

POLYTECHNIC CAMPUS

LECTURE #5 MAGNETIC CATALYSIS IN GRAPHENE **Igor Shovkovy Arizona State University**

Reading material: V.A. Miransky & I.A. Shovkovy, Physics Reports 576 (2015)

Summer School on Frontiers in Theoretical Physics and Huada School on QCD: Chiral Anomaly and Strong Magnetic Fields in Heavy-ion Collisions

LECTURE #5 MAGNETIC CATALYSIS IN GRAPHENE

LECTURE #6 3D DIRAC & WEYL MATERIALS

Credits: Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)

GRAPHENE

- It is a single atomic layer of graphite with interesting basic physics [Novoselov et al., Science **306**, 666 (2004)]
- 2D crystal with hexagonal lattice of carbon atoms

• Tight-binding model

$$H = -t \sum_{\mathbf{n}, \boldsymbol{\delta}_i, \sigma} \left[a_{\mathbf{n}, \sigma}^{\dagger} \exp\left(\frac{ie}{\hbar c} \boldsymbol{\delta}_i \mathbf{A}\right) b_{\mathbf{n} + \boldsymbol{\delta}, \sigma} + \text{c.c.} \right]$$

 a_n^+ and b_n are creation/annihilation operators on sublattice A/B

DISPERSION RELATION

• Energy spectrum $\epsilon(\mathbf{k}) = t\sqrt{1 + 4\cos^2\frac{k_xa}{2} + 4\cos\frac{k_xa}{2}\cos\frac{\sqrt{3}k_ya}{2}}$

• Brillouin zone in momentum space

$$\vec{b}_1 = \frac{2\pi}{a} \left(1, \frac{1}{\sqrt{3}} \right)$$
$$\vec{b}_2 = \frac{2\pi}{a} \left(1, -\frac{1}{\sqrt{3}} \right)$$

DIRAC FERMIONS IN GRAPHENE

- Low energy quasiparticles in the vicinity of *K* and *K'* points are **massless** Dirac fermions ($v_F \approx c/300$) [Semenoff, PRL 53, 2449 (1984)]
- The components of two Dirac spinors $(s = \pm 1/2)$: $\Psi_s^T = (\psi_{KAs}, \psi_{KBs}, \psi_{K'Bs}, -\psi_{K'As})$
- The low-energy Hamiltonian has $U_{\downarrow}(2) \times U_{\uparrow}(2)$ symmetry

$$H_{\text{tot}} \equiv H + \int d^2 r \left(\mu_B B \Psi^{\dagger} \sigma^3 \Psi - \mu_0 \Psi^{\dagger} \Psi \right)$$
Zeeman energy

where $H = H_0 + H_C$ and

$$H_{0} = v_{F} \int d^{2}r \,\overline{\Psi} \left(\gamma^{1} \pi_{x} + \gamma^{2} \pi_{y} \right) \Psi \qquad \Big\} \text{ Free Hamiltonian}$$
$$H_{C} = \frac{1}{2} \int d^{2}r d^{2}r' \Psi^{\dagger}(\mathbf{r}) \Psi(\mathbf{r}) U_{C}(\mathbf{r} - \mathbf{r}') \Psi^{\dagger}(\mathbf{r}') \Psi(\mathbf{r}') \Big\} \text{ Coulomb}$$

• Note that H_0 and H_c have U(4) symmetry with the generators

$$\frac{\sigma_{\alpha}}{2}, \quad \frac{\sigma_{\alpha}}{2i}\gamma^3, \quad \frac{\sigma_{\alpha}}{2}\gamma^5, \quad \frac{\sigma_{\alpha}}{2}[\gamma^3,\gamma^5]$$

MAGNETIC CATALYSIS IN GRAPHENE (?)

- Graphene is a perfect playground for magnetic catalysis
 - Charge carriers are spin- $\frac{1}{2}$ Dirac fermions with m=0
 - Strong magnetic field limit is easy to achieve even at room temperature (!)

$$\epsilon_B \equiv \sqrt{2\hbar |eB_\perp| v_F^2/c} \simeq 424\sqrt{|B_\perp[T]|} \mathrm{K}$$

- Dimensional reduction from planar (2+1)D down to (0+1)D makes pairing perturbative (!)
- Dynamical generation of a relatively large $m_{dyn} \neq 0$ is expected even at weak coupling
- Large global symmetry suggests a rich dynamics
- Direct tabletop experiments are relatively easy to design
- In fact, it was predicted before graphene was discovered (!) [Khveshchenko, PRL 87, 206401 (2001)]

[Gorbar, Gusynin, Miransky, Shovkovy, PRB 66 (2002) 045108]

POTENTIAL COMPLICATIONS

- Graphene is a real condensed matter material
 - it is not exactly flat in 2D (ripples, bending, etc.)
 - various lattice defects may exist
 - it not perfectly clean (impurities)
 - boundary effects play a role in finite size samples
 - non-uniform charge distribution (electron/hole puddles)
 - nonzero average electron/hole density
 - high symmetry implies many possible order parameters
 - Zeeman energy effects, $\epsilon_Z = \mu_B B \approx 0.67 B[T] K$
 - competition with quantum Hall ferromagnetism

$$J_x = \sigma_{xy} E_y$$

[Gorbar, Gusynin, Miransky, Shovkovy, PRB **66** (2002) 045108] *n* (10¹² cm⁻²) [Gusynin, Sharapov, Phys. Rev. Lett. **95**, 146801 (2005)] [Peres, Guinea, Castro Neto, Phys. Rev. B **73**, 125411 (2006)] [Novoselov et al., Nature **438**, 197 (2005)], [Zhang et al., Nature **438**, 201 (2005)]

