
Appendix I: The proposed SICE algorithm 

This section details our approach for estimating sparse inverse covariance matrix from data, which can be achieved 
through solving for the optimization problem in (1). Our approach is based on the block coordinate descent (BCD) 
algorithm, but with an extended capacity of allowing for prior domain knowledge to be incorporated into the 
problem solving process.  

The basic idea of the BCD algorithm is to update each column (or row) of દ iteratively while fixing all other 
columns (or rows), until convergence. Because the BCD algorithm works by iterations, we will only illustrate the 
steps in one iteration and other iterations work in a similar way. At a certain iteration, we first need to partition the 
current દ as follows. Let દ\௝\௝ be the matrix produced by removing row ݆ and column ݆ from દ, ߠ௝௝ be the element 
at row ݆ and column ݆ of દ, and દ௝ be the column ݆ of દ with ߠ௝௝ removed. Then, દ can be partitioned as દ ൌ

ቈ
દ\௝\௝ દ௝

દ௝
் ௝௝ߠ

቉, and correspondingly ܁ can be partitioned as ܁ ൌ ቈ
௝\௝\܁ ௝܁

௝܁
் ௝௝ݏ

቉. Next, we want to update દ௝ and ߠ௝௝ 

while holding other elements in દ constant. To do this, let ݂ represent the objective function in (1), i.e., ݂ ൌ
|દ|݃݋݈ െ દሻ܁ሺݎݐ െ  ௝௝, respectively; and then makeߠ ԡદԡଵ ; take the partial derivatives of ݂ with respect to દ௝ andߣ
the partial derivatives to be zero, i.e.,  

                               డ௙
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ఏೕೕିદೕ

೅દ\ౠ\ౠ
షభ દೕ

દ\୨\୨
ିଵ દ௝ െ ௝܁ െ ൫દ௝൯ܰܩܵ ߣ ൌ 0, and                                                       (A-1) 
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೅દ\ౠ\ౠ
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െ ௝௝ݏ െ ߣ ൌ 0,                                                                  (A-2) 

where ܵܰܩ൫દ௝൯ denotes the partial derivative of ԡદԡଵ with respect to દ௝. It is difficult to solve for દ௝ and ߠ௝௝ from 
(A-1) and (A-2) directly. Therefore, we adopt the following strategies.   

Letting ܉ ൌ െ
દೕ

ఏೕೕିદೕ
೅દ\ౠ\ౠ

షభ દೕ
, then (A-1) and (A-2) become 

                                                               2દ\୨\୨
ିଵ ܉ െ ௝܁ ൅ ሻ܉ሺܰܩܵ ߣ ൌ 0                                                                  (A-3) 

܉                                                                            ൌ െ൫ݏ௝௝ ൅  ൯દ௝.                                                                         (A-4)ߣ

It is clear that (A-3) is also the result of making the partial derivative of ݃ with respect to ܉ to be zero in the 
following optimization problem: 

                                                      min܉ ݃ ൌ દ\୨\୨்܉
ିଵ ܉ െ ௝܁

܉் ൅  ԡଵ,                                                                  (A-5)܉ԡߣ

which is equivalent to the following min-max problem:  

                                      maxૂ min܉ ݃ ൌ 2 ቀെ ଵ
ଶ

ૂ்Θ\୨\୨ૂ ൅ ૂT܉ቁ െ ௝܁
܉் ൅  ԡଵ.                                               (A-6)܉ԡߣ

This min-max problem can be solved by the prox method. 

After ܉ and ૂ are obtained, (A-4) can be used to find દ௝, i.e., દ௝ ൌ െ ܉
௦ೕೕାఒ

. Furthermore, based on (A-2), ߠ௝௝ can be 

obtained, i.e., ߠ௝௝ ൌ ൫ି܉೅ૂା૚൯
௦ೕೕାఒ

.    

