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Modeling of a new domain can be challenging due to scarce data and high-dimensionality. Transfer learning
aims to integrate data of the new domain with knowledge about some related old domains, to model the new
domain better. This article studies transfer learning for degenerate biological systems. Degeneracy refers
to the phenomenon that structurally different elements of the system perform the same/similar function
or yield the same/similar output. Degeneracy exists in various biological systems and contributes to the
heterogeneity, complexity, and robustness of the systems. Modeling of degenerate biological systems
is challenging and models enabling transfer learning in such systems have been little studied. In this
article, we propose a predictive model that integrates transfer learning and degeneracy under a Bayesian
framework. Theoretical properties of the proposed model are studied. Finally, we present an application of
modeling the predictive relationship between transcription factors and gene expression across multiple cell
lines. The model achieves good prediction accuracy, and identifies known and possibly new degenerate
mechanisms of the system. Supplementary materials for this article are available online.

KEY WORDS: Bayesian; Regression.

1. INTRODUCTION

An essential problem in biological system informatics is to
build a predictive model with high-dimensional predictors. This
can be a challenging problem for a new domain in which the data
are scarce due to resource limitation or timing of the modeling.
Often times, there may be some old domains related to but
not exactly the same as the new domain, in which abundant
knowledge have existed. Transfer learning, in the context of this
article, refers to statistical methods that integrate knowledge of
the old domains and data of the new domain in a proper way, to
develop a model for the new domain that is better than using the
data of the new domain alone. Next, we give three examples in
which transfer learning is desirable:

(i) Modeling the predictive relationship between transcrip-
tion factors (TFs) and gene expression is of persistent
interest in system biology. TFs are proteins that bind to
the upstream region of a gene and regulate the expres-
sion level of the gene. Knowledge of TFs-expression

relationship may have existed for a number of known
cell lines. To model a new cell line, it is advantageous
to adopt transfer learning to make good use of the ex-
isting knowledge of the known cell lines, because the
experimental data for the new cell line may be limited.

(ii) In cancer genomics, a prominent interest is to use gene
expression to predict disease prognosis. Knowledge may
have existed for several known subtypes of a cancer.
When a new subtype is discovered, the patient number
is usually limited. Transfer learning can help establish
a model for the new subtype timely and reliably by
transferring knowledge of the known subtypes to the
modeling of the new subtype.
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(iii) Biomedical imaging has been used to predict cognitive
performance. In longitudinal studies, a particular
interest is to follow along a cohort of patients with a
brain disease such as the Alzheimer’s disease to identify
the imaging-cognition associations at different stages of
the disease advancement. Patient drop-off is common,
leaving less data for use in modeling later stages of the
disease. Transfer learning can play an important role
here by integrating the limited data with knowledge
from the earlier stages.

This article studies transfer learning in degenerate biological
systems. Degeneracy is a well-known characteristic of biologi-
cal systems. In the seminal article by Edelman and Gally (2001),
degeneracy was referred to as the phenomenon that structurally
different elements perform the same/similar function or yield the
same/similar output. The article also provided ample evidence
to show that degeneracy exists in many biological systems and
processes. A closely related concept to degeneracy is redun-
dancy, which may be more familiar to the engineering society.
Degeneracy is different from redundancy in three major aspects:
(a) Degeneracy is a characteristic for structurally different ele-
ments, whereas redundancy is one for structurally identical el-
ements. In fact, although prevalent in engineering systems, true
redundancy hardly exists in biological systems due to the rare
presence of identical elements. (b) Degenerate elements work in
a stochastic fashion, whereas redundant elements work accord-
ing to deterministic design logic, for example, A will work if
B fails. (c) Degenerate elements deliver the same/similar func-
tion under some condition. When the condition changes, these
degenerate elements may deliver different functions. This prop-
erty leads to strong selection under environmental changes. In
essence, degeneracy is a prerequisite for natural selection and
evolution. Redundancy, on the other hand, does not have such a
strong tie to environment.

Degeneracy exists in all the three examples presented ear-
lier. In (i), due to the difficulty of measuring TFs directly and
precisely, the association between TFs and gene expression is
usually studied by modeling the association between TF binding
sites and gene expression. The binding site of a TF is a short
DNA sequence where the TF binds. It is known that the same
TF can have alternative binding sites (Li and Zhang 2010), and
as a result, these alternative binding sites should have similar
association with gene expression. The alternative binding sites
of the same TF are degenerate elements. In (ii), genes in the
same pathway may be degenerate elements in the sense that
different genes in the pathway may have similar association
with disease prognosis. This explains the growing interest in
cancer genomics that aims at identifying how gene pathway as
a whole affects prognosis rather than the effect of individual
genes (Vogelstein and Kinzler 2004). In (iii), brain regions that
are strongly connected in a brain connectivity network may be
degenerate elements because their functions may have similar
association with cognition (Huang et al. 2013).

