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GRAPHENE

• It is a single atomic layer of graphite with interesting basic 

physics [Novoselov et al., Science 306, 666 (2004)]

• 2D crystal with hexagonal lattice of carbon atoms

• Tight-binding model

��# and ��	are creation/annihilation operators on sublattice A/B
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DISPERSION RELATION

• Energy spectrum

• Brillouin zone in momentum 

space

�' = 2�
� 1, 13-
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DIRAC FERMIONS IN GRAPHENE
• Low energy quasiparticles in the vicinity of � and �2 points are 

massless Dirac fermions (�4 ≈ �/300) [Semenoff, PRL 53, 2449 (1984)]

• The components of two Dirac spinors (� = ± ' .⁄ ): 

• The low-energy Hamiltonian has �↓(2)×�↑(2) symmetry

where � = �C +�E and

• Note that �C and �E have U(4) symmetry with the generators

FG
. ,    

FG
.H �J,    

FG
. �K,    

FG
. �J, �K

Zeeman energy

Coulomb

Free Hamiltonian
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MAGNETIC CATALYSIS IN GRAPHENE (?)
• Graphene is a perfect playground for magnetic catalysis 

– Charge carriers are spin-½ Dirac fermions with m=0

– Strong magnetic field limit is easy to achieve even at room 

temperature (!)

– Dimensional reduction from planar (2+1)D down to (0+1)D 

makes pairing perturbative (!)

– Dynamical generation of a relatively large mdyn≠0 is 

expected even at weak coupling

– Large global symmetry suggests a rich dynamics

– Direct tabletop experiments are relatively easy to design

• In fact, it was predicted before graphene was discovered (!)
[Khveshchenko, PRL 87, 206401 (2001)]

[Gorbar, Gusynin, Miransky, Shovkovy, PRB 66 (2002) 045108]
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POTENTIAL COMPLICATIONS

• Graphene is a real condensed matter material

– it is not exactly flat in 2D (ripples, bending, etc.)

– various lattice defects may exist

– it not perfectly clean (impurities)

– boundary effects play a role in finite size samples

– non-uniform charge distribution (electron/hole puddles)

– nonzero average electron/hole density 

– high symmetry implies many possible order parameters

– Zeeman energy effects,  �M = �O� ≈ 0.67	� � 	�
– competition with quantum Hall ferromagnetism
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HOW TO SET AN EXPERIMENT?

• Quantum Hall effect setup

– Current starts to run:

– Steady state:

– Hall conductivity:

�V = �VX�X
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QHE IN GRAPHENE: WEAK B

EF
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[Gorbar, Gusynin, Miransky, Shovkovy, PRB 66 (2002) 045108]

[Gusynin, Sharapov, Phys. Rev. Lett. 95, 146801 (2005)]

[Peres, Guinea, Castro Neto, Phys. Rev. B 73, 125411 (2006)]

[Novoselov et al., Nature 438, 197 (2005)], [Zhang et al., Nature 438, 201 (2005)]
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ANOMALOUS QHE: STRONG B

• New plateaus are observed 

at filling factors

ν=0

ν=±1

ν=±3

ν=±4

• Degeneracies of some 

Landau level are lifted in 

sufficiently strong B field

Zhang	et	al.,	PRL	96,	136806	(2006)

n=4

n=1

n=-1

n=-4

n=0

[Novoselov et al., Science 315, 1379 (2007)]

[Abanin et al., Phys. Rev. Lett. 98, 196806 (2007)]

[Jiang et al., Phys. Rev. Lett. 99, 106802 (2007)]

[Checkelsky et al., Phys. Rev. Lett. 100, 206801 (2008)]

[Xu Du et al., Nature 462, 192 (2009)]

[Bolotin et al., Nature 462, 196 (2009)]

[Young et al., Nat. Phys. 8, 550 (2012)]

[Young et al., Nature 505, 528 (2014)]

[Chiappini et al., Phys. Rev. B 92, 201412(R) (2015)]
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ORDER PARAMETERS

• Many order parameters may be generated (due to various 

types of pairing from different valleys/sublattices)

• Parity odd (Haldane) and even (Dirac) masses are possible

• The former (latter) are singlets (triplets) under U(2)s

• Similar singlet (triplet) types of (pseudo-)spin densities

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Rev. B 78 (2008) 085437]

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scr. T 146 (2012) 014018]

• A rather flexible form of the fermion propagator is needed
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RUNNING DYNAMICAL PARAMETERS?

