}, \text { assuming } 0<g-1 \ll 1
$$

- There are no bound states when $g<1$, i.e., when the well is not deep enough (in other words, when the coupling constant is not strong enough)

COMPARE: BOUND STATES IN 1D

- Bound states always form

$$
\left|E_{1 D}\right| \approx \frac{m_{*}}{2 \hbar^{2}}\left(-\int_{-\infty}^{+\infty} U(x) d x\right)^{2}
$$

- This is a perturbative result (!)

$$
\left|E_{1 D}\right| \propto g^{2}, \text { when } U(x) \rightarrow g U(x)
$$

- Rigorous statement: at least one bound state exists if

$$
\int(1+|x|)|U(x)| d x<\infty \quad \& \quad \int U(x) d x \leq 0
$$

[B. Simon, Annals Phys. 97 (1976) 279]

How about bound states in 2d?

- Bound states always form

$$
\left|E_{2 D}\right| \approx \frac{\hbar^{2}}{a^{2} m_{*}} \exp \left(-\frac{\hbar^{2}}{m_{*}}\left|\int_{0}^{\infty} r U(r) d r\right|^{-1}\right)
$$

- This is a non-perturbative result

$$
\left|E_{2 D}\right| \propto \exp \left(-\frac{C}{g}\right), \text { when } \quad U(x) \rightarrow g U(x)
$$

- Rigorous statement: at least one bound state exists if

$$
\int|U(x)|^{1+\varepsilon} d^{2} x<\infty, \quad \int\left(1+x^{2}\right)^{\varepsilon}|U(x)| d^{2} x<\infty \quad \& \quad \int U(x) d^{2} x \leq 0
$$

[B. Simon, Annals Phys. 97 (1976) 279]

UNIVERSAL MAGNETIC CATALYSIS

- Quantum field theory of charged fermions $(m=0)$ at $\overrightarrow{\boldsymbol{B}} \neq \mathbf{0}$
- Dimensional reduction (caused by a nonzero $\overrightarrow{\boldsymbol{B}}$)
- Nonzero density of states $(\propto|e B|)$ at $E=0$
- Attraction between particles and antiparticles
- Universal outcome:
- Copious particle-antiparticle pairing at low energies

- Condensation of boson pairs that destabilizes the trivial Dirac vacuum
- Spontaneous rearrangement of the ground state
- Breakdown of chiral symmetry
- Opening a nonzero gap in the Dirac spectrum
[Gusynin, Miransky, Shovkovy, Phys. Rev. Lett. 73, 3499 (1994)] [Shovkovy, Lect. Notes Phys. 871, 13 (2013)]
- The mechanism is similar to superconductivity in metals due to Cooper pairing of electrons

LECTURE \#2

MAGNETIC Catalysis in

 A TOY MODEL Igor Shovkovy Arizona State UniversityReading material: V.A. Miransky \& I.A. Shovkovy, Physics Reports 576 (2015)
Summer School on Frontiers in Theoretical Physics and Huada School on QCD: Chiral Anomaly and Strong Magnetic Fields in Heavy-ion Collisions

TOY MODEL

- Let us consider a Nambu-Jona-Lasino model $(m=0)$ with four-fermion contact interaction

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}\right) \psi+\frac{G}{2}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma^{5} \psi\right)^{2}\right]
$$

- After the Hubbard-Stratonovich transformation, this is equivalent to

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-\sigma-i \gamma^{5} \pi\right) \psi-\frac{\sigma^{2}+\pi^{2}}{2 G}
$$

where the following composite fields were introduced

$$
\sigma=-G \bar{\psi} \psi \quad \text { and } \quad \pi=-\mathrm{G} \bar{\psi} i \gamma^{5} \psi
$$

- The effective action for the composite fields reads

$$
\Gamma(\sigma, \pi)=-\frac{1}{2 G} \int d^{4} x\left(\sigma^{2}+\pi^{2}\right)-i \operatorname{Tr} \ln \left[i \gamma^{\mu} D_{\mu}-\sigma-i \gamma^{5} \pi\right]
$$

SYMMETRY OF THE MODEL

- $\mathrm{U}_{\mathrm{L}}(1)$ symmetry transformations, $\psi \rightarrow e^{i \alpha_{L}\left(1-\gamma^{5}\right) / 2} \psi$

$$
\begin{gathered}
\bar{\psi} \psi \rightarrow \cos \alpha_{L} \bar{\psi} \psi-\sin \alpha_{L} \bar{\psi} i \gamma^{5} \psi \\
\bar{\psi} i \gamma^{5} \psi \rightarrow \sin \alpha_{L} \bar{\psi} \psi+\cos \alpha_{L} \bar{\psi} i \gamma^{5} \psi
\end{gathered}
$$

- $\mathrm{U}_{\mathrm{R}}(1)$ symmetry transformations, $\psi \rightarrow e^{i \alpha_{R}\left(1+\gamma^{5}\right) / 2} \psi$

$$
\begin{gathered}
\overline{\bar{\psi}} \psi \rightarrow \cos \alpha_{R} \bar{\psi} \psi+\sin \alpha_{R} \bar{\psi} i \gamma^{5} \psi \\
\bar{\psi} i \gamma^{5} \psi \rightarrow-\sin \alpha_{R} \bar{\psi} \psi+\cos \alpha_{R} \bar{\psi} i \gamma^{5} \psi
\end{gathered}
$$

- In terms of the composite fields, $\mathrm{U}_{\mathrm{L}}(1) / \mathrm{U}_{\mathrm{R}}(1)$ transformations:

$$
\begin{gathered}
\sigma \rightarrow \cos \alpha_{L} \sigma-\sin \alpha_{L} \pi \\
\pi \rightarrow \sin \alpha_{L} \pi+\cos \alpha_{L} \sigma
\end{gathered}
$$

(Note that $\rho^{2}=\sigma^{2}+\pi^{2}$ remains an invariant.)

- Just like the original action $\int \mathcal{L} d^{4} x$, the effective action $\Gamma(\sigma, \pi)$ should be invariant under the symmetry transformations, i.e.,

$$
\Gamma(\sigma, \pi)=\Gamma(\rho)+\frac{1}{2} f_{1}^{\mu \nu}\left(\partial_{\mu} \sigma \partial_{v} \sigma+\partial_{\mu} \pi \partial_{\nu} \pi\right)+\cdots
$$

EFFECTIVE POTENTIAL: DERIVATION

- Let us consider a homogeneous ground state with a uniform σ

$$
\sigma=-G\langle\bar{\psi} \psi\rangle \neq 0
$$

(Because of the chiral symmetry, we can always set $\pi=0$.)