Furthermore, suppose that some prior domain knowledge is available, e.g., nodes ௜ܺ and ௝ܺ are disconnected in the 
IC model, which means that ߠ௜௝ ൌ 0 in દ. Then, we can forces the corresponding entry in ܉ to be zero in each 
iteration. As a result, we can re-formulate (A-5) as follows: 

                                                 min܉ ݃ ൌ દ\୨\୨்܉
ିଵ ܉ െ ௝܁

܉் ൅   ԡଵ܉ԡߣ

.ݏ                                                          .ݐ ௜܉ ൌ ૙   ݂݅  ݅ א                     ܄

 where ܄ is the set of indices (based on prior domain knowledge) corresponding to zero entries in ܉. Note that this 
problem is also strictly convex and can be solved efficiently.          □ 
 

 

 



Appendix II: Proof of the monotone property of the SICE algorithm 

A sufficient and necessary condition of the monotone property is as follow:  

Theorem 1: Let ൛۱ଵ
ఒభ, … , ۱௅భ

ఒభൟ and ൛۱ଵ
ఒమ, … , ۱௅మ

ఒమൟ denote the clusters of nodes in the SICE-based graphical models, 
with ߣ equal to ߣଵ and ߣଶ (ߣଵ ൏ ௜ܥ ଶ), respectively. Then, for anyߣ

ఒమ, ݅ א ሼ1,2, … , ௝ܥ  ଶሽ, there must exist aܮ
ఒభ, 

݆ א ሼ1,2, … , ௜ܥ ଵሽ such thatܮ
ఒమ ك ௝ܥ

ఒభ. 

This section proves the monotone property by proving that Theorem 1 is true.  

(1) can be equivalently written as  

                ઱ ෡   ൌ    argmin ሺ઱ሻݐ݁݀ ݃݋݈  ൅ ઱ିଵሻ܁ሺݎݐ ൅  ԡ઱ିଵԡଵ .                                                                            (B-1)ߣ

It is known from [17] that the solution, ઱෡, is unique with a fixed positive ߣ, and ઱෡ must satisfy the equations in (B-
2):  

ሺ܁ሻ௞௟ െ ሺ઱ሻ௞௟ ൌ െߣ,     for  ൫઱ିଵ൯
௞௟

൐ 0; 

ሺ܁ሻ௞௟ െ ሺ઱ሻ௞௟ ൌ for ൫઱ିଵ൯     ,ߣ
௞௟

൏ 0;                                                                                                      (B-2) 

|ሺ܁ሻ௞௟ െ ሺ઱ሻ௞௟| ൑ for  ൫઱ିଵ൯     ,ߣ
௞௟

ൌ 0; 

where ሺ·ሻ௞௟ denotes the element at the ݇-th row, ݈-th column of a matrix.  

When  ߣ ൌ  ,ଵ, denote the solution to (B-1) by ઱෡ఒభ. Furthermore, we can rearrange the rows and columns of ઱෡ఒభߣ
such that ઱෡ఒభ becomes a block diagonal matrix and each sub-matrix along the main diagonal of the rearranged ઱෡ఒభ 
correspond to a cluster of nodes in the SICE-based graphical model. Denote the sub-matrices by ઱෡

۱ೕ
ഊభ

ఒభ , ݆ ൌ 1, … ,  .ଵܮ

Recall that ۱௝
ఒభis the ݆-th cluster of nodes in the graphical model. As a result, ઱෡ఒభ can be written as:  
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.                                                                                                               (B-3) 

A sufficient condition for Theorem 1 being true is that the solution to (B-1) when ߣ ൌ  ଶ, denoted by ઱෡ఒమ, mustߣ
share the same structure as (B-3), i.e., ઱෡ఒమ can be written as:   
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To prove this sufficient condition, our strategy will include two steps: step one aims to find a matrix having the same 
structure as ઱෡ఒభ; step two aims to prove that this matrix is a solution to (B-2) with ߣ ൌ   .ଶߣ

Step One:  

The rows and columns of the sample covariance matrix, ܁, can be rearranged in the same way as ઱෡ఒభ, i.e.,  

܁ ൌ

ۏ
ێ
ێ
ێ
ۍ
۱భ܁

ഊభ ڮ ڮ ڮ

ڮ ۱మ܁
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.                                                                                                                    (B-5) 

Next, one optimization problem can be formulated corresponding to one sub-matrix ۱܁ೕ
ഊభ , ݆ ൌ 1, … ,   ,.ଵ, i.eܮ



    ળ෡
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,                                 (B-6)                         

Furthermore, the solutions to (B-6), i.e., ળ෡
۱ೕ

ഊభ
ఒమ , ݆ ൌ 1, … ,   ,.ଵ, can be put together and form a big matrix ળ෡ఒమ, i.eܮ
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It is obvious that ળ෡ఒమ has the same structure as ઱෡ఒభ.  