Although degeneracy has been extensively discussed in the
biological literature, its implication to statistical modeling has
not been rigorously defined. Consider a biological system with
Q elements, X1, . . . , XQ, jointly performing a function or yield-
ing an output Y . For example, X1, . . . , XQ may be Q poten-

tial binding sites of some TFs of interest, which bind to the
upstream region of a gene to regulate the gene’s expression.
Y is expression level of the gene. In the context of a predic-
tive model, X1, . . . , XQ are predictors and Y is the response
variable. If a subset {X(1), . . . , X(q)} ⊂ {X1, . . . , XQ} consists
of degenerate elements, for example, they are potential bind-
ing sites of a TF, then according to the definition of degen-
eracy, {X(1), . . . , X(q)} should satisfy two conditions: (1) they
are structurally different; (2) they perform a similar function,
which means that their respective coefficients, {w(1), . . . , w(q)},
that link them to Y should satisfy ‖w(i) − w(j )‖ < ε, ∀i, j ∈
{1, . . . , q}, i �= j . ‖ · ‖ is an appropriate norm and ε is a bio-
logically defined threshold. A degenerate system may contain
more than one subset of degenerate elements such as the subsets
corresponding to different TFs. The challenge in modeling a de-
generate system is how to build the biological knowledge about
the degeneracy into statistical modeling, especially considering
that the knowledge is often qualitative and with uncertainty.

In this article, we propose a predictive model that integrates
transfer learning and degeneracy under a Bayesian framework.
A Bayesian framework is appropriate in the sense that it can
encode the available but largely qualitative/uncertain biological
knowledge about degeneracy into a prior, and then use data to
refine the knowledge. A Bayesian framework is also appropriate
for accounting for the correlation between the old domains and
new domain to enable transfer learning. The major contributions
of this research include:

• Formulation: We propose a unique prior for the model coef-
ficients of the old domains and new domain. This prior has
two hyperparameters characterizing the degeneracy and the
correlation structure of the domains, respectively. We pro-
pose to use a graph to represent the qualitative knowledge
about degeneracy, and set the corresponding hyperparam-
eter to be the Laplacian matrix of the graph. This has an
effect of pushing the coefficients of degenerate elements
to be similar, thus nicely reflecting the nature of degener-
ate elements that they perform a similar function. We also
propose an efficient algorithm that allows estimation of the
other hyperparameter together with the model coefficients,
so that the correlation structure between domains does not
need to be specified a priori but can be learned from data.

• Theoretical properties: We perform theoretical analysis to
answer several important questions, such as: what differ-
ence it will make by transferring the knowledge/models of
the old domains instead of the data? It is common in biol-
ogy and medicine that when a new domain is being studied,
the researcher can only access the knowledge/models of the
old domains through published literature, but not the data
of these domains due to ownership or confidentiality. Other
questions include: Is transfer learning always better than
learning using the data of the new domain alone? What
knowledge from old domains or what type of old domains
is most helpful for transfer learning?

• Application: We apply the proposed method to a real-world
application of using TF binding sites to predict gene ex-
pression across multiple cell lines. Our method shows bet-
ter prediction accuracy compared with competing methods.
The biological findings revealed by our model are also con-
sistent with the literature.
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364 NA ZOU ET AL.