- In this case, $\Gamma(\sigma)=-\int V(\sigma) d^{4} x$, where the effective action is

$$
V(\sigma)=\frac{\sigma^{2}}{2 G}-\frac{i}{2} \int_{0}^{\infty} \frac{d s}{s} \operatorname{tr}\langle x| e^{-i s\left(D^{\mu} D_{\mu}-i \gamma^{1} \gamma^{2} e B+\sigma^{2}\right)}|x\rangle-(\infty)
$$

- By using the Schwinger result [Phys. Rev. 82, 664 (1951)]

$$
\langle x| e^{-i s\left(D^{\mu} D_{\mu}-i \gamma^{1} \gamma^{2} e B+\sigma^{2}\right)}|x\rangle=\frac{e^{-i s \sigma^{2}-i \pi / 4}}{8(\pi s)^{3 / 2}} e B s\left[\cot e B s+\gamma^{1} \gamma^{2}\right]
$$

- We derive the effective potential (after $s \rightarrow-i s$):

$$
V(\sigma)=\frac{\sigma^{2}}{2 G}+\frac{e B}{8 \pi^{2}} \int_{1 / \Lambda^{2}}^{\infty} \frac{d s}{s^{2}} e^{-s \sigma^{2}} \operatorname{coth} e B s-(\infty)
$$

Effective potential: Results

Lowest energy ground state is defined by: $\frac{d V(\sigma)}{d \sigma}=0 \quad$ (gap equation)

At weak coupling ($G \rightarrow 0$), the analytical solution for the minimum

$$
\sigma_{\min } \simeq \frac{e B}{\pi} \exp \left(\frac{\Lambda^{2}}{|e B|}\right) \exp \left(-\frac{4 \pi^{2}}{|e B| G}\right)
$$

COMPARE WITH B=0 CASE

- Effective potentials for different coupling constants

In fact, the gap equation at $B=0$ reads $\frac{G \Lambda^{2}-4 \pi^{2}}{G}=\sigma^{2} \ln \frac{\Lambda^{2}}{\sigma^{2}}$
It has a nontrivial solution $\sigma_{\text {min }} \neq 0$ only when the coupling strength is sufficiently strong, i.e., $G>G_{c}=4 \pi^{2} / \Lambda^{2}$

DYNAMICAL MASS

- Recall:

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-\sigma-i \gamma^{5} \pi\right) \psi-\frac{\sigma^{2}+\pi^{2}}{2 G}
$$

- The ground state expectation value $\langle\sigma\rangle=\sigma_{\min }$ determines the dynamical mass of fermions $m_{d y n}$ in the new Dirac vacuum

- Also, the chiral symmetry is broken in a state with $\langle\sigma\rangle \neq 0$

NAMBU-GOLDSTONE BOSONS

- When a continuous global symmetry breaks down, massless Nambu-Goldstone bosons appear in the particle spectrum
$\left(D_{\pi}\right)^{-1}=\cdots+\cdots-\cdots=\frac{\delta^{4}(x)}{G}+i \operatorname{tr}\left[G(x, 0) i \gamma^{5} G(0, x) i \gamma^{5}\right]$
- The dispersion relation of NG bosons at $\vec{p} \rightarrow 0$

$$
E_{\pi}=\sqrt{v_{\pi, \perp}^{2} \vec{p}_{\perp}^{2}+p_{z}^{2}}
$$

where $v_{\pi, \perp} \ll 1$ at weak coupling

- The relation for the σ-boson

$$
E_{\sigma}=\sqrt{M_{\sigma}^{2}+v_{\sigma, \perp}^{2} \vec{p}_{\perp}^{2}+p_{Z}^{2}}
$$

where $M_{\sigma}=2 \sqrt{3} m_{d y n} \& v_{\pi, \perp} \ll 1$

NONZERO TEMPERATURE

- Partition function:

$$
Z_{T, \mu}=\operatorname{Tr}\left[\exp \left(-\frac{H-\mu N}{T}\right)\right]
$$

$=\int[d \psi d \bar{\psi} d \sigma d \pi] \exp \left(i \int_{0}^{-i / T} d t \int d^{3} x\left[\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-\sigma-i \gamma^{5} \pi\right) \psi-\frac{\sigma^{2}+\pi^{2}}{2 G}\right]\right)$
where the fermion/boson fields satisfy (anti)periodic boundary conditions in imaginary time, e.g., $\psi(0)=-\psi(-i / T)$

- Note \#1: $Z_{T, \mu}$ is similar to the generating functional at $T=0$
- Note \#2: Hubbard-Stratonovich trick \Leftrightarrow Gaussian integral
- The effective potential is similar to that at $T=0$, but with the energy integration replaced by the Matsubara sum:

$$
\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{i s \omega^{2}}(\ldots) \rightarrow i T \sum_{n=-\infty}^{\infty} e^{i s\left(i \omega_{n}\right)^{2}}(\ldots)
$$

where $\omega \rightarrow i \omega_{n}=i \pi T(2 n+1)$

EFFECTS OF NONZERO TEMPERATURE

$$
\begin{aligned}
& V_{\beta, \mu}(\rho)=V(\rho)-\frac{N}{2 \beta \pi^{2} l^{2}} \int_{0}^{\infty} d k_{3}\left\{\ln \left[1+e^{-\beta\left(\sqrt{\rho^{2}+k_{3}^{2}}-\mu\right)}\right]\right. \\
& \left.+2 \sum_{n=1}^{\infty} \ln \left[1+e^{-\beta\left(\sqrt{\rho^{2}+k_{3}^{2}+2 n / l^{2}}-\mu\right)}\right]+(\mu \rightarrow-\mu)\right\}
\end{aligned}
$$

EfFECTS OF NONZERO CHEMICAL POTENTIAL

Notice that at $T=0$ the chemical potential μ has no effect on the effective potential when $\sigma>\mu$ (This is not true at $T \neq 0$)