ANOMALOUS QHE: STRONG B

• New plateaus are observed at filling factors

v=()

 $v = \pm 1$

v=±3

 $v=\pm 4$

• Degeneracies of some Landau level are lifted in sufficiently strong B field

[Novoselov et al., Science **315**, 1379 (2007)] [Abanin et al., Phys. Rev. Lett. **98**, 196806 (2007)] [Jiang et al., Phys. Rev. Lett. **99**, 106802 (2007)] [Checkelsky et al., Phys. Rev. Lett. **100**, 206801 (2008)] [Xu Du et al., Nature **462**, 192 (2009)]

Zhang et al., PRL 96, 136806 (2006)

[Bolotin et al., Nature **462**, 196 (2009)] [Young et al., Nat. Phys. **8**, 550 (2012)] [Young et al., Nature **505**, 528 (2014)] [Chiappini et al., Phys. Rev. B **92**, 201412(R) (2015)]

ORDER PARAMETERS

- Many order parameters may be generated (due to various types of pairing from different valleys/sublattices)
- Parity odd (Haldane) and even (Dirac) masses are possible

$$\Delta_{s}: \quad \bar{\Psi}\gamma^{3}\gamma^{5}P_{s}\Psi = \psi_{KAs}^{\dagger}\psi_{KAs} - \psi_{K'As}^{\dagger}\psi_{K'As} - \psi_{KBs}^{\dagger}\psi_{KBs} + \psi_{K'Bs}^{\dagger}\psi_{KBs} + \psi_{K'Bs}^{\dagger}\psi_{KBs}$$

$$\tilde{\Delta}_{s}: \quad \bar{\Psi}P_{s}\Psi = \psi_{KAs}^{\dagger}\psi_{KAs} + \psi_{K'As}^{\dagger}\psi_{K'As} - \psi_{KBs}^{\dagger}\psi_{KBs} - \psi_{K'Bs}^{\dagger}\psi_{K'Bs}$$

- The former (latter) are singlets (triplets) under $U(2)_s$
- Similar singlet (triplet) types of (pseudo-)spin densities

$$\mu_3: \Psi^{\dagger}\sigma^3\Psi = \frac{1}{2}\sum_{\kappa=K,K'}\sum_{a=A,B}\left(\psi_{\kappa a+}^{\dagger}\psi_{\kappa a+} - \psi_{\kappa a-}^{\dagger}\psi_{\kappa a-}\right)$$

$$\tilde{\mu}_s: \Psi^{\dagger} \gamma^3 \gamma^5 P_s \Psi = \psi^{\dagger}_{KAs} \psi_{KAs} - \psi^{\dagger}_{K'As} \psi_{K'As} + \psi^{\dagger}_{KBs} \psi_{KBs} - \psi^{\dagger}_{K'Bs} \psi_{K'Bs}$$

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Rev. B **78** (2008) 085437] [Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scr. T **146** (2012) 014018]

• A rather flexible form of the fermion propagator is needed

RUNNING DYNAMICAL PARAMETERS?

• One approach is to use the Ritus method

$$\overline{S}(x,y) = \sum_{n=0}^{\infty} \int \frac{dp_0 dp_2}{(2\pi)^3} E_p(x) \frac{1}{(\overline{\mathbf{p}} \cdot \boldsymbol{\gamma}) + \Sigma(p)} \overline{E}_p(y)$$

where

$$\overline{\mathbf{p}} = \left(p_0, 0, -\sqrt{2|eB|n} \right) \text{ and } \overline{E}_p(x) = \gamma^0 E_p^+(x) \gamma^0$$
$$(\pi_v \gamma^v) E_p(x) = E_p(x) (\overline{\mathbf{p}} \cdot \boldsymbol{\gamma})$$

- Shortcomings:
 - Schwinger phase is never fully factorized
 - Eigenstates $E_p(x)$ are Dirac matrices
 - Obscure meaning of parameters in $\Sigma(p)$
- There is a better way

A BETTER REPRESENTATION?