2. REVIEW OF EXISTING RESEARCH

The existing transfer learning methods primarily fall
into three categories: instance transfer, feature transfer, and
parameter transfer. The basic idea of instance transfer is to reuse
some samples/instances in the old domains as auxiliary data for
the new domain (Dai et al. 2007). For example, Dai et al. (2007)
proposed a boosting algorithm called TrAdaBoost to iteratively
reweight samples in the old domains to identify samples that are
helpful for modeling the new domain. Although intuitive, in-
stance transfer may be questioned for its validity. For example,
if the old and new domains are two subtypes of a cancer, using
the data of some patients in one subtype to model another sub-
type suggests that these patients are misdiagnosed, which is not
a reasonable assumption. Feature transfer aims to identify good
feature representations shared by the old and new domains. In an
earlier work by Caruana (1997), the features are shared hidden
layers for the neural network models across the domains. More
recently, Argyriou et al. (2007) and Evgeniou and Pontil (2007)
proposed to map the original high-dimensional predictor space
to a low-dimensional feature space and the mapping is shared
across the domains. Nonlinear mapping was studied by Jebara
(2004) for support vector machines (SVMs) and by Rückert and
Kramer (2008) who designed a kernel-based approach aiming
at finding a suitable kernel for the new domain. Interpretabil-
ity, for example, physical meaning of the shared features, is an
issue for feature transfer especially nonlinear approaches. Pa-
rameter transfer assumes that the old and new domains share
some model parameters. For example, Liu, Ji, and Ye (2009)
adopted L21-norm regularization for linear models to encour-
age the same predictors to be selected across the domains. Reg-
ularized approaches for nonlinear models like SVMs were also
studied (Evgeniou and Pontil 2004). In addition to regulariza-
tion, Bayesian statistics provide a nice framework by assuming
the same prior distribution for the model parameters across the
domains, which has been adopted for Gaussian process models
(Lawrence and Platt 2004; Bonilla, Chai, and Williams 2008).

The proposed method in this article falls into the category
of parameter transfer. Our method is different from the exist-
ing transfer learning methods in the following aspects: First,
the existing methods do not model degeneracy. Second, they
usually assume that the old domains have similar correlations
to the new domain, which may not be a robust approach when
the old domains have varying or no correlations with the new
domain. In contrast, our method estimates the correlation struc-
ture between domains from data, and therefore can adaptively
decide how much information to transfer from each old domain.
Third, while showing good empirical performance, the exist-
ing research provides limited investigation on the theoretical
properties of transfer learning.

3. THE PROPOSED TRANSFER LEARNING MODEL
FOR DEGENERATE SYSTEMS

3.1 Formulation Under a Bayesian Framework

Let X = (X1, . . . , XQ) denote Q predictors and Y denote the
response. Assume that there are K related domains. Domains 1
to K − 1 are old domains and domain K is a new domain. For
each domain k, there is a model that links X to Y by coefficients

wk . If Y ∈ R, a common model is a linear regression, Y =
Xwk + εk . If Y ∈ {−1, 1}, the model can be a logistic regression,
log P (Y=1)

P (Y=−1) = Xwk . We propose the following prior for W =
(w1, . . . , wK ):

p (W| �,�, b) ∝
K∏

k=1

Laplace (wk; b) × MN (W; 0,�,�) . (1)

This prior is formed based on the following considerations:

• Laplace(wk; b) is a Laplace distribution for wk . Using a
Laplace distribution in the prior is to facilitate “sparsity”
in model estimation. The well-known lasso model facil-
itates sparsity by imposing an L1 penalty on regression
coefficients. Tibshirani (1996) showed that the lasso es-
timate is equivalent to a Bayesian maximum-a-posteriori
(MAP) estimate with a Laplace prior. Sparsity is an advan-
tageous property for high-dimensional problems, which is
the target setting of this article.

• MN(W; 0,�,�) is a zero-mean matrix-variate normal dis-
tribution. � ∈ RK×K and � ∈ RQ×Q are called column
and row covariance matrices, respectively. It can be shown
that cov(wq) = �qq�. wq is the qth row of W, which
consists of regression coefficients for all the K domains
corresponding to the qth predictor. �qq is the qth diagonal
element of �. cov(·) denotes the covariance matrix of a
vector. Therefore, � encodes the prior knowledge about
the correlation structure of the domains. Furthermore, it
can be shown that cov(wk) = �kk�. Therefore, � encodes
the prior knowledge about the correlation structure of the
regression coefficients, that is, the degeneracy.

Next, we propose two modeling strategies depending on the
availability of data. In Case I, data of the old domains 1 to
K− 1 is available. In Case II, data of the old domain is not
available but only the knowledge/models. The latter case is
more common especially in biology and medicine. At the time a
new cell line or a new subtype of a disease is being studied, the
researcher may only have access to the data of the new domain.
Although he/she may gather abundant knowledge about existing
cell lines or disease subtypes from the published works of other
researchers, he/she can hardly access the data due to ownership
or confidentiality.

Case I: Model the new domain using data of all the domains.

Let yk and Xk denote the data for the response and predictors
of the kth domain k = 1, . . . , K . The likelihood for yk given
Xk and wk is p(yk|Xk, wk) ∼ N (yk; Xkwk, σ

2Ink
). The posterior

distribution of W based on the likelihood and the prior in (1) is

p
(

W| {yk, Xk}Kk=1 ,�,�, b
) ∝p ( W| �,�, b)

K∏
k=1

p (yk|Xk, wk) .