SYMMETRY BREAKING: METHODS USED

- Effective potential for the composite field, e.g., $\sigma=-G \bar{\psi} \psi$

$$
\frac{d V(\sigma)}{d \sigma}=0 \quad \text { (gap equation) }
$$

- In NJL, e.g., $V_{N J L}(\sigma)=\frac{\sigma^{2}}{2 G}+i \operatorname{tr} \ln \left[i \gamma^{\mu} D_{\mu}-\sigma\right]$, giving

$$
\frac{\sigma}{G}-i \operatorname{tr}\left[\frac{1}{i \gamma^{\mu} D_{\mu}-\sigma}\right]=0 \quad \Rightarrow \quad \sigma=G \operatorname{tr}[G(x, x)]
$$

- The same gap equation can be obtained from the SchwingerDyson equation for the fermion self-energy/propagator

$G^{-1}\left(x, x^{\prime}\right)-G_{0}^{-1}\left(x, x^{\prime}\right)=-i G \sum_{i} \Gamma_{i}\left[G(x, x) \Gamma_{i}-\operatorname{tr}\left\{G(x, x) \Gamma_{i}\right\}\right] \Gamma_{i} \delta^{4}\left(x-x^{\prime}\right)$
where ansatz $G^{-1}\left(x, x^{\prime}\right)=-i\left(i \gamma^{\mu} D_{\mu}-m_{d y n}\right) \delta^{4}\left(x-x^{\prime}\right)$ is used

ANOTHER WAY: PION AS A BOUND STATE

- Homogeneous Bethe-Salpeter equation for a massless bound state with quantum numbers of the NG boson

- As we'll see, in NJL model in the strong-field limit, the pion's wave function in momentum space should have the structure:

$$
\chi(p ; P \rightarrow 0)=A\left(p_{\|}\right) e^{-p_{\perp}^{2} l^{2}} \frac{\omega \gamma^{0}-p_{z} \gamma^{3}-m}{\omega^{2}-p_{z}^{2}-m^{2}} \gamma^{5} \mathcal{P}_{+} \frac{\omega \gamma^{0}-p_{z} \gamma^{3}-m}{\omega^{2}-p_{z}^{2}-m^{2}}
$$

where $A\left(p_{\|}\right)$with $p_{\|}=\left(\omega, p_{z}\right)$ satisfies a simple integral equation

$$
A\left(p_{\|, E}\right)=\frac{G|e B|}{4 \pi^{3}} \int \frac{A\left(k_{\|, E}\right) d^{2} k_{\|, E}}{k_{\|, E}^{2}+m^{2}}
$$

(here mass parameter m is treated as a variational parameter)

AUXILIARY SCHRODINGER PROBLEM

- It is instructive to recast the problem in terms of

$$
\Psi\left(r_{\|}\right)=\int \frac{d^{2} k_{\|}}{(2 \pi)^{2}} \frac{e^{-i r_{\|} \cdot k_{\|}}}{k_{\|}^{2}+m^{2}} A\left(k_{\|}\right)
$$

- Function $\Psi\left(r_{\|}\right)$satisfies the following 2D Schrodinger equation:

$$
\left[-\nabla_{r_{\|}}^{2}+m^{2}+V\left(r_{\|}\right)\right] \Psi\left(r_{\|}\right)=0
$$

where $-m^{2}$ plays the role of energy ϵ, and $V\left(r_{\|}\right)$is a modeldependent potential (as we will see later)

- In the NJL model, $V\left(r_{\|}\right)$is proportional to a δ-function

$$
V\left(r_{\|}\right)=-\frac{G|e B|}{\pi} \delta_{\Lambda}^{2}\left(r_{\|}\right)=-\frac{G|e B|}{\pi} \int_{0}^{\Lambda} \frac{d^{2} k_{\|}}{(2 \pi)^{2}} e^{-i r_{\|} \cdot k_{\|}}
$$

- There exists a bound state solution $\left(\epsilon_{b}<0\right)$ in this Schrodinger problem and, thus, also a real solution for m, i.e.,

$$
m^{2}=-\epsilon_{b} \simeq \Lambda^{2} \exp \left(-\frac{4 \pi^{2}}{|e B| G}\right) \quad \text { (LLL \& weak coupling) }
$$

```
POLYTECHNIC CAMPUS
```


Lecture \#3

Magnetic Catalysis in Qed

Igor Shovkovy Arizona State University

Reading material: V.A. Miransky \& I.A. Shovkovy, Physics Reports 576 (2015)
Summer School on Frontiers in Theoretical Physics and Huada School on QCD: Chiral Anomaly and Strong Magnetic Fields in Heavy-ion Collisions

Magnetic catalysis in QED

- Lagrangian density invariant under $\mathrm{SU}_{\mathrm{L}}\left(N_{f}\right) \times \mathrm{SU}_{\mathrm{R}}\left(N_{f}\right) \times \mathrm{U}(1)$

$$
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\bar{\psi}_{f}\left(i \gamma^{\mu} D_{\mu}\right) \psi_{f}
$$

where $D_{\mu}=\partial_{\mu}+i e\left(A_{\mu}+a_{\mu}\right)$ and $F_{\mu \nu}=\partial_{\mu} a_{\nu}-\partial_{\nu} a_{\mu}$

- The Bethe-Salpeter equation for NG states $\left(\beta=1, \ldots, N_{f}^{2}-1\right)$:
$\chi_{A B}^{\beta}\left(u, u^{\prime} ; P\right)=-i \int d^{4} u_{1} d^{4} u_{1}^{\prime} d^{4} u_{2} d^{4} u_{2}^{\prime} G_{A A_{1}}\left(u, u_{1}\right) K_{A_{1} B_{1} ; A_{2} B_{2}}\left(u_{1} u_{1}^{\prime}, u_{2} u_{2}^{\prime}\right) \chi_{A_{2} B_{2}}^{\beta}\left(u_{2}, u_{2}^{\prime} ; P\right) G_{B_{1} B}\left(u_{2}^{\prime}, u^{\prime}\right)$ where the wave function is defined by $\chi_{A B}^{\beta}=\langle 0| T \psi_{A}(u) \bar{\psi}_{B}\left(u^{\prime}\right)|P ; \beta\rangle$