• The general form of the full propagator

$$G(x, y) = i \left\langle x \left| \left[k_0 \gamma^0 + \hat{F}^+ \left(\boldsymbol{\pi} \cdot \boldsymbol{\gamma} \right) + \hat{\Sigma}^+ \right]^{-1} \right| y \right\rangle$$

where $\hat{F}^{\pm} \& \hat{\Sigma}^{\pm}$ are functions of $\gamma^0, i\gamma^1\gamma^2, \& (\boldsymbol{\pi} \cdot \boldsymbol{\gamma})^2$

3 mutually commuting operators

$$\hat{F}^{\pm} = f \pm \gamma^{0} g \pm i \gamma^{1} \gamma^{2} \tilde{g} + i \gamma^{0} \gamma^{1} \gamma^{2} \tilde{f}$$

$$\hat{\Sigma}^{\pm} = m \pm \gamma^{0} \mu \pm i \gamma^{1} \gamma^{2} \tilde{\mu} + i \gamma^{0} \gamma^{1} \gamma^{2} \Delta$$
Dirac mass
Haldane mass

and
$$f, g, \tilde{g}, \tilde{f}, m, \mu, \tilde{\mu}, \Delta$$
 depend on $(\pi \cdot \gamma)$

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]

13

COMPLETE SET OF EIGENSTATES

• As before, the eigenstates for orbital motion:

$$\boldsymbol{\pi}^{2} \left| N p \right\rangle = \left| eB \right| (2N+1) \left| N p \right\rangle$$

E.g., in the Landau gauge A=(0,Bx),

$$\langle \mathbf{r} | N p \rangle = C_N H_N \left(\frac{x}{l} + pl \right) \exp \left(-\frac{(x + pl^2)^2}{2l^2} + ipy \right)$$

They satisfy

$$\int d^{2}\mathbf{r} \langle N p | \mathbf{r} \rangle \langle \mathbf{r} | N' p' \rangle = \delta_{NN'} \delta(p - p')$$
$$\sum_{N=0}^{\infty} \int_{-\infty}^{\infty} dp \langle \mathbf{r} | N p \rangle \langle N p | \mathbf{r}' \rangle = \delta(\mathbf{r} - \mathbf{r}')$$

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]

14

GENERALIZED LL REPRESENTATION

• Then, the new representation in (2+1)D

$$G(x, y) = \exp\left(-e\int_{y}^{x} A_{\mu} dz^{\mu}\right)\overline{G}(x - y)$$

$$\overline{G}(t, \mathbf{r}) = \int \frac{dk_{0}}{2\pi} e^{-ik_{0}t} \overline{G}(k_{0}, \mathbf{r})$$

Schwinger phase

where

$$\overline{G}(k_{0},\mathbf{r}) = i \frac{e^{-\xi/2}}{2\pi l^{2}} \sum_{n,\sigma,s} \left(\frac{s(k_{0} + \mu_{n,\sigma}) - m_{n,\sigma}}{(k_{0} + \mu_{n,\sigma})^{2} - E_{n,\sigma}^{2}} \left[\delta_{-\sigma}^{s} L_{n}(\xi) + \delta_{\sigma}^{s} L_{n-1}(\xi) \right] + \frac{i(f_{n,\sigma} - sg_{n,\sigma})}{(k_{0} + \mu_{n,\sigma})^{2} - E_{n,\sigma}^{2}} \frac{(\gamma \cdot \mathbf{r})}{l^{2}} \right] P_{s,s\sigma}, \qquad \xi = \mathbf{r}^{2} / (2l^{2})$$

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]

LL ENERGIES Haldane mass Landau-level energies Dirac mass $n=0: \quad E_{0\sigma} = \Delta_0 + \sigma m_0$ renormalized v_E^2 $n \ge 1$: $E_{n,\sigma} = \sqrt{2(f_{n,\sigma}^2 - g_{n,\sigma}^2)n|eB|} + m_{n,\sigma}^2$ where $m_{n,\sigma} = m_n + \sigma \Delta_n, \quad \mu_{n,\sigma} = \mu_n + \sigma \tilde{\mu}_n,$ etc.

By definition, $n=N+(1+s_{12})/2$ and

$$m\left((\boldsymbol{\pi}\cdot\boldsymbol{\gamma})^{2}\right)\left|N,s_{12}\right\rangle = m_{n}\left|N,s_{12}\right\rangle,$$
$$f\left((\boldsymbol{\pi}\cdot\boldsymbol{\gamma})^{2}\right)\left|N,s_{12}\right\rangle = f_{n}\left|N,s_{12}\right\rangle, \quad \text{etc.}$$

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]

- Model Hamiltonian $H = H_0 + H_{Coulomb} + \mu_B B \int d^2 r \Psi^+ \sigma_3 \Psi$ U(4) $SU(2)_{\uparrow} \times SU(2)_{\downarrow}$
- Now, with multiple MC and QHF order parameters

 $m_{n,s}$: $\overline{\Psi}_{s}\Psi_{s}$ Dirac mass (CDW) $\Delta_{n,s}$: $\overline{\Psi}_{s}(i\gamma^{0}\gamma^{1}\gamma^{2})\Psi_{s}$ Haldane mass $\tilde{\mu}_{n,s}$: $\overline{\Psi}_{s}(i\gamma^{1}\gamma^{2})\Psi_{s}$ pseudospin density $\mu_{n,3}$: $\overline{\Psi}_{\uparrow}\gamma^{0}\Psi_{\uparrow} - \overline{\Psi}_{\downarrow}\gamma^{0}\Psi_{\downarrow}$ spin polarization

• Recall that the spinors are defined by

$$\Psi_s^T = (\psi_{KAs}, \psi_{KBs}, \psi_{K'Bs}, -\psi_{K'As})$$

NORMAL GROUND STATE (WEAK B)