(2)

One way for estimating the regression coefficients of the
new domain, wK , is to find a Ŵ that maximizes the posterior
distribution of W in (2), that is, Ŵ is a Bayesian MAP estimate
for W. This will naturally produce an estimate for wK , ŵK ,
as in Ŵ = (ŵ1, . . . , ŵK ), and estimates for the old domains,
ŵ1, . . . , ŵK−1, as a side product. Through some algebra, it can
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be derived that Ŵ can be obtained by solving the following
optimization:

ŴI = argmin
W

{
1

2σ 2

K∑
k=1

‖yk − Xkwk‖2
2 + 1

b
‖W‖1

+1

2

(
Qlog |�| + Klog |�| + tr

(
�−1W�−1WT

))}
,

(3)

where ‖ · ‖2 and ‖ · ‖1 denote the L2 and L1 norms, respectively.
The superscript “I” is used to differentiate this estimate from the
one that will be presented in Case II.

Equation (3) assumes that W is the only parameter to be
estimated whereas σ 2, b, �, and � are known. This assumption
may be too strict. To relax this assumption, we propose the
following approach: Let λ1 = 2σ 2/b and λ2 = σ 2. Then, (3) is
equivalent to (4):

ŴI = argmin
W

{
K∑

k=1

‖yk − Xkwk‖2
2 + λ1 ‖W‖1 + λ2

(
Qlog |�|

+Klog |�| + tr
(
�−1W�−1WT

)) }
. (4)

λ1 ≥ 0 and λ2 ≥ 0 serve as regularization parameters to con-
trol the sparsity of ŴI and the amount of prior knowledge used
for estimating W, respectively. λ1 and λ2 can be selected by a
grid search according to some model selection criterion. This
strategy for “estimating” σ 2 and b enjoys computational sim-
plicity and was also adopted by other articles (Tibshirani 1996;
Genkin et al. 2007; Liu et al. 2009). Furthermore, hyperparam-
eters � and � are matrices of potentially high-dimensionality,
the specification of which is more involved and will be discussed
in detail in Section 3.3. For now, we assume that � and � are
known.

Case II: Model the new domain using data of the new domain
and knowledge/models of old domains.

To develop a model for this case, we first reorganize the terms
in (4) to separate the terms involving old domains from those
involving only the new domain. Denote the objective function
in (4) by f (W). Let W̃ = (w1, . . . , wK−1), so W = (W̃, wK ).

Also let � = [ �̃ �K

�T
K ςK

]. Then, it can be shown that (please see
derivation in supplementary materials):

f (W) = f
(
W̃

) + g
(
wK |W̃)

. (5)

f (W̃) takes the same form as f (W) but for the K − 1 old
domains, that is,

f
(
W̃

) =
K−1∑
k=1

‖yk − Xkwk‖2
2 + λ1

∥∥W̃
∥∥

1 + λ2

(
Qlog

∣∣�̃∣∣
+ (K − 1) log |�| + tr

(
�−1W̃�̃

−1
W̃T

))
, (6)

and

g
(
wK |W̃) = ‖yK − XKwK‖2

2 + λ1 ‖wK‖1 + λ2 (log |�K |
+ (wK − μK )T �−1

K (wK − μK )
)
, (7)

where

μK = W̃�̃
−1

�K, (8)

and

�K =
(
ςK − �T

K�̃
−1

�K

)
�. (9)

When data from the old domains are not available but only
the knowledge/model in the form of W̃ = W̃∗, the f

(
W̃∗) in

(5) becomes a constant. Therefore, minimizing f (W) becomes
minimizing g(wK |W̃∗), that is,

ŵII
K = argmin

wK

g
(
wK |W̃∗) = argmin

wK

‖yK − XKwK‖2
2

+λ1 ‖wK‖1 + λ2
(
log |�K | + (wK − μK )T �−1

K (wK − μK )
)
,

(10)
with μK = W̃∗�̃−1

�K and �K given in (9).
Finally, we would like to assess the difference between

the estimates in Case I and Case II, that is, ŵI
K as in ŴI =

(ŵI
1, . . . , ŵI

K ) and ŵII
K . Theorem 1 shows that the estimate in

Case II is no better than Case I in terms of minimizing the
objective function in the estimation (proof in supplementary
materials). Case II is only as good as Case I when the knowl-
edge/model of the old domains can be provided in its optimal
form. The intuitive explanation about this finding is that since
Case II uses the knowledge of the old domains, which may con-
tain uncertainty or noise, it is only sub-optimal compared with
using the data of the old domains directly (i.e., Case I).