Diagrammatically

where the kernel (in the ladder approximation) is

Hartree term plays no role for NG bound states
$K_{A_{1} B_{1} ; A_{2} B_{2}}\left(u_{1} u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right)=-4 \pi i \alpha \delta_{a_{1} a_{2}} \delta_{b_{2} b_{1}} \gamma_{n_{1} n_{2}}^{\mu} \gamma_{m_{2} m_{1}}^{\nu} \mathcal{D}_{\mu \nu}\left(u_{2}^{\prime}-u_{2}\right) \delta\left(u_{1}-u_{2}\right) \delta\left(u_{1}^{\prime}-u_{2}^{\prime}\right)$

$$
+\underline{4 \pi i \alpha \delta_{a_{1} b_{1}} \delta_{b_{2} a_{2}} \gamma_{n_{1} m_{1}}^{\mu} \gamma_{m_{2} n_{2}}^{v} \mathscr{D}_{\mu \nu}\left(u_{1}-u_{2}\right) \delta\left(u_{1}-u_{1}^{\prime}\right) \delta\left(u_{2}-u_{2}^{\prime}\right)}
$$

SOLUTION IN STRONG FIELD LIMIT

- Structure of the NG-boson wave function $\left(r_{\mu}=u_{\mu}-u_{\mu}^{\prime}\right)$:

$$
\chi_{A B}^{\beta}\left(u, u^{\prime} ; P\right)=\lambda_{a b}^{\beta} e^{-i P R} \exp \left[-i e r^{\mu} A_{\mu}^{\mathrm{ext}}(R)\right] \tilde{\chi}_{n m}(R, r ; P)
$$

- In the LLL approximation, the equation reduces to
$\varphi\left(p_{\|}\right)=\frac{\pi \alpha}{(2 \pi)^{4}} \int d^{2} k_{\|}\left(1-i \gamma^{1} \gamma^{2}\right) \gamma^{\mu} \frac{\hat{k}_{\|}+m_{\mathrm{dyn}}}{k_{\|}^{2}-m_{\mathrm{dyn}}^{2}} \varphi\left(k_{\|}\right) \frac{\hat{k}_{\|}+m_{\mathrm{dyn}}}{k_{\|}^{2}-m_{\mathrm{dyn}}^{2}} \gamma^{\nu}\left(1-i \gamma^{1} \gamma^{2}\right) D_{\mu \nu}^{\|}\left(k_{\|}-p_{\|}\right)$ where we introduced $\left(\hat{p}_{\|}-m_{\mathrm{dyn}}\right) \tilde{\chi}(p)\left(\hat{p}_{\|}-m_{\mathrm{dyn}}\right)=\exp \left(-l^{2} \mathbf{p}_{\perp}^{2}\right) \varphi\left(p_{\|}\right)$ and

$$
D_{\mu \nu}^{\|}\left(k_{\|}-p_{\|}\right)=i \pi \delta_{\mu \nu} \int_{0}^{\infty} \frac{d x \exp \left(-l^{2} x / 2\right)}{\left(k_{\|}-p_{\|}\right)^{2}+x}
$$

- The solution should have the following Dirac structure

$$
\varphi\left(p_{\|}\right)=A \gamma_{5}\left(1-i \gamma_{1} \gamma_{2}\right)
$$

- Finally, the equation for $A\left(p_{\|}\right)$reads

Compare with the NJL model

$$
A\left(p_{\|}\right)=\frac{\alpha}{2 \pi^{2}} \int \frac{A\left(k_{\|}\right) d^{2} k_{\|}}{k_{\|}^{2}+m_{d y n}^{2}} \int_{0}^{\infty} d x \frac{e^{-x l^{2} / 2}}{x+\left(k_{\|}-p_{\|}\right)^{2}}
$$

REDUCE TO A SCHRODINGER PROBLEM

- Rewrite the problem in terms of

$$
\Psi(\mathbf{r})=\int \frac{d^{2} k_{\|}}{(2 \pi)^{2}} \frac{e^{i r \cdot k_{\|}}}{k_{\|}^{2}+m_{d y n}^{2}} A\left(k_{\|}\right)
$$

- Function $\Psi(\mathbf{r})$ satisfies the following 2D Schrodinger equation:

$$
\left[-\nabla_{\mathbf{r}}^{2}+m_{d y n}^{2}+V(\mathbf{r})\right] \Psi(\mathbf{r})=0
$$

where

$$
V(\mathbf{r})=-\frac{\alpha}{2 \pi^{2}} \int d^{2} p e^{i \mathbf{p} \cdot \mathbf{r}} \int_{0}^{\infty} \frac{d x \exp (-x / 2)}{l^{2} p^{2}+x}=\frac{\alpha}{\pi l^{2}} \exp \left(\frac{r^{2}}{2 l^{2}}\right) \operatorname{Ei}\left(-\frac{r^{2}}{2 l^{2}}\right)
$$

- The potential is long-ranged with the following asymptote

$$
V(\mathbf{r}) \simeq-\frac{2 \alpha}{\pi} \frac{1}{r^{2}}, \quad r \rightarrow \infty
$$

- The lowest energy bound state gives

$$
m_{d y n} \simeq C \sqrt{|e B|} \exp \left[-\frac{\pi}{2}\left(\frac{\pi}{2 \alpha}\right)^{1 / 2}\right] \text { (LLL \& weak coupling) }
$$

NO SCREENING - NOT GOOD

- Photon exchange interaction is screened in a strong B-field

$$
\mathscr{D}_{\mu \nu}^{-1}\left(u, u^{\prime}\right)=D_{\mu \nu}^{-1}\left(u-u^{\prime}\right)+\Pi_{\mu \nu}\left(u, u^{\prime}\right)
$$

strong-B limit
where $\Pi_{\mu \nu} \equiv \sim \sim \simeq\left(q_{\mu}^{\|} q_{\nu}^{\|}-q_{\|}^{2} g_{\mu \nu}^{\|}\right) e^{-q_{\perp}^{2} l^{2}} \Pi\left(q_{\|}^{2}\right)$