- No symmetry breaking parameters
- Possible renormalization of $v_{\rm F}$:

$$n \ge 1$$
: $E_n = v_F \sqrt{2n|eB|} \implies E_n = f_n v_F \sqrt{2n|eB|}$

• Schwinger-Dyson equations for f_n

$$f_{n} = 1 + \frac{\alpha}{2} \sum_{n=1}^{n_{\max}} \frac{\kappa_{n'-1,n-1}^{(1)}}{n\sqrt{2n'}} \Big[1 - n_{F} \Big(E_{n'} - \mu \Big) - n_{F} \Big(E_{n'} + \mu \Big) \Big]$$

$$\kappa_{m,n}^{(i)} = \int_{0}^{\infty} \frac{dk}{2\pi} \frac{kl \ L_{m,n}^{(i)}(kl)}{k + \Pi(0,k)}, \quad \text{where} \quad l = 1 / \sqrt{|eB|}$$

RENORMALIZATION OF $V_{\rm F}$

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD

RENORMALIZATION OF $V_{\rm F}$

[Miransky & Shovkovy, Phys. Rep. 576, 1 (2015)]

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD

SCHEMATIC PHASE DIAGRAM

POLYTECHNIC CAMPUS

LECTURE #6 3D DIRAC & WEIL MATERIALS Igor Shovkovy Arizona State University

Summer School on Frontiers in Theoretical Physics and Huada School on QCD: Chiral Anomaly and Strong Magnetic Fields in Heavy-ion Collisions

DIRAC SEMIMETALS

• Solid state materials with Dirac quasiparticles:

 $3\sim4$: Inversion of the band at L x (%)

- "New" 3D Dirac materials (ARPES):
 - Na_3Bi (Potassium bismuthide)

[Liu et al., Science 343, 864 (2014)]

 $-Cd_3As_2$ (Cadmium arsenide) [Neupane et al., Nature Commun. 5, 3786 (2014)]

[Neupane et al., Nature Commun. 5, 3786 (2014)] [Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)]

DIRAC MATERIALS

• $\operatorname{Bi}_{1-x}\operatorname{Sb}_x$ alloy (at $x \approx 4\%$)

DIRAC VS. WEYL MATERIALS

Low-energy Hamiltonian of a Dirac/Weyl material

 P

$$H = \int d^3 \mathbf{r} \, \overline{\psi} \Big[-i \nu_F \Big(\vec{\gamma} \cdot \vec{\mathbf{p}} \Big) - \Big(\vec{b} \cdot \vec{\gamma} \Big) \gamma^5 + b_0 \gamma^0 \gamma^5 \Big] \psi$$

Weyl

Dirac

WEYL MATERIALS

TaAs (tantalum arsenide)[S.-Y. Xu et al., Science 349, 613 (2015)][B. Q. Lv et al., Phys. Rev. X5, 031013 (2015)]

- NbAs (niobium arsenide) [S.-Y. Xu et al., Nature Physics 11, 748 (2015)]
- TaP (tantalum phosphide) [S.-Y. Xu et al., Science Adv. 1, 1501092 (2015)]
- NbP (niobium phosphide) [I. Belopolski et al. arXiv:1509.07465]
- WTe₂ (tungsten telluride) [F. Y. Bruno et al., Phys. Rev. B 94, 121112 (2016)]

LOW-ENERGY DIRAC FERMIONS

• The Hamiltonian for massless Dirac fermions is given by

$$H_D = \begin{pmatrix} v_F(\vec{k} \cdot \vec{\sigma}) & 0 \\ 0 & -v_F(\vec{k} \cdot \vec{\sigma}) \end{pmatrix}$$

• This can we viewed as a combination of two Weyl fermions $H_{\lambda} = \lambda v_F (\vec{k} \cdot \vec{\sigma})$

where $\lambda = \pm 1$ is a chirality

The Weyl energy eigenstates are given by

$$\psi_{k}^{\lambda} = \frac{1}{\sqrt{2\epsilon_{k}}k_{\perp}} \begin{pmatrix} \sqrt{\epsilon_{k} + \lambda k_{z}} k_{\perp} \\ \lambda \sqrt{\epsilon_{k} - \lambda k_{z}} k_{\perp} \end{pmatrix}$$

They described particles of energy $\epsilon_k = v_F \sqrt{k_x^2 + k_y^2 + k_z^2}$ The mapping $k \to \psi_k^{\lambda}$ has a nontrivial topology **BERRY CONNECTION & CURVATURE**

• Consider evolution from ψ_k to $\psi_{k+\delta k}$:

 $\langle \psi_{k} | \psi_{k+\delta k} \rangle \approx 1 + \delta k \cdot \langle \psi_{k} | \nabla_{k} | \psi_{k} \rangle \approx e^{i a_{k} \cdot \delta k}$

where $a_k = -i \langle \psi_k | \nabla_k | \psi_k \rangle$ is the Berry connection

• The Berry curvature is defined as follows:

$$\boldsymbol{\Omega}_k = \boldsymbol{\nabla}_k \times \boldsymbol{a}_k$$

- Not the similarity with gauge fields, but a_k and Ω_k are defined in the momentum space
- It is convenient to define the Chern number (flux of Ω_k)

$$C = \frac{1}{2\pi} \oint \mathbf{\Omega}_k \cdot d\mathbf{S}_k$$

 A nonzero (integer) Chern number indicates a nonzero (topological) charge inside the *k*-volume surrounded by the closed surface (Gauss's law)