Theorem 1. f ((W̃∗, ŵII
K )) ≥ f (ŴI). When W̃∗ =

(ŵI
1, . . . , ŵI

K−1), ŵII
K = ŵI

K , and f ((W̃∗, ŵII
K )) = f (ŴI).

3.2 Theoretical Properties of Transfer Learning

This section aims to perform theoretical analysis to address
the following questions: Is transfer learning always better than
single-domain learning, that is, learning using only the data of
the new domain but neither the data nor the knowledge of the
old domains (Theorem 2)? What knowledge from old domains
or what type of old domains is most helpful for learning of the
new domain (Theorems 3)? Please see proofs of these Theorems
in supplementary materials.

Let (11) and (12) be the transfer learning and single-domain
learning formulations targeted in this section, respectively. λ ≥
0. When λ = 0, (11) becomes (12):

w̌K = argminwK
‖yK − XKwK‖2

2 + λ (wK − μK )T (wK − μK ) ,

(11)

w̌K = argminwK
‖yK − XKwK‖2

2 . (12)

Comparing (11) with (10) in the previous section, it can be
seen that (11) is obtained from (10) by dropping the L1 norm,
wK1, and making � = I and λ = λ2

ςK−�T
K �̃

−1
�K

. This is to sin-

gle out transfer learning from the sparsity and degeneracy con-
siderations in (10), so that the discussion in this section will
be focused on transfer learning. Let MSE(·) denote the mean
square error (MSE) of an estimator. It is known that the MSE is
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366 NA ZOU ET AL.

the sum of the variance and squared bias of an estimator, and is
a commonly used criterion for comparing/choosing estimators.

Theorem 2. There always exists a λ > 0 such that
MSE(ŵK ) < MSE(w̌K ).

Theorem 2 provides theoretical assurance that the model co-
efficients of the new domain, wK , can be better estimated by
transfer learning than single-domain learning in the sense of a
smaller MSE. Next, we would like to investigate what type of
knowledge from old domains or what type of old domains helps
learning of the new domain better. Because knowledge from
old domains is represented by μK in (8), the question becomes
what property of μK leads to a better transfer learning. Defini-
tion 1 defines a distance measure between the knowledge from
old domains, μK , and the new domain, wK , called the transfer
learning distance. Theorem 3 further proves that the knowledge
for old domains that has a smaller transfer learning distance to
the new domain will help achieve a smaller MSE in modeling
the new domain.

Definition 1 (transfer learning distance). De-

fine a transfer learning distance to be d(μK ; λ)
�=

(wK − μK )T BT B(wK − μK ), where B = (XT
KXK + λI)−1.

The geometric interpretation of this distance measure is
the following: Let � be a diagonal matrix of eigenvalues
γ1, . . . , γQ for XT

KXK and P be a matrix consisting of corre-
sponding eigenvectors, that is, XT

KXK = PT �P. Furthermore,

let α
�= P(μK − wK ). The elements of α, α1, . . . , αQ, are indeed

projections of μK − wK onto the principal component axes of
the data. Then, it can be derived that the transfer learning dis-

tance is d(μK ; λ) = ∑Q
i=1

α2
i

(γi+λ)2 .
Furthermore, suppose that there are two sets of knowledge

from old domains to be compared, that is, μ
(1)
K and μ

(2)
K . Let

MSE(ŵ(i)
K ; λ) be the MSE of the estimator for ŵK using (8) with

μK = μ
(i)
K . Let minλ MSE(ŵ(i)

K ) denote the smallest MSE over
all possible values of λ. i = 1, 2.

Theorem 3. If d(μ(1)
K ; λ) ≤ d(μ(2)

K ; λ) for ∀λ > 0, then
minλ MSE(ŵ(1)

K ) ≤ minλ MSE(ŵ(2)
K ).

For better illustration, we show the comparison of MSEs be-
tween five sets of knowledge from old domains in Figure 1. This
is a simple example that consists of only one predictor. There-
fore, wK and μK are scalars, wK and μK . Assume that wK = 3.
μ

(1)
K through μ

(5)
K are 1.3, 1.6, 1.9, 2.2, 2.5, respectively, that

is, they are more and more close to the new domain in transfer
learning distance. Figure 1 plots the MSEs of transfer learning
using each of the five sets of knowledge. The observations are:
(i) for each curve, there exists a λ > 0 whose corresponding
MSE is smaller than the MSE of single-domain learning (i.e.,
the intercept on the vertical axis). This demonstrates Theorem
2. (ii) The smaller the transfer learning distance, the smaller the
minimum MSE. This demonstrates Theorem 3.