- Then, the screened photon propagator reads
$\mathcal{D}_{\mu \nu}(q)=-i\left[\frac{1}{q^{2}} g_{\mu \nu}^{\perp}+\frac{q_{\mu}^{\|} q_{\nu}^{\|}}{q^{2} q_{\|}^{2}}+\frac{1}{q^{2}+q_{\|}^{2} \Pi\left(q_{\perp}^{2}, q_{\|}^{2}\right)}\left(g_{\mu \nu}^{\|}-\frac{q_{\mu}^{\|} q_{\nu}^{\|}}{q_{\|}^{2}}\right)-\frac{\lambda}{q^{2}} \frac{q_{\mu} q_{\nu}}{q^{2}}\right]$
where the polarization function has the asymptotes

$$
\begin{aligned}
& \Pi\left(q_{\|}^{2}\right) \simeq \frac{\bar{\alpha}}{3 \pi} \frac{|e B|}{m_{\mathrm{dyn}}^{2}}, \quad \text { as }\left|q_{\|}^{2}\right| \ll m_{\mathrm{dyn}}^{2} \quad \text { (extremely narrow range in } q_{\|}^{2} \text {) } \\
& \Pi\left(q_{\|}^{2}\right) \simeq-\frac{2 \bar{\alpha}}{\pi} \frac{|e B|}{q_{\|}^{2}} \quad \text { as }\left|q_{\|}^{2}\right| \gg m_{\mathrm{dyn}}^{2} \quad \Longrightarrow \frac{1}{q^{2}+q_{\|}^{2} \Pi\left(q_{\perp}^{2}, q_{\|}^{2}\right)} \simeq \frac{1}{q^{2}-M_{\gamma}^{2}}
\end{aligned}
$$

where the effective photon screening mass is $M_{\gamma}^{2}=\frac{2 \bar{\alpha}}{\pi}|e B|$

IMPROVED LADDER APPROXIMATION

- Let us re-analyze the problem with screening

$$
A\left(p_{\|}\right)=\frac{\alpha}{4 \pi^{2}} \int \frac{A\left(k_{\|}\right) d^{2} k_{\|}}{k_{\|}^{2}+m^{2}} \int_{0}^{\infty} d x\left(\frac{e^{-x l^{2} / 2}}{x+\left(k_{\|}-p_{\|}\right)^{2}}+\frac{e^{-x l^{2} / 2}}{x+\left(k_{\|}-p_{\|}\right)^{2}+M_{\gamma}^{2}}\right)
$$

- Improved vs. simple ladder approximations: $\alpha \rightarrow \alpha / 2$
- Note, the dynamical mass is very sensitive to small α (or $\alpha / 2$):

$$
m_{d y n} \simeq C \sqrt{|e B|} \exp \left[-\frac{\pi}{2}\left(\frac{\pi}{2 \alpha}\right)^{1 / 2}\right] \text { (ladder approximation) }
$$

and, thus, changes drastically with inclusion of screening

- The bigger problem is that the improved ladder approximation is not reliable either
- The vertex corrections will change the result too
- Singularities $\sim \ln \left(|e B| / m_{d y n}^{2}\right) \sim 1 / \sqrt{\alpha}$ in higher-order diagrams
- Re-summation of infinitely many diagrams is needed (!)

Toward exact result

- QED in a strong field looks almost like (1+1)D
- Lesson from exactly solvable ($1+1$)D Schwinger model: find a gauge in which all (singular) vertex corrections vanish!
- Such a (non-local) gauge exists

$$
D_{\mu \nu}(q)=-i \frac{1}{q^{2}}\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right)-i d\left(q_{\perp}^{2}, q_{\|}^{2}\right) \frac{q_{\mu}^{\|} q_{\nu}^{\|}}{q^{2} q_{\|}^{2}}
$$

where

$$
d=-q_{\|}^{2} \Pi /\left[q^{2}+q_{\|}^{2} \Pi\right]+q_{\|}^{2} / q^{2}
$$

- The corresponding full photon propagator reads

$$
\mathcal{D}_{\mu \nu}(q)=-i \frac{g_{\mu \nu}^{\|}}{q^{2}+q_{\|}^{2} \Pi\left(q_{\perp}^{2}, q_{\|}^{2}\right)}-i \frac{g_{\mu \nu}^{\perp}}{q^{2}}+i \frac{q_{\mu}^{\perp} q_{\nu}^{\perp}+q_{\mu}^{\perp} q_{\nu}^{\|}+q_{\mu}^{\|} q_{\nu}^{\perp}}{\left(q^{2}\right)^{2}}
$$

- All potentially dangerous infrared singularities vanish because

$$
\mathcal{P}_{+} \gamma_{\mu} \mathcal{P}_{+}=\gamma_{\|, \mu} \quad \text { and } \quad \gamma_{\|, \alpha} \gamma_{\|, \mu_{1}} \gamma_{\|, \mu_{2}} \cdots \gamma_{\|, \mu_{2 n+1}} \gamma_{\|}^{\alpha}=0
$$

RELIABLE STRONG-B LIMIT IN QED

- Let us use the method of Schwinger-Dyson equation this time:

$$
\tilde{G}(x)=\tilde{G}_{0}(x)-4 \pi \alpha \int d^{4} y d^{4} z e^{-i \Phi(x, y)-i \Phi(y, z)} \tilde{G}_{0}(x-y) \gamma^{\mu} \tilde{G}(y-z) \gamma^{v} \tilde{G}(z) \mathcal{D}_{\mu v}(y-z)
$$

where all Schwinger phases were carefully accounted for, and the nonlocal gauge is assumed in the photon propagator

$$
\mathcal{D}_{\mu \nu}^{-1}(x-y)=D_{\mu \nu}^{-1}(x-y)-4 \pi \alpha \operatorname{tr}\left[\gamma_{\mu} \tilde{G}(x-y) \gamma_{\nu} \tilde{G}(y-x)\right]
$$

- Perform Fourier transform and use LLL approximation,

$$
\tilde{G}_{0}\left(p_{\|}\right)=2 i e^{-\vec{p}_{\perp}^{2} l^{2}} \frac{\hat{p}_{\|}}{p_{\|}^{2}} \mathcal{P}_{+} \quad \text { and } \quad \tilde{G}\left(p_{\|}\right)=2 i e^{-\vec{p}_{\perp}^{2} l^{2}} \frac{\hat{p}_{\|}+A\left(p_{\|}\right)}{p_{\|}^{2}-A^{2}\left(p_{\|}\right)} \mathcal{P}_{+}
$$

- Derive the following gap equation:

$$
A\left(p_{\|}\right)=\frac{\alpha}{2 \pi^{2}} \int \frac{d^{2} k_{\|} A\left(k_{\|}\right)}{k_{\|}^{2}+A^{2}\left(p_{\|}\right)} \int_{0}^{\infty} d x \frac{e^{-x l^{2} / 2}}{x+\left(k_{\|}-p_{\|}\right)^{2}+M_{\gamma}^{2} e^{-x l^{2} / 2}}
$$