• One approach is to use the Ritus method

where

• Shortcomings:

– Schwinger phase is never fully factorized

– Eigenstates Ep(x) are Dirac matrices

– Obscure meaning of parameters in Σ(p)

• There is a better way

p = p
0
,0,− 2 eB n( ) and E

p
(x) = γ 0E

p

+(x)γ 0
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A BETTER REPRESENTATION?

• The general form of the full propagator

where

and     depend on   

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]

F̂ ±
= f ±γ 0g ± iγ1γ 2 !g + iγ 0γ1γ 2 !f

Σ̂
±
=m±γ 0µ ± iγ1γ 2 !µ + iγ 0γ1γ 2Δ

f , g, !g, !f ,m,µ, !µ,Δ

3 mutually commuting operators

Dirac mass Haldane mass
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COMPLETE SET OF EIGENSTATES

• As before, the eigenstates for orbital motion:

E.g., in the Landau gauge A=(0,Bx),

They satisfy

r N p =C
N
H
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+ ipy
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&&

d
2
r N p r r !N !p∫ = δ

N !N
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dp
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∫ r N p N p !r
N=0

∞

∑ = δ r − !r( )
[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]
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GENERALIZED LL REPRESENTATION

• Then, the new representation in (2+1)D

where

G(x, y) = exp −e A
µ
dz µ

y

x

∫( )G(x − y)

G(t,r) =
dk

0

2π
e
−ik

0
t
G(k

0
,r)∫ Schwinger phase

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]
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LL ENERGIES

• Landau-level energies

By definition,  n=N+(1+s12)/2  and

n = 0 : E
0,σ
= Δ

0
+σm

0

n ≥1: E
n,σ
= 2( f

n,σ

2
− g

n,σ

2 )n eB +m
n,σ

2

where m
n,σ
=m

n
+σΔ

n
, µ

n,σ
= µ

n
+σ !µ

n
, etc.

[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]

Dirac mass

Haldane mass

renormalized �4.
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REFINED THE MODEL

• Model Hamiltonian

• Now, with multiple MC and QHF order parameters

• Recall that the spinors are defined by

H = H
0
+H

Coulomb
+µ

B
B d

2
rΨ+σ

3
Ψ∫

U(4)
SU(2)↑×SU(2)↓

m
n,s

: Ψ
sss
Ψ

s
Dirac mass (CDW)

Δ
n,s

: Ψ
sss
(iγ 0γ1γ 2 )Ψ

s
Haldane mass

!µ
n,s

: Ψ
sss
(iγ1γ 2 )Ψ

s
pseudospin density

µ
n,3

: Ψ
↑
γ 0
Ψ

↑
−Ψ

↓
γ 0
Ψ

↓
spin polarization

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD 17



NORMAL GROUND STATE (WEAK B)

• No symmetry breaking parameters

• Possible renormalization of vF:

• Schwinger-Dyson equations for fn

n ≥1: E
n
= v

F
2n eB → E

n
= f

n
v
F
2n eB

f
n
=1+

α

2

κ
!n −1,n−1

(1)

n 2 !nn=1

n
max

∑ 1−n
F
E

!n
−µ( )−nF

E
!n
+µ( )$

%
&
'

κ
m,n

(i )
=

dk

2π0

∞

∫
kl L

m,n

(i ) (kl )

k +Π(0,k)
, where l =1/ eB
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RENORMALIZATION OF VF
[Gorbar, Gusynin, Miransky, Shovkovy, Phys. Scripta T146, 014018 (2012)]

no screening effects

T=0

2017 Summer School on Frontiers in Theoretical Physics and the 6th Huada School on QCD 19



RENORMALIZATION OF VF
[Miransky & Shovkovy, Phys. Rep. 576, 1 (2015)]

T=0
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QH STATES WITH DIFFERENT �
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SOME RESULTS AT T≠0

U(1)↑×SU(2)↓

SU(2)↑×SU(2)↓

[Shovkovy & Lifang Xia, Phys. Rev. B 93, 035454)]
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SCHEMATIC PHASE DIAGRAM
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DIRAC SEMIMETALS

• Solid state materials with Dirac quasiparticles:

– Bi1-xSbx alloy

• “New” 3D Dirac materials (ARPES):

– Na3Bi (Potassium bismuthide) [Liu et al., Science 343, 864 (2014)]

– Cd3As2 (Cadmium arsenide)       [Neupane et al., Nature Commun. 5, 3786 (2014)]

[Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)]
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DIRAC MATERIALS

• Bi1-xSbx alloy (at x ≈ 4%)