GAUGE THEORY VS. BERRY EFFECTS

Gauge theory	Berry effects
Local at coordinate space	Local at momentum space
Gauge field \vec{A}	Berry connection \vec{a}
Magnetic field	Berry curvature
$\vec{B} = \vec{\nabla}_{r} \times \vec{A}$	$\overrightarrow{\mathbf{\Omega}}=\overrightarrow{\mathbf{ abla}}_{\mathbf{k}} imes\overrightarrow{\mathbf{a}}$
Aharonov-Bohm phase	Berry phase
$\oint d\vec{r} \vec{A}(\vec{r})$	∮ d k a (k)
Magnetic charge (Dirac monopole)	Berry monopole
$\int d \vec{r} (\vec{\nabla}_{r} \cdot \vec{B}) = const$	$\int d \vec{\mathbf{k}} (\vec{\nabla}_{\mathbf{k}} \cdot \vec{\Omega}) = const$

BERRY CURVATURE FOR WEYL FERMIONS

• In the case of Weyl fermions,

$$\mathbf{\Omega}_k = \lambda \frac{k}{2k^3}$$

(Note: this looks like a field of a monopole at $\vec{k} = 0$)

• Let us calculate the total flux of Ω_k -field through the spherical surface of radius *K* with the center at $\vec{k} = 0$

$$C = \frac{1}{2\pi} \oint \lambda \frac{k}{2k^3} \cdot \frac{k}{k} k^2 \sin \theta \, d\theta d\varphi = \lambda = \pm 1$$

- Thus, the electronic structure of massless Weyl fermions is characterized by a topological monopole at $\vec{k} = 0$
- Is the Berry monopole just a mathematical curiosity?
- Are there any observable consequences?

WEYL FERMIONS ON A LATTICE

- In solid state physics, the momentum space (Brillouin zone) is compact
- A closed surface around a single Weyl node is also a closed surface (of opposite orientation) around a the rest of the Brillouin zone
- Flipping surface orientation changes the sign of the flux
- There must be an opposite charge somewhere in the rest of the zone

• Thus, Weyl fermions come in pairs of opposite chirality [Nielsen & Ninomiya, Nucl. Phys. B **193**, 173 (1981); B **185**, 20 (1981)]

MAGNETO-CONDUCTIVITY

- Magneto-transport may reveal signature features of Dirac/Weyl materials [Nielsen & Ninomiya, PLB 130, 389 (1983)], [Aji, PRB 85, 241101 (2012)], [Son & Spivak, PRB 88, 104412 (2013)], [Gorbar, Miransky & Shovkovy PRB 89, 085126 (2014)]
- The conductivity tensor in the Kubo's linear response theory

$$\sigma_{ij} = \lim_{\Omega \to 0} \frac{\operatorname{Im} \Pi_{ij}(\Omega + i0; \mathbf{0})}{\Omega}$$
where the polarization function
$$\Pi_{ij}(\Omega + i0; \mathbf{0}) = e^2 v_F^2 \int d\omega \int d\omega' \frac{n_F(\omega) - n_F(\omega')}{\omega - \omega' - \Omega - i0}$$

$$\times \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \operatorname{tr}[\gamma^i A(\omega; \mathbf{k}) \gamma^j A(\omega'; \mathbf{k})]$$
is given in terms of the spectral function, obtained from the fermion Green's function in the Landau-level representation
$$1 - \frac{1}{2} = \frac{1}{2} - \frac{1}{2}$$

$$A(\omega; \mathbf{k}) = \frac{1}{2\pi i} [\bar{G}_{\mu=0}(\omega - i0; \mathbf{k}) - \bar{G}_{\mu=0}(\omega + i0; \mathbf{k})]$$

RESULTS FOR σ_{12} **CONDUCTIVITY**

• Topological contribution to the anomalous Hall conductivity

$$\sigma_{12} = -\frac{e^2 s_{\perp}}{4\pi^2} \sum_n \alpha_n \int dk_3 \frac{\sinh \frac{\mu}{T}}{\cosh \frac{E_n}{T} + \cosh \frac{\mu}{T}} - \frac{e^2}{8\pi^2} \sum_{\chi=\pm} \chi \int dk_3 \frac{\sinh \frac{v_F(k_3 - \chi b)}{T}}{\cosh \frac{v_F(k_3 - \chi b)}{T} + \cosh \frac{\mu}{T}}$$

• Interestingly, only the LLL contributes. The result is

$$\sigma_{12,\text{anom}} = -\frac{e^2}{8\pi^2 v_F} T \ln \frac{\cosh \frac{v_F(k_3-b)}{T} + \cosh \frac{\mu}{T}}{\cosh \frac{v_F(k_3+b)}{T} + \cosh \frac{\mu}{T}} \Big|_{k_3=-\infty}^{k_3=\infty} = \frac{e^2 b}{2\pi^2}$$

(Notice the subtlety in extracting the final result via regularization)