- Compare with the gap equations in the (improved) ladder QED, obtained with Bethe-Salpeter method

DYNAMICAL MASS IN QED

- The numerical result is fitted well by

$$
m_{d y n} \simeq \sqrt{2|e B|}\left(\alpha N_{f}\right)^{1 / 3} \exp \left[-\frac{\pi}{\left.\alpha \ln \frac{C_{1}}{\alpha N_{f}}\right]}, \quad C_{1} \approx 1.82 \pm 0.06\right.
$$

QCD IN MAGNETIC FIELD

- QCD is strongly coupled \& nonperturbative
- There are theoretical tools that provide insight
- High-energy (weak-coupling) expansion
- Large N_{c} expansion
- High temperature limit ($T \gg \Lambda_{\mathrm{QCD}}$)
- High density limit ($\mu \gg \Lambda_{\mathrm{QCD}}$)
- Lattice QCD
- Strong magnetic field B is yet another tool - it probes physics at short distances $\ell \sim 1 / \sqrt{|e B|}$

SET THE STAGE

- Lagrangian density of QCD in an external magnetic field

$$
\mathcal{L}=\frac{1}{2}
$$

$$
F_{\mu \nu}^{A}=\partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}+g f^{A B C} A_{\mu}^{B} A_{\nu}^{C}
$$

strange

- The global chiral symmetry of the model

$$
\underbrace{S U_{L}\left(N_{u}\right) \times S U_{R}\left(N_{u}\right)}_{\begin{array}{l}
\text { chiral symmetry } \\
\text { of up-flavors }
\end{array}} \times \underbrace{S U_{L}\left(N_{d}\right) \times S U_{R}\left(N_{d}\right) \times \underbrace{U_{A}^{(-)}(1)}}_{\begin{array}{|l|l}
\text { chiral symmetry } \\
\text { of down-flavors }
\end{array}} \begin{array}{l}
\text { anomaly-free combination } \\
\text { of } U_{A}^{(u)}(1) \text { and } U_{A}^{(d)}(1)
\end{array}]
$$

- Quark masses $m_{u} \neq m_{d} \neq 0$ break the symmetry down to

$$
S U_{V}\left(N_{u}\right) \times S U_{V}\left(N_{d}\right)
$$

RUNNING COUPLING \& CONFINMENT

- Coupling constant in QCD runs with the energy scale,

$$
\frac{1}{\alpha_{s}(\mu)} \simeq b \ln \frac{\mu^{2}}{\Lambda_{Q C D}^{2}}, \quad \text { where } \quad b=\frac{11 N_{c}-2 N_{f}}{12 \pi}
$$

- The question is: What happens in a strong magnetic field?

QCD in STRONG B-FIELD

- Energy scales in the problem at hand
pure (anisotropic) gluodynamics, all massive quarks decoupled,

$$
\frac{1}{\alpha_{S}(\mu)} \simeq b_{0} \ln \frac{\mu^{2}}{\Lambda_{Q C D}^{2}}
$$

Magnetic catalysis in weakly coupled QCD and strong Bfield, strong gluon screening
deep-UV region with asymptotic freedom and weak B-field

$$
\frac{1}{\alpha_{s}(\mu)} \simeq b \ln \frac{\mu^{2}}{\Lambda_{Q C D}^{2}}
$$

RUNNING α_{s} IN QCD AT STRONG B

- In deep UV region α_{s} is not affected by B-field

SCHWINGER-DYSON EQUATION

- The general form of the equation is similar to that in QED

$$
G^{-1}(x, y)=G_{0}^{-1}(x, y)+4 \pi \alpha_{s} \gamma^{\mu} T^{A} G(x, y) \gamma^{v} T^{B} \mathcal{D}_{\mu \nu}^{A B}(y-x)
$$

Note that the inverse propagator $G^{-1}(x, y)$ has the same (!) Schwinger phase as $G(x, y)$

- Non-Abelian structure of the theory $\left(T^{A} T^{A}=C_{2}\right): \alpha \rightarrow \frac{N_{c}^{2}-1}{2 N_{c}} \alpha_{s}$
- Screening effects are included via the polarization function

$$
\mathcal{P}_{\mu \nu}^{A B}(x-y)=4 \pi \alpha_{s} \operatorname{tr}\left[\gamma_{\mu} T^{A} \tilde{G}(x-y) \gamma_{\nu} \lambda T^{A} \tilde{G}(y-x)\right]
$$

- Similar to QED, in the strong field limit $\left(\sqrt{|e B|} \gg \Lambda_{Q C D}\right)$

$$
\begin{aligned}
& \mathcal{P}^{A B, \mu \nu} \simeq \frac{\alpha_{s}}{6 \pi} \delta^{A B}\left(k_{\|}^{\mu} k_{\|}^{\nu}-k_{\|}^{2} g_{\|}^{\mu \nu}\right) \sum_{q=1}^{N_{f}} \frac{\left|e_{q} B\right|}{m_{q}^{2}}, \quad \text { for }\left|k_{\|}^{2}\right| \ll m_{q}^{2} \\
& \mathcal{P}^{A B, \mu \nu} \simeq-\frac{\alpha_{s}}{\pi} \delta^{A B}\left(k_{\|}^{\mu} k_{\|}^{\nu}-k_{\|}^{2} g_{\|}^{\mu \nu}\right) \sum_{q=1}^{N_{f}} \frac{\left|e_{q} B\right|}{k_{\|}^{2}}, \quad \text { for } m_{q}^{2} \ll\left|k_{\|}^{2}\right| \ll|e B|
\end{aligned}
$$

SCREENING MASSES: LATTICE

- Electric and magnetic screening masses on the lattice are fitted well by [Bonati et al., Phys. Rev. D 95, 074515 (2017)]

$$
\frac{m_{E}^{d}}{T}=a_{E}^{d}\left[1+c_{1 ; E}^{d} \frac{|e| B}{T^{2}} \operatorname{atan}\left(\frac{c_{2 ; E}^{d}}{c_{1 ; E}^{d}} \frac{|e| B}{T^{2}}\right)\right]
$$

(and similar for the magnetic one)