Step Two: 

This step aims to prove that the ળ෡ఒమ in (B-7) satisfies (B-2) with ߣ ൌ  ଶ. To prove this, we need to prove that (i) theߣ
elements in ળ෡

۱ೕ
ഊభ

ఒమ , ݆ ൌ 1, … , ଵ, satisfy (B-2), and that (ii) the elements not in ળ෡ܮ
۱ೕ

ഊభ
ఒమ , all of which are equal to zero, 

also satisfy  (B-2).   

(i) Suppose that ൫ળ෡ఒమ൯
௞௟

 is an element in ળ෡
۱ೕ

ഊభ
ఒమ , ݆ א ሼ1, … , ଵሽ; more specifically, suppose that ൫ળ෡ఒమ൯ܮ

௞௟
 is the element 

at the ݄-th row, ݏ-th column of ળ෡
۱ೕ

ഊభ
ఒమ , i.e., 

 ቆળ෡
۱ೕ

ഊభ
ఒమ ቇ

௛௦

ൌ ൫ળ෡ఒమ൯
௞௟

 .                                                                                                                                (B-8) 

Because ળ෡
۱ೕ

ഊభ
ఒమ  is the solution to the optimization in (B-6), it must satisfy (B-9):  

൬۱܁ೕ
ഊభ ൰

௛௦
െ ቆળ

۱ೕ
ഊభ

ఒమ ቇ
௛௦

ൌ െߣଶ,     for  ൭ቆળ
۱ೕ

ഊభ
ఒమ ቇ
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൱
௛௦
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൬۱܁ೕ
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௛௦
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ఒమ ቇ
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൱
௛௦

൏ 0;                                                                            (B-9) 
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൱
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It is easy to know that ൬۱܁ೕ
ഊభ ൰

௛௦
 is in fact the element at the ݇-th row, ݈-th column of ܁, i.e., 

൬۱܁ೕ
ഊభ ൰

௛௦
ൌ ሺ܁ሻ௞௟;                                                                                                                                     (B-10) 

and ൭ቆળ
۱ೕ

ഊభ
ఒమ ቇ

ିଵ

൱
௛௦

is the element at the ݇-th row, ݈-th column of ൫ળ෡ఒమ൯ିଵ
, i.e.,  

൭ቆળ
۱ೕ

ഊభ
ఒమ ቇ

ିଵ

൱
௛௦

ൌ ቀ൫ળ෡ఒమ൯ିଵቁ
௞௟

.                                                                                                               (B-11) 

Inserting (B-8), (B-10), and (B-11) into (B-9) results in (B-2) with ߣ ൌ   .ଶߣ

 (ii) Suppose that ൫ળ෡ఒమ൯
௞௟

 is an element not in ળ෡
۱ೕ

ഊభ
ఒమ , ݆ ൌ 1, … , ଵ, i.e., ൫ળ෡ఒమ൯ܮ

௞௟
ൌ 0. Furthermore, it can be known 

that ቀ൫ળ෡ఒమ൯ିଵቁ
௞௟

ൌ 0, because ળ෡ఒమ is a block diagonal matrix.  Since ቀ൫ળ෡ఒమ൯ିଵቁ
௞௟

ൌ 0, to prove that ൫ળ෡ఒమ൯
௞௟

 



satisfies (B-2) with ߣ ൌ ሻ௞௟܁ଶ is to prove that ቚሺߣ െ ൫ળ෡ఒమ൯
௞௟

ቚ ൑ ሻ௞௟܁ଶ. It can be derive that ቚሺߣ െ ൫ળ෡ఒమ൯
௞௟

ቚ ൌ
|ሺ܁ሻ௞௟| ൌ ቚሺ܁ሻ௞௟ െ ൫઱෡ఒభ൯

௞௟
ቚ ൑ ଵ, where the second equality holds because ൫઱෡ఒభ൯ߣ

௞௟
ൌ 0, and the “൑” holds due to 

the last equation in (B-1) with ߣ ൌ ଵߣ ଵ. Also, it has been known thatߣ ൑ ሻ௞௟܁ଶ. Therefore, ቚሺߣ െ ൫ળ෡ఒమ൯
௞௟

ቚ ൑
ଵߣ ൑  □                 .ଶߣ
 

 

 
 