• This topological result implies that there is the current

$$\vec{J} = \frac{e^2}{2\pi^2} \left(\vec{b} \times \vec{E} \right)$$

where \vec{b} is the chiral shift parameter that determines the momentum space separation between the Weyl nodes, $\Delta \vec{k} = 2\vec{b}$ [Burkov & Balents, PRL 107, 127205 (2011)], [Grushin, PRD 86, 045001 (2012)], [Goswami & Tewari, PRB 88, 245107 (2013)]

MODEL CONDUCTIVITY σ_{12} at $\mu \neq 0$

[Gorbar, Miransky, Shovkovy, Phys. Rev. B 89 (2014) 085126]

LONGITUDINAL CONDUCTIVITY

- Theoretically, it was predicted that the topological nature of the LLL should lead to large negative magnetoresistance [Nielsen & Ninomiya, PLB 130, 390 (1983)], [Son & Spivak, PRB 88, 104412 (2013)]
- From model calculations using Landau-level representation

$$\sigma_{33} = \sigma_{33}^{(LLL)} + \sigma_{33}^{(HLL)}$$
, where $\sigma_{33}^{(LLL)} = \frac{e^2 v_F |eB|}{4\pi^2 c \Gamma_0}$

• Notice the temperature independent LLL contribution

$$\sigma_{33}^{(\text{LLL})} = \frac{e^2 v_F^2}{2^4 \pi^3 l^2 T} \sum_{\chi} \int \frac{d\omega \, dk_3}{\cosh^2 \frac{\omega - \mu}{2T}} \frac{\Gamma_0^2}{\left[[\omega + s_\perp \chi \, v_F(k_3 - \chi b)]^2 + \Gamma_0^2 \right]^2} \\ = \frac{e^2 v_F}{4\pi^2 l^2 \Gamma_0} = \frac{e^2 v_F |eB|}{4\pi^2 c \Gamma_0}$$

(here Γ_0 is the LLL quasiparticle width, or inverse scattering time)

• The LLL contribution is unlike higher Landau-levels contributions which decrease with the increasing magnetic field

NEGATIVE MAGNETORESISTANCE

• Experimental confirmation? [Kim, et al., PRL 111, 246603 (2014)] Bi_{1-x}Sb_x alloy with $x \approx 0.04$

MAGNETO-TRANSPORT IN ZRTE5

- Positive magnetoresistance for currents perpendicular to magnetic field ($\theta = 0^{\circ}$)
- Negative magnetoresistance for currents parallel to magnetic field ($\theta = 90^{\circ}$)

SIMILAR RESULTS IN OTHER MATERIALS

- Magnetotransport was also studied in other materials, including
 - Na3Bi, Cd3As2 (Dirac materials)

[Xiong et al., Science **350**, 413 (2015)], [Li et al., Nat. Commun. **6**, 10137 (2015)], [Li et al., Nat. Commun. **7**, 10301 (2016)], ...

- TaAs, NbAs, NbP, TaP (Weyl materials)

[Huang et al., PRX **5**, 031023 (2015)], [Zhang et al., Nat. Commun. **7**, 10735 (2016)], [Arnold et al., Nat. Commun. **7**, 11615 (2016)], ...

- There is no ambuguity that the large negative magnetoresistance is observed in Dirac/Weyl materials
- There is a consensus that it is related to anomalous features of Dirac/Weyl fermions
- However, identifying other signature properties of Dirac/ Weyl materials would be extremely valuable

CHIRAL EFFECTS IN WEYL MATERIALS

- Any qualitative properties of Weyl materials directly sensitive to b_0 and \vec{b} ?
- Some proposals in the literature:
 - Anomalous Hall effect
 - Anomalous Alfven waves
 - Strain/torsion induced CME
 - Strain/torsion induced quantum oscillations
 - Strain/torsion dependent resistance
 - etc.

• Spectrum of chiral (pseudo-)magnetic plasmons

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. **118**, 127601 (2017)] [Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B **95**, 115202 (2017)]

STRAIN IN WEYL MATERIALS

• Strains affect low-energy quasiparticles in Weyl materials [Cortijo, Ferreiros, Landsteiner, Vozmediano. Phys. Rev. Lett. 115, 177202 (2015)]

$$H = \int d^3 \mathbf{r} \, \overline{\psi} \Big[-i \nu_F \Big(\vec{\gamma} \cdot \vec{\mathbf{p}} \Big) - \Big(\vec{b} + \vec{A}_5 \Big) \cdot \vec{\gamma} \, \gamma^5 + \Big(b_0 + A_{5,0} \Big) \gamma^0 \gamma^5 \Big] \psi$$

where the components of the chiral gauge fields are

$$\begin{aligned} A_{5,0} \propto b_0 \left| \vec{b} \right| \partial_{||} u_{||} \\ A_{5,\perp} \propto \left| \vec{b} \right| \partial_{||} u_{\perp} \\ A_{5,\parallel} \propto \alpha \left| \vec{b} \right|^2 \partial_{||} u_{||} + \beta \sum_i \partial_i u_i \end{aligned}$$