EXPRESSION FOR DYNAMICAL MASS

- In the region $m_{d y n}^{2} \ll\left|k_{\|}^{2}\right| \ll|e B|$, which is most relevant for the fermion-pairing dynamics, the gluon has a "mass"

$$
M_{g}^{2} \simeq \frac{\alpha_{s}}{\pi} \sum_{f}\left|e_{f} B\right|=\frac{\alpha_{s}}{3 \pi}\left(2 N_{u}+N_{d}\right)|e B|
$$

- As in QED, in order to tame singular infrared corrections in higher-order diagrams, a special non-local gauge is assumed for the gluon propagator
- Up to replacements $\alpha \rightarrow \frac{N_{c}^{2}-1}{2 N_{c}} \alpha_{s}$ and $M_{\gamma}^{2} \rightarrow M_{g}^{2}$, the gap equation looks as in QED. Thus,

$$
m_{q}^{2} \simeq 2 C_{1}\left|e_{q} B\right|\left(c_{q} \alpha_{s}\right)^{2 / 3} \exp \left[-\frac{4 N_{c} \pi}{\alpha_{s}\left(N_{c}^{2}-1\right) \ln \left(C_{2} / c_{q} \alpha_{s}\right)}\right]
$$

where $C_{1} \simeq C_{2} \simeq 1$ and $c_{q} \simeq\left(2 N_{u}+N_{d}\right)|e| /\left(6 \pi\left|e_{q}\right|\right)$

QUARK MASS VS. B

- Quantitatively, dynamical masses are $\left(\sqrt{|e B|} \gg \Lambda_{\mathrm{QCD}}\right)$

[Miransky \& Shovkovy, Phys. Rev. D 66 (2002) 045006]

CHIRAL CONDENSATE IN LATTICE QCD


```
POLYTECHNIC CAMPUS
```

Lecture \#4
Magnetic Catalysis in QCD

Igor Shovkovy Arizona State University

Reading material: V.A. Miransky \& I.A. Shovkovy, Physics Reports 576 (2015)
Summer School on Frontiers in Theoretical Physics and Huada School on QCD: Chiral Anomaly and Strong Magnetic Fields in Heavy-ion Collisions

NAMBU-GOLDSTONE BOSONS (PIONS)

- Original global chiral symmetry

$$
S U_{L}\left(N_{u}\right) \times S U_{R}\left(N_{u}\right) \times S U_{L}\left(N_{d}\right) \times S U_{R}\left(N_{d}\right) \times U_{A}^{(-)}(1)
$$

breaks down to

$$
S U_{V}\left(N_{u}\right) \times S U_{V}\left(N_{d}\right)
$$

- A total number of broken-symmetry generators: $N_{u}^{2}+N_{d}^{2}-1$
- Thus, there should be $\left(N_{u}^{2}+N_{d}^{2}-1\right)$ massless NG bosons
- The unitary pion fields can be written in terms of the coset space generators

$$
\Sigma_{u} \equiv \exp \left(i \sum_{A=1}^{N_{u}^{2}-1} \lambda^{A} \pi_{u}^{A} / f_{u}\right), \Sigma_{d} \equiv \exp \left(i \sum_{A=1}^{N_{d}^{2}-1} \lambda^{A} \pi_{d}^{A} / f_{d}\right)
$$

and $\quad \tilde{\Sigma} \equiv \exp (i \sqrt{2} \tilde{\pi} / \tilde{f})$

- In a very strong magnetic field another light pseudo-NG boson, associated with anomalous $U_{A}(1)$, may appear

NAMBU-GOLDSTONE BOSONS (PIONS)

- The low-energy effective action should have the form

$$
\mathcal{L}_{N G} \simeq \frac{f_{u}^{2}}{4} \operatorname{tr}\left(g_{\|}^{\mu \nu} \partial_{\mu} \Sigma_{u} \partial_{\nu} \Sigma_{u}^{\dagger}+v_{u}^{2} g_{\perp}^{\mu \nu} \partial_{\mu} \Sigma_{u} \partial_{\nu} \Sigma_{u}^{\dagger}\right)+\cdots
$$

- The pion decay constants are defined by

$$
i\langle 0| \bar{\psi} \gamma^{\mu} \gamma^{5} \frac{\lambda^{A}}{2} \psi\left|\pi^{B}(P)\right\rangle=P^{\mu} f_{\pi} \delta^{A B}=-i \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}\left(\gamma^{\mu} \gamma^{5} \frac{\lambda^{A}}{2} \chi_{q}^{B}(k, P)\right)
$$

where $P^{\mu}=\left(P^{0}, v_{\perp}^{2} \vec{P}_{\perp}, P^{3}\right)$

- The Bethe-Salpeter wave function looks like in QED in LLL approximation. So, we find that $v_{\perp}^{2} \approx 0$, and

$$
f_{q}^{2}=4 N_{c} \int \frac{d^{2} k_{\perp} d^{2} k_{\|}}{(2 \pi)^{4}} \exp \left(-\frac{k_{\perp}^{2}}{\left|e_{q} B\right|}\right) \frac{m_{q}^{2}}{\left(k_{\|}^{2}+m_{q}^{2}\right)^{2}}
$$

which can be easily calculated, giving

$$
f_{u}^{2}=\frac{N_{c}|e B|}{6 \pi^{2}} \quad \text { and } \quad f_{d}^{2}=\frac{N_{c}|e B|}{12 \pi^{2}}
$$

LOW-ENERGY REGION, $\left|k_{\|}^{2}\right| \lesssim m_{d y n}^{2}$

- Massive quarks decouple from the low-energy dynamics

- Gluons are the only "light" degrees of freedom
- Assuming that $\Lambda_{Q C D}^{2} \ll m_{d y n}^{2}$, the gluodynamics has a semiperturbative region, $\left|k_{\|}^{2}\right| \lesssim m_{d y n}^{2}$, where

$$
\frac{1}{\tilde{\alpha}_{s}(\mu)}-\frac{1}{\alpha_{s}} \simeq b_{0} \ln \frac{\mu^{2}}{m_{d y n}^{2}}
$$

here $b_{0}=\frac{11 N_{c}}{12 \pi}$ and $\frac{1}{\alpha_{s}} \simeq b \ln \frac{|e B|}{\Lambda_{Q C D}^{2}}$
(Recall: $b=\frac{11 N_{c}-2 N_{f}}{12 \pi}$)