• Na3Bi 

• Cd3As2

• ZrTe5

[Liu et al., Science 343, 864 (2014)]

[Neupane et al., Nature Commun. 5, 3786 (2014)]

[Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)]

[Li et al., Nature Physics 12, 550 (2016)]

� = �V.�V. + �X.�X. + �.̀�.̀-
,    �V ≈ �X ≈ 3.74×10K	�/�,    �X ≈ 2.89×10e	�/�
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DIRAC VS. WEYL MATERIALS

• Low-energy Hamiltonian of a Dirac/Weyl

material

Dirac Weyl

H = d
3
rψ −iv

F

!
γ ⋅
!
p( )−

!

b ⋅
!
γ( )γ 5 +b0γ 0γ 5⎡

⎣
⎤
⎦ψ∫

  2

! 
b 

2b
0

  2

! 
b 

P, T P, T P, T

T P
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WEYL MATERIALS

• TaAs (tantalum arsenide)

• NbAs (niobium arsenide)

• TaP (tantalum phosphide)

• NbP (niobium phosphide)

• WTe2 (tungsten telluride)

[S.-Y. Xu et al., Science 349, 613 (2015)]

[B. Q. Lv et al., Phys. Rev. X5, 031013 (2015)]

[S.-Y. Xu et al., Nature Physics 11, 748 (2015)] 

[S.-Y. Xu et al., Science Adv. 1, 1501092 (2015)]

[I. Belopolski et al. arXiv:1509.07465]

[F. Y. Bruno et al., Phys. Rev. B 94, 121112 (2016)]
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• The Hamiltonian for massless Dirac fermions is given by

�f = �4 � g �⃗ 0
0 −�4 � g �⃗

• This can we viewed as a combination of two Weyl fermions

�h = ��4 � g �⃗
where � = ±1 is a chirality

The Weyl energy eigenstates are given by

�kh = 1
2�k- �l

�k + ��`- 	�m
� �k − ��`- 	�l

They described particles of energy �k = �4 �V. + �X. + �.̀-

The mapping  � → �kh has a nontrivial topology

LOW-ENERGY DIRAC FERMIONS
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• Consider evolution from �� to ��#p�:

�� ��#p� ≈ 1 + �� g �� �� �� ≈ �H��gp�
where �� = −� �� �� �� is the Berry connection

• The Berry curvature is defined as follows:

�k = �k×��
• Not the similarity with gauge fields, but �� and �k are 

defined in the momentum space

• It is convenient to define the Chern number (flux of �k)

� = 1
2�w�k

-

-
g ���

• A nonzero (integer) Chern number indicates a nonzero 

(topological) charge inside the �-volume surrounded by the 

closed surface (Gauss’s law)

BERRY CONNECTION & CURVATURE
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GAUGE THEORY VS. BERRY EFFECTS

Gauge theory Berry	effects

Local	at	coordinate space Local	at	momentum space

Gauge	field	� Berry connection �
Magnetic field	

� = ��×�
Berry	curvature	

� = ��×�
Aharonov-Bohm phase	

w��	�(�)
-

-

Berry phase	

w��⃗	�(�⃗)
-

-
Magnetic	charge	(Dirac	monopole)

��	�	 �� ⋅ � = �����
-

-

Berry monopole

��	�⃗	 �� ⋅ � = �����
-

-
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• In the case of Weyl fermions,

�k = � �
2�J

(Note: this looks like a field of a monopole at � = 0)

• Let us calculate the total flux of �k-field through the 

spherical surface of radius K with the center at � = 0
� = 1

2�w�
�
2�J

-

-
g �� �. sin � ���� = � = ±1

• Thus, the electronic structure of massless Weyl fermions is 

characterized by a topological monopole at � = 0
• Is the Berry monopole just a mathematical curiosity? 

• Are there any observable consequences?

BERRY CURVATURE FOR WEYL FERMIONS
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• In solid state physics, the momentum space (Brillouin 

zone) is compact 

• Thus, Weyl fermions come in pairs of opposite chirality 
[Nielsen & Ninomiya, Nucl. Phys. B 193, 173 (1981); B 185, 20 (1981)]

WEYL FERMIONS ON A LATTICE

• A closed surface around a 

single Weyl node is also a 

closed surface (of opposite 

orientation) around a the rest 

of the Brillouin zone

• Flipping surface orientation 

changes the sign of the flux

• There must be an opposite 

charge somewhere in the rest 

of the zone
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• Magneto-transport may reveal signature features of Dirac/Weyl 

materials [Nielsen & Ninomiya, PLB 130, 389 (1983)],[Aji, PRB 85, 241101 (2012)], [Son 