Finally, we would like to discuss some practical implication
of the theorems. Theorem 2 needs little assumption to hold.
However, this does not imply that transfer learning always gives
better results than single-domain learning in practice. This is
because in practice, λ is selected by a grid search according to

Figure 1. Transfer learning MSEs of five sets of knowledge
from old domains, MSE(ŵ(i)

K ), i = 1, . . . , 5, and single-domain MSE,
MSE(ŵK ) with true wK = 3.

some model selection criterion such as Bayesian information
criterion (BIC) and cross-validation. The λ that makes the MSE
of the transfer learning estimator smaller than single-domain
learning may be missed in this practical search. Further, as
indicated by Theorem 3 and Figure 1, this risk is higher when
knowledge from old domain is farther from the new domain
in transfer learning distance. For example, in Figure 1, when
the knowledge is far away from the new domain, for example,
the top red curve, the range of λ within which the curve falls
below the MSE of single-domain learning, MSE (w̌K ), is small.
This small range of λ may be missed in a practical grid search,
resulting in a transfer learning approach with worse performance
than single-domain learning.

3.3 Strategies for Handling Hyperparameters and an
Efficient Algorithm

3.3.1 Specifying Hyperparameter � by a Graph that Encodes
Degeneracy. According to the discussion about the prior in (1),
� encodes the prior knowledge about the degeneracy of the sys-
tem. In real-world applications, it is common that some qualita-
tive knowledge about the degeneracy exists, which can be rep-
resented by a graph G = {X, E}. The nodes in the graph are ele-
ments of the system, that is, predictors X in the predictive model.
E = {Xi ∼ Xj } is a set of edges. aij is the edge weight. No edge
between two nodes implies that the nodes are not degenerate el-
ements to each other. If there is an edge between two nodes, the
edge weight reflects the level of certainty that the nodes are de-
generate elements. Next, we will discuss how to construct such
a graph for the three examples presented in Introduction.

In (i), nodes/predictors are potential TF binding sites. A
potential binding site is a short DNA sequence in the up-
stream promoter region of a gene, for example, ACGCGT,
ATGCGC. The letters in each word (i.e., each binding site)
can only be from the DNA alphabet {A,C,G, T }. If focus-
ing on all κ-letter-long words, called κ-mers, there will be
4κ nodes in the graph. It is known that the binding sites with
similar word composition are more likely to be alternative
binding sites of the same TF (Li et al. 2010). The similar-
ity between two binding sites can be measured by the num-
ber of letters they have in common in their respective words.
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For example, the similarity between ACGCGT and ATGCGC
is 4, because they share four letters in the same position. A
formal definition of this similarity between two binding sites
Xi and Xj is κ − H {Xi,Xj }. H {Xi,Xj } is the so-called Hem-
ming distance defined as H {Xi,Xj } = ∑L

l=1 I
(
cil �= cjl

)
(Li

and Zhang 2010). I (·) is an indicator function. cil is the lth
letter in the word of binding site Xi . Using this similarity
measure, two nodes Xi and Xj do not have an edge if they
do not have any common letter in the same position; they
have an edge otherwise and the edge weight is their similar-
ity. Likewise, in example (ii), nodes of the graph are genes
and edges can be put between genes according to known path-
way databases such as KEGG (http://www.genome.jp/kegg/) and
BioCarta (http://www.biocarta.com/). In example (iii), nodes of
the graph are brain regions and edges can be put between brain
regions with known functional or anatomical connectivity.

To incorporate the graph into our model, the graph is first
converted to a Laplacian matrix, L, that is,

Lij =
⎧⎨
⎩

di if i = j

−aij ifi �= j and Xi ∼ Xj

0 otherwise
, (13)

where di = ∑
Xi∼Xj

aij is called the degree of node Xi . It is
known that L is always nonnegative definite and it encodes many
properties of the graph (Chung 1997). If the graph encodes the
degeneracy of the system, L can be reasonably used to replace
the �−1 in the optimization problems in Case I and Case II,
that is, (4) and (9). Then, we obtain the following optimization
problems for Case I and Case II, respectively.