The associated pseudo-EM fields are

$$\vec{B}_5 = \vec{\nabla} \times \vec{A}_5$$
 and $\vec{E}_5 = -\vec{\nabla} A_0 - \partial_t \vec{A}_5$

 b_c

GENERAL QUESTION

- What are the properties of plasmons in magnetized chiral material with $b_0 \neq 0$ and $\vec{b} \neq 0$?
- Chiral matter $(\mu_R \neq \mu_L)$
 - This is the case in equilibrium when $b_0 \neq 0$ ($\mu_5 = -eb_0$)
- Magnetic or pseudomagnetic field is present

CHIRAL KINETIC THEORY

• Kinetic equation: [Son and Yamamoto, Phys. Rev. D 87, 085016 (2013)] $\frac{\partial f_{\lambda}}{\partial t} + \frac{\left[e\tilde{\mathbf{E}}_{\lambda} + \frac{e}{c}(\mathbf{v} \times \mathbf{B}_{\lambda}) + \frac{e^{2}}{c}(\tilde{\mathbf{E}}_{\lambda} \cdot \mathbf{B}_{\lambda})\Omega_{\lambda}\right] \cdot \nabla_{\mathbf{p}}f_{\lambda}}{1 + \frac{e}{c}(\mathbf{B}_{\lambda} \cdot \Omega_{\lambda})}$ $+ \frac{\left[\mathbf{v} + e(\tilde{\mathbf{E}}_{\lambda} \times \Omega_{\lambda}) + \frac{e}{c}(\mathbf{v} \cdot \Omega_{\lambda})\mathbf{B}_{\lambda}\right] \cdot \nabla_{\mathbf{r}}f_{\lambda}}{1 + \frac{e}{c}(\mathbf{B}_{\lambda} \cdot \Omega_{\lambda})} = 0$

where
$$\tilde{\mathbf{E}}_{\lambda} = \mathbf{E}_{\lambda} - (1/e) \nabla_{\mathbf{r}} \epsilon_{\mathbf{p}}$$
, $\mathbf{v} = \nabla_{\mathbf{p}} \epsilon_{\mathbf{p}}$,
 $\epsilon_{\mathbf{p}} = v_F p \left[1 - \frac{e}{c} (\mathbf{B}_{\lambda} \cdot \mathbf{\Omega}_{\lambda}) \right]$
and $\mathbf{\Omega}_{\lambda} = \lambda \hbar \frac{\hat{\mathbf{p}}}{2p^2}$ is the Berry curvature

CURRENT AND CHIRAL ANOMALY

• The definitions of density and current are $\rho_{\lambda} = e \int \frac{d^{3}p}{(2\pi\hbar)^{3}} \left[1 + \frac{e}{c} (\mathbf{B}_{\lambda} \cdot \mathbf{\Omega}_{\lambda}) \right] f_{\lambda},$ $\mathbf{j}_{\lambda} = e \int \frac{d^{3}p}{(2\pi\hbar)^{3}} \left[\mathbf{v} + \frac{e}{c} (\mathbf{v} \cdot \mathbf{\Omega}_{\lambda}) \mathbf{B}_{\lambda} + e(\tilde{\mathbf{E}}_{\lambda} \times \mathbf{\Omega}_{\lambda}) \right] f_{\lambda}$ $+ e \mathbf{\nabla} \times \int \frac{d^{3}p}{(2\pi\hbar)^{3}} f_{\lambda} \epsilon_{\mathbf{p}} \mathbf{\Omega}_{\lambda},$

They satisfy the following anomalous relations:

$$\frac{\partial \rho_5}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{j}_5 = \frac{e^3}{2\pi^2 \hbar^2 c} \Big[(\mathbf{E} \cdot \mathbf{B}) + (\mathbf{E}_5 \cdot \mathbf{B}_5) \Big] \checkmark$$
$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{j} = \frac{e^3}{2\pi^2 \hbar^2 c} \Big[(\mathbf{E} \cdot \mathbf{B}_5) + (\mathbf{E}_5 \cdot \mathbf{B}) \Big] \checkmark$$

CONSISTENT DEFINITION OF CURRENT

• Additional Bardeen-Zumino term is needed,

$$\delta j^{\mu} = \frac{e^3}{4\pi^2 \hbar^2 c} \epsilon^{\mu\nu\rho\lambda} A^5_{\nu} F_{\rho\lambda}$$

• In components,

$$\delta \rho = \frac{e^3}{2\pi^2 \hbar^2 c^2} \left(\mathbf{A}^5 \cdot \mathbf{B} \right)$$

$$\delta \mathbf{j} = \frac{e^3}{2\pi^2 \hbar^2 c} A_0^5 \mathbf{B} - \frac{e^3}{2\pi^2 \hbar^2 c} \left(\mathbf{A}^5 \times \mathbf{E} \right)$$

- Its role and implications:
 - Electric charge is conserved locally $(\partial_{\mu} J^{\mu} = 0)$
 - Anomalous Hall effect is reproduced
 - CME vanishes in equilibrium ($\mu_5 = -eb_0$)