& Spivak, PRB 88, 104412 (2013)], [Gorbar, Miransky & Shovkovy PRB 89, 085126 (2014)]

• The conductivity tensor in the Kubo’s linear response theory

where the polarization function

is given in terms of the spectral function, obtained from the

fermion Green’s function in the Landau-level representation

MAGNETO-CONDUCTIVITY
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• Topological contribution to the anomalous Hall conductivity

• Interestingly, only the LLL contributes. The result is 

(Notice the subtlety in extracting the final result via regularization)

• This topological result implies that there is the current

�⃗ = �.
2�. �×�

where � is the chiral shift parameter that determines the 

momentum space separation between the Weyl nodes, Δ� = 2�
[Burkov & Balents, PRL 107, 127205 (2011)], [Grushin, PRD 86, 045001 (2012)], [Goswami & 

Tewari, PRB 88, 245107 (2013)]

RESULTS FOR ���CONDUCTIVITY
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MODEL CONDUCTIVITY ��� AT � ≠ �

[Gorbar, Miransky, Shovkovy, Phys. Rev. B 89 (2014) 085126]

�'. = �'.(��C) +�'.,����
where �'.,���� = ���

.��
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• Theoretically, it was predicted that the topological nature of the  
LLL should lead to large negative magnetoresistance [Nielsen & 

Ninomiya, PLB 130, 390 (1983)], [Son & Spivak, PRB 88, 104412 (2013)]

• From model calculations using Landau-level representation

• Notice the temperature independent LLL contribution

(here ΓC is the LLL quasiparticle width, or inverse scattering time)

• The LLL contribution is unlike higher Landau-levels contributions 
which decrease with the increasing magnetic field 

LONGITUDINAL CONDUCTIVITY

σ33 =σ33

(LLL )
+σ33

(HLL )
,   where  σ33

(LLL )
=
e

2
v
F
eB

4π 2
cΓ0
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LONGITUDINAL CONDUCTIVITYIN

ρ
33

(HLL )
=

1

σ
33

(HLL )
ρ
33

(LLL )
=

1

σ
33

(LLL )

ρ
33
=
1

σ
33

[Gorbar, Miransky, Shovkovy, PRB 89 (2014) 085126]
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NEGATIVE MAGNETORESISTANCE

• Experimental confirmation? [Kim, et al., PRL 111, 246603 (2014)]

Bi1-xSbx alloy with x ≈ 0.04
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MAGNETO-TRANSPORT IN ZRTE5

[Li et al., Nature Physics 12, 550 (2016)]

• Positive magnetoresistance for currents perpendicular to

magnetic field (� = 0°)
• Negative magnetoresistance for currents parallel to magnetic 

field (� = 90°)
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• Magnetotransport was also studied in other materials, 

including 

– Na3Bi, Cd3As2 (Dirac materials)

[Xiong et al., Science 350, 413 (2015)], [Li et al., Nat. Commun. 6, 10137 (2015)], 

[Li et al., Nat. Commun. 7, 10301 (2016)], …

– TaAs, NbAs, NbP, TaP (Weyl materials)

[Huang et al., PRX 5, 031023 (2015)], [Zhang et al., Nat. Commun. 7, 10735 (2016)],  

[Arnold et al., Nat. Commun. 7, 11615 (2016)], …

• There is no ambuguity that the large negative magneto-

resistance is observed in Dirac/Weyl materials

• There is a consensus that it is related to anomalous features 

of Dirac/Weyl fermions

• However, identifying other signature properties of Dirac/ 

Weyl materials would be extremely valuable

SIMILAR RESULTS IN OTHER MATERIALS
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CHIRAL EFFECTS IN WEYL MATERIALS

• Any qualitative properties of Weyl materials directly 

sensitive to               ?

• Some proposals in the literature:

– Anomalous Hall effect

– Anomalous Alfven waves

– Strain/torsion induced CME

– Strain/torsion induced quantum oscillations

– Strain/torsion dependent resistance 

– etc.