Case I : ŴI = argmin
W

{
K∑

k=1

‖yk − Xkwk‖2
2 + λ1 ‖W‖1

+λ2
(
Qlog |�| + tr

(
LW�−1WT

))}
, (14)

Case II : ŵII
K

= argminwK

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖yK − XKwK‖2
2 + λ1 ‖wK‖1

+λ2

(
Qlog

(
ςK − �T

K�̃
−1

�K

)

+ 1

ςK − �T
K�̃

−1
�K

(wK − μK )T L (wK − μK )

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(15)

Next, we would like to provide some theoretical analysis to
reveal the role of the graph in the optimizations/estimations. We
will focus on Case II; a similar result can be obtained for Case
I. For notation simplicity, we further simply (15) into

ŵII
K = argminwK

{‖yK − XKwK‖2
2 + λ1 ‖wK‖1

+λ2 (wK − μK )T L (wK − μK )
}

(16)

by dropping the constant Qlog(ςK − �T
K�̃

−1
�K ) and reusing

λ2 to represent λ2

ςK−�T
K �̃

−1
�K

.

Theorem 4. Let ŵII
ik, ŵ

II
jk ∈ ŵII

K be the estimated coefficients
for predictors Xi and Xj . Let xiK and xjK be the data vectors
for Xi and Xj , respectively. Suppose that ŵII

ikŵ
II
jk > 0 and aij �

auv . auv is the weight of any edge other than Xi ∼ Xj . Then,

for fixed λ1 and λ2 and a square-error loss,

∣∣(ŵII
ik − μiK

) − (
ŵII

jk − μjK

)∣∣ ≤
∥∥xiK − xjK

∥∥
2

2λ2

×
√√√√‖yK‖2

2

a2
ij

+ 2λ2
(
μiK − μjK

)2

aij

. (17)

Please see proof in supplementary materials. In the upper
bound in (17), the data for the new domain, xiK , xjK , and yK ,
knowledge transferred from the old domains, μiK and μjK ,
and λ2 can be considered as given. Then, the upper bound is
inversely related to the edge weight aij .

3.3.2 Jointly Estimating Hyperparameter � and Parameter
W by an Efficient Alternating Algorithm. � is a hyperparameter
that encodes the prior knowledge about the correlation structure
between domains, which is difficult to specify precisely. There-
fore, we choose to estimate � and W together. This will change
(14) to (18):

Case III :
(

ŴIII, �̂III
)

= argmin
W,�

{
K∑

k=1

‖yk − Xkwk‖2
2

+λ1 ‖W‖1 + λ2
(
Qlog |�| + tr

(
LW�−1WT

)) }
. (18)

Equation (18) is the same as (14) except for treating � as
unknown.

Next, we will discuss an algorithm for solving (18). Equation
(18) is not a convex optimization with respect to all unknown pa-
rameters. However, given �, it becomes a convex optimization
with respect to W, which can be solved efficiently. Further-
more, given W, the optimization problem with respect to � can
be solved analytically, that is,

�̂ = WT LW
Q

. (19)

Therefore, we propose an iterative algorithm that alternates
between two sub-optimizations: solving W with � fixed at their
estimates in the previous iteration, and solving � with W fixed
at its estimate just obtained. Because each sub-optimization
decreases the objective function, this iterative algorithm is
guaranteed to converge to a local optimal solution. Note that
joint estimation of parameters and hyperparameters has also
been adopted by other researchers (Idier 2010; Zhang and
Yeung 2010).

A similar case to Case II (15) takes the form of (20):

Case IV :
(

ŵIV
K , ς̂ IV

K , �̂
IV
K

)

= argminwK ,ςK ,�K

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖yK − XKwK‖2
2 + λ1 ‖wK‖1

+λ2

(
log

(
ςK − �T

K �̃
−1

�K

)
+ 1

ςK − �T
K �̃

−1
�K

(wK − μK )T L (wK − μK )

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(20)

Equation (20) can be solved by an iterative algorithm that
alternates between solving wK with ςK and �K fixed—a convex
optimization, and solving ςK and �K with wKfixed analytically
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368 NA ZOU ET AL.

Figure 2. An algorithm for solving the transfer learning formulation in Case IV.

using (21):

�̂K = W̃T LwK/Q, ς̂K = wT
KLwK/Q. (21)

The derivation for (21) is in supplementary materials.
Finally, we present the algorithm for solving the proposed

transfer learning formulation in Case IV in Figure 2 (Case III
can be solved similarly). Note that the algorithm also works
for classification problems that replace the square-error loss
in Case III and Case IV, ||yk − Xkwk||22, with a logistic loss,∑nK

i=1 log (1 + exp(−yiKxiKwK )). Because this loss function is
also convex with respect to wK , the convex optimization solver
in step 2.2 of Figure 2 naturally applies. Step 2.1 does not involve
the loss function so it needs no change.

3.4 Prediction

Given a new observation in the new domain, x∗
K , we can

predict its response variable by ŷ∗
K = x∗T

K ŵK . ŵK can be the
ŵIII

K in Case III or the ŵIV
K in Case IV, obtained from training data.