- Then, we find that the new confinement scale where $\tilde{\alpha}_{s}=\infty$:

$$
-b \ln \frac{|e B|}{\Lambda_{Q C D}^{2}} \simeq b_{0} \ln \frac{\lambda_{Q C D}^{2}}{m_{d y n}^{2}} \Rightarrow \lambda_{Q C D}=m_{d y n}\left(\frac{\Lambda_{Q C D}}{\sqrt{|e B|}}\right)^{b / b_{0}}
$$

LOW-ENERGY GLUODYNAMICS

- Quadratic part of low-energy effective action for gluons

$$
\mathcal{L}_{\mathrm{glue}, \mathrm{eff}}^{(2)}=-\frac{1}{2} \sum_{A=1}^{N_{c}^{2}-1} A_{\mu}^{A}(-k)\left[g^{\mu \nu} k^{2}-k^{\mu} k^{\nu}+\kappa\left(g_{\|}^{\mu \nu} k_{\|}^{2}-k_{\|}^{\mu} k_{\|}^{\nu}\right)\right] A_{v}^{A}(k)
$$

where the susceptibility κ is extracted from the polarization tensor $\mathcal{P}_{\mu \nu}^{A B}$ in the region $\left|k_{\|}^{2}\right| \ll m_{d y n}^{2}$, i.e.,

$$
\kappa=\frac{\alpha_{s}}{6 \pi} \sum_{q=1}^{N_{f}} \frac{\left|e_{q} B\right|}{m_{q}^{2}}=\frac{1}{12 C_{1} \pi} \sum_{q=1}^{N_{f}}\left(\frac{\alpha_{s}}{c_{q}^{2}}\right)^{1 / 3} \exp \left(\frac{4 N_{c} \pi}{\alpha_{s}\left(N_{c}^{2}-1\right) \ln \left(C_{2} / c_{q} \alpha_{s}\right)}\right) \gg 1
$$

- The requirement of gauge invariance allows to write down the complete expression for the gluon action

$$
\mathcal{L}_{\text {glue,eff }} \simeq \frac{1}{2} \sum_{A=1}^{N_{c}^{2}-1}\left(\mathbf{E}_{\perp}^{A} \cdot \mathbf{E}_{\perp}^{A}+\epsilon E_{3}^{A} E_{3}^{A}-\mathbf{B}_{\perp}^{A} \cdot \mathbf{B}_{\perp}^{A}-B_{3}^{A} B_{3}^{A}\right)
$$

where $\epsilon=1+\kappa$ is a chromo-dielectric constant (note $\epsilon \gg 1$), $E_{i}^{A}=F_{0 i}^{A}$ and $B_{i}^{A}=1 / 2 \varepsilon_{i j k} F_{j k}^{A}$ are chromo-fields

EfFECTIVE POTENTIAL

- By using the guidance from an analogous anisotropic QED, the static potential between a pair of quarks should be given by

$$
V(x, y, z) \simeq \frac{g_{s}^{2}}{4 \pi \sqrt{z^{2}+\epsilon\left(x^{2}+y^{2}\right)}}
$$

which is valid for a range of distance scales $m_{d y n}^{-1} \lesssim r \lesssim \lambda_{Q C D}^{-1}$

- Note that the effective coupling constants

$$
\begin{gathered}
\alpha_{s}^{\|}=\frac{g_{s}^{2}}{4 \pi v_{g}^{\|}} \approx \frac{g_{s}^{2}}{4 \pi}, \quad \text { where } \quad v_{g}^{\|} \approx 1 \\
\alpha_{s}^{\perp}=\frac{g_{s}^{2}}{4 \pi \sqrt{\epsilon} v_{g}^{\perp}} \approx \frac{g_{s}^{2}}{4 \pi}, \quad \text { where } \quad v_{g}^{\perp} \approx 1 / \sqrt{\epsilon}
\end{gathered}
$$

are approximately the same in all directions

- A posteriori, this naïve "isotropy" may justifies the use of running behavior as in isotropic gluodynamics (not rigorous)

Potential on lattice

- Quark-antiquark potential was fitted by Cornell potential,

$$
V(r)=-\frac{\alpha}{r}+\sigma r+V_{0}
$$

- where σ is the string tension and α is the Coulombic coefficient
[Bonati et al., Phys. Rev. D 89, 114502 (2014)]

ANISOTROPY IN DETAIL

- The dependence of the potential as a function of angle θ between \vec{B} and $q \bar{q}$ orientation [Bonati et al., Phys. Rev. D 94, 094007 (2016)]

$$
V(r, \theta ; B)=-\frac{\alpha(\theta ; B)}{r}+\sigma(\theta ; B) r+V_{0}(\theta ; B)
$$

- With increasing angle θ, the string tension increases

NONZERO TEMPERATURE

- What to expect at nonzero temperature (in strong B limit)?
 $m_{d y n}$

$\sqrt{|e B|}$ ∞
- Very low temperatures, $T \ll \lambda_{Q C D}$
- Ground state in not affected much
- Color is confined, lowest energy states are glueballs
- Chiral symmetry is broken $\left(T \ll \lambda_{Q C D} \ll m_{d y n}\right)$
- Intermediate temperatures, $\lambda_{Q C D} \ll T \ll m_{d y n}$
- Color is deconfined; gluons are thermally populated
- Chiral symmetry is still broken $\left(\lambda_{Q C D} \ll T \ll m_{d y n}\right)$
- Moderately high temperatures, $m_{d y n} \ll T \ll \sqrt{|e B|}$
- Chiral symmetry is restored $\left(m_{d y n} \ll T\right)$

Predicted Phase diagram

Inverse Catalysis at Tキ才

[Bali et al., Phys. Rev. D86, 071502 (2012)]

Inverse Catalysis at $\mathbf{T} \neq 0$

- The temperature dependence at several fixed values of B

- Confinement strongly affects the low-temperature region

DEPENDENCE OF $\boldsymbol{T}_{\mathrm{C}}$ VS. \boldsymbol{B}

[Bali et al., JHEP 02, 044 (29012)], [Bali et al., PRD86, 071502 (2012)], [G. Endrodi, JHEP 1507 (2015) 173]

Valence vs. sea

[Bruckmann, G. Endrodi, T. G. Kovacs, JHEP 04 (2013) 112]

- Gluon screening (?)
- Polyakov loops (?)
or, perhaps, something else (?)

SUPER-STRONG B: PREDICTION

[Cohen \& Yamamoto, PRD89, 054029 (2014)], [G. Endrodi, JHEP 1507 (2015) 173]

Predicted Phase diagram