COLLECTIVE MODES We search for plane-wave solutions with $\mathbf{E}' = \mathbf{E}e^{-i\omega t + i\mathbf{k}\cdot\mathbf{r}}, \ \mathbf{B}' = \mathbf{B}e^{-i\omega t + i\mathbf{k}\cdot\mathbf{r}}$ and the distribution function $f_{\lambda} = f_{\lambda}^{(eq)} + \delta f_{\lambda}$,

where $\delta f_{\lambda} = f_{\lambda}^{(1)} e^{-i\omega t + i\mathbf{k}\cdot\mathbf{r}}$

The polarization vector & susceptibility tensor: $P^m = i \frac{J'^m}{\omega} = \chi^{mn} E'^n$

The plasmon dispersion relations follow from

$$\det\left[\left(\omega^2 - c^2k^2\right)\delta^{mn} + c^2k^mk^n + 4\pi\omega^2\chi^{mn}\right] = 0$$

CHIRAL MAGNETIC PLASMONS

Non-degenerate plasmon frequencies @ k=0:

$$\omega_l = \Omega_e, \qquad \omega_{\rm tr}^{\pm} = \Omega_e \sqrt{1 \pm \frac{\delta \Omega_e}{\Omega_e}}$$

where the Langmuir frequency is

$$\Omega_e \equiv \sqrt{\frac{4\alpha}{3\pi\hbar^2}} \left(\mu^2 + \mu_5^2 + \frac{\pi^2 T^2}{3}\right)$$

and
$$\delta\Omega_e = \frac{2e\alpha v_F}{3\pi c\hbar^2} \left\{ 9\hbar^2 b_{\perp}^2 + \left[\frac{2v_F}{\Omega_e^2} (B_0\mu + B_{0,5}\mu_5) - 3\hbar b_{\parallel} - \frac{v_F\hbar^2}{4T} \sum_{\lambda=\pm} B_{0,\lambda} F\left(\frac{\mu_\lambda}{T}\right) \right]^2 \right\}^{1/2}$$

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. **118**, 127601 (2017)] [Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B **95**, 115202 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

PLASMONS WITH $k \neq 0, k \parallel B, B_5$ The transverse modes split (in different ways) when (i) $\vec{B} \neq 0 \& \mu \neq 0$, or (ii) $\vec{B}_5 \neq 0 \& \mu_5 \neq 0$, or (iii) $b_{\parallel} \neq 0$, or (iv) $b_{\perp} \neq 0$

53

PLASMONS WITH $\vec{k} \neq 0, \vec{k} \perp \vec{B}, \vec{B}_5$

The transverse modes split (in different ways) when (i) $\vec{B} \neq 0 \& \mu \neq 0$, or (ii) $\vec{B}_5 \neq 0 \& \mu_5 \neq 0$

 $b_{\parallel} = 0.2 \hbar \Omega_e / e$

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]

PLASMONS WITH $\vec{k} \neq 0, \vec{k} \perp \vec{B}, \vec{B}_5$

The transverse modes split (in different ways) when (i) $\vec{B} \neq 0 \& \mu \neq 0$, or (ii) $\vec{B}_5 \neq 0 \& \mu_5 \neq 0$

 $b_{\perp} = 0.2 \hbar \Omega_e / e$

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]

(PSEUDO-)MAGNETIC HELICONS

• Usual helicons are transverse low-energy gapless excitations propagating along the background magnetic field \vec{B}_0 in uncompensated media (e.g., metals with different electron and hole densities) Helicon in the ionosphere

Helicon in the ionosphere (Whistler) and its spectrogram

14 sec

15 sec

(PSEUDO-)MAGNETIC HELICON

• Helicon dispersion law at $T \rightarrow 0$:

$$\omega_{h}|_{B_{0,5}\to 0,\mu_{5}\to 0} \stackrel{b_{0}\to 0}{=} \frac{eB_{0}c^{3}\hbar^{2}\pi v_{F}^{2}k^{2}}{\pi\hbar^{2}c^{2}\Omega_{e}^{2}\mu + 2B_{0}e^{4}v_{F}^{2}b_{\parallel}} + O(k^{3})$$

$$\omega_{h}|_{B_{0}\to 0,\mu\to 0} \stackrel{b_{0}\to -\mu_{5}/e}{=} \frac{eB_{0,5}c^{3}\hbar^{2}\pi v_{F}^{2}k^{2}}{\pi\hbar^{2}c^{2}\Omega_{e}^{2}\mu_{5} + 2B_{0,5}e^{4}v_{F}^{2}b_{\parallel}} + O(k^{3})$$

- Properties:
 - Gapless electromagnetic wave propagates in metals without magnetic field!
 - Chiral shift modifies effective helicon mass
 - In the equilibrium regime $eb_0 = -\mu_5$, the linear in the wave vector term is **absent**

[E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, and P.O. Sukhachov, Phys. Rev. B 95, 115422 (2017)]

HELICONS AT DIFFERENT b_{\parallel}

 $eb_0 = -\mu_5, B_{0,5} = 10^{-2}$ T, $\mu_5 = 5$ meV, $\mu = 0, eb^* = 0.3\pi\hbar v_F/c_3$

HELICONS AT DIFFERENT T

 $eb_0 = -\mu_5, B_{0,5} = 10^{-2}$ T, $b_{\parallel} = 0.5b^*, \mu_5 = 5$ meV, $\mu = 0$