• Spectrum of chiral (pseudo-)magnetic plasmons

b
0
and
!

b

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]
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STRAIN IN WEYL MATERIALS

• Strains affect low-energy quasiparticles in Weyl

materials

where the components of the chiral gauge fields are

The associated pseudo-EM fields are

A
5,0
∝b

0

!

b ∂
||
u
||

A
5,⊥
∝
!

b ∂
||
u
⊥

A
5,||
∝α
!

b
2

∂
||
u
||
+β ∂

i
u
i

i

∑ 2b
0

  2

! 
b 

H = d
3
rψ −iv

F

!
γ ⋅
!
p( )−

!

b +
!
A
5( ) ⋅
!
γ γ 5 + b

0
+ A

5,0( )γ 0γ 5⎡
⎣

⎤
⎦ψ∫

!
B
5
=
!
∇×
!
A
5
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!
E
5
= −
!
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0
−∂

t

!
A
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GENERAL QUESTION

• What are the properties of plasmons in magnetized 

chiral material with                            ? 

• Chiral matter (µR≠µL)

– This is the case in equilibrium when 

• Magnetic or pseudomagnetic field is present

• In general,  

b
0
≠ 0 (µ

5
= −e b

0
)

b
0
≠ 0 and

!

b ≠ 0
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CHIRAL KINETIC THEORY

• Kinetic equation:

where ,                      ,

and                            is the Berry curvature

[Son and Yamamoto, Phys. Rev. D 87, 085016 (2013)]

[Stephanov and Yin, Phys. Rev. Lett. 109, 162001 (2012)]
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CURRENT AND CHIRAL ANOMALY

• The definitions of density and current are

They satisfy the following anomalous relations:

✔

✘
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CONSISTENT DEFINITION OF CURRENT

• Additional Bardeen-Zumino term is needed,

• In components, 

• Its role and implications:

– Electric charge is conserved locally (��	�� = 0)

– Anomalous Hall effect is reproduced

– CME vanishes in equilibrium (�K = −��C) 
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COLLECTIVE MODES

We search for plane-wave solutions with

and the distribution function                              ,

where

The polarization vector & susceptibility tensor:

The plasmon dispersion relations follow from
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CHIRAL MAGNETIC PLASMONS

Non-degenerate plasmon frequencies @ k=0:

where the Langmuir frequency is

and 

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]
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PLASMON FREQUENCIES, � ⊥ �

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]

�l = 0.2ℏΩ�/�

�¡¢# − �¡¢m ≈ 2���4�l
��ℏ
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PLASMON FREQUENCIES, � ∥ �
�∥ = 0.2ℏΩ�/�

�C⋆ ∝ �	�	�∥			@		� = 0

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]
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PLASMONS WITH � ≠ 0, � ∥ �K
• The longitudinal mode is sensitive to �K

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. Lett. 118, 127601 (2017)]

�∥ ∝ �	��K/Ω�.
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PLASMONS WITH � ≠ 0, � ∥ �, �K
The transverse modes split (in different ways) when (i) � ≠ 0	&	� ≠ 0, 

or (ii) �K ≠ 0		&	�K ≠ 0, or (iii) �∥ ≠ 0, or (iv) �l ≠ 0
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PLASMONS WITH � ≠ 0, � ⊥ �, �K
The transverse modes split (in different ways) when (i) � ≠ 0	&	� ≠ 0, 

or (ii) �K ≠ 0		&	�K ≠ 0

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]

�∥ = 0.2ℏΩ�/�
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PLASMONS WITH � ≠ 0, � ⊥ �, �K
The transverse modes split (in different ways) when (i) � ≠ 0	&	� ≠ 0, 

or (ii) �K ≠ 0		&	�K ≠ 0

[Gorbar, Miransky, Shovkovy, Sukhachov, Phys. Rev. B 95, 115202 (2017)]

�l = 0.2ℏΩ�/�
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(PSEUDO-)MAGNETIC HELICONS

• Usual helicons are transverse low-energy gapless excitations 

propagating along the background magnetic field �C in 

uncompensated media (e.g., metals with different electron 

and hole densities) Helicon	in	the	ionosphere	

(Whistler)	and	its	spectrogram
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(PSEUDO-)MAGNETIC HELICON

• Helicon dispersion law at � → 0:

• Properties:

– Gapless electromagnetic wave propagates in metals without 

magnetic field!

– Chiral shift modifies effective helicon mass

– In the equilibrium regime ��C = −�K, the linear in the wave 

vector term is absent
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[E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, and P.O. Sukhachov, Phys. Rev. B 95, 115422 (2017)]



HELICONS AT DIFFERENT �∥
��0 = −�5, �0,5 = 10−2T, �5 = 5 meV, � = 0, ��∗ = 0.3�ℏ��/�3
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HELICONS AT DIFFERENT T

��0 = −�5, �0,5 = 10−2T, �∥ = 0.5�∗, �5 = 5 meV, � = 0
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