Because the proposed transfer learning method only produces
a point estimator for wK , statistical inference on wK and the

prediction has to be performed using resampling approaches
such as bootstrap. This is a similar situation to lasso, for which
bootstrap-based statistical inference on the model coefficients
has been studied by a number of articles (Knight and Fu 2000;
Chatterjee and Lahiri 2010). Following the similar idea, we
propose a residual bootstrap procedure to compute the prediction
interval, which includes nine steps shown in Figure 3.

4. SIMULATION STUDIES

We conduct simulation studies to evaluate variable selection
accuracy of the proposed method in terms of false positive rate
(FPR) and false negative rate (FNR). FPR is the proportion of
truly zero regression coefficients that are misidentified to be
nonzero by the model. FNR is the proportion of truly nonzero
regression coefficients that are misidentified to be zero by the
model. In particular, we use area under the curve (AUC), which
is an integrated measure for FPR and FNR.

Because the proposed method consists of two major aspects:
transfer learning and degeneracy modeling, we would like to
evaluate each aspect separately. In Section 4.1, we compare

Figure 3. A residual bootstrap procedure to compute prediction interval.
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Table 1. AUC performances of transfer learning and single-domain learning

Domain 1 Domain 2 Domain 3

Proposed transfer Learning
Average 0.943447 0.955568 0.949735
Standard deviation 0.042415 0.037728 0.041266

Single-domain learning
Average 0.871061 0.868485 0.889432
Standard deviation 0.099003 0.101911 0.084644

the proposed method in Case III with L = I, that is, having
transfer learning but no degeneracy modeling. In Section 4.2,
we compare the proposed method in Case III with K = 1, that
is, having degeneracy modeling but for a single domain. Note
that although we only present the results for Case III, similar
results have been obtained for Case IV.

4.1 Comparison Between Transfer Learning and
Single-Domain Learning

Consider three domains and the model, Yk =∑Q
q=1 wqkXqk + εk , k = 1, 2, 3. In each domain, there

are 50 predictors, that is, Q = 50. Domains 1 and 2 are
highly correlated with each other but little correlated with
domain 3. To achieve this, we set the coefficients of the first
five predictors in domains 1 and 2 to be nonzero, that is,
wqk �= 0, q = 1, . . . , 5; k = 1, 2. To make the two domains
nonidentical, we randomly select one different predictor from
X6 to X50 in each domain to have a nonzero coefficient. For
domain 3, we set the coefficients wq3 �= 0, q = 5, . . . , 10.
Therefore, in each domain, there are six predictors with
nonzero coefficients and all 44 others with zero coefficients.
The value of each nonzero coefficient is randomly generated
from a normal distribution N (5, 1). After generating the
coefficients, we check the correlation between the three
domains using their respective coefficients. The correlations
are 0.81 between domains 1 and 2, and 0.05(0.06) between
domain 1(2) and 3, which are good to serve our purpose. Next,
we generate samples for the 50 predictors from a multivariate
normal distribution with zero mean and covariance matrix
�ij = 0.5|i−j |, i, j = 1, . . . , 50. To focus on small-sample-size
scenarios, 50 samples of the predictors are generated for each
domain. The response variable of each sample is generated
by the model Yk = ∑Q

q=1 wqkXqk + εk , where εk is generated
from N (0, 15).

The proposed method of transfer learning is compared with
single-domain learning, that is, a lasso model applied to each
domain separately, on the simulation dataset. The process is
repeated for 50 times; the average and standard derivation of
the 50 AUCs for each method are reported in Table 1. It can
be seen that transfer learning has a better average AUC per-
formance than single-domain learning. It is also more stable
by having a smaller standard deviation. Furthermore, having
a little-correlated domain, that is, domain 3, does not hurt the
performance of transfer learning in domains 1 and 2. This is
because the proposed transfer learning method can estimate the
correlation structure of the domains from data, and therefor can
adaptively decide how much information to transfer from one
domain to another.

4.2 Comparison Between Models With and Without
Degeneracy Modeling

Consider a single domain and the model Y = ∑Q
q=1 wqXq +

ε with 50 predictors, that is, Q = 50. Suppose that the 50
predictors fall into 10 nonoverlapping subsets; each subset
consists of five predictors as its degenerate elements. Co-
efficients of the first two subsets, {w1, w2, w3, w4, w5} and
{w6, w7, w8, w9, w10} are nonzero and generated from
N (5, 1) and N (1, 1), respectively. Coefficients of the rest three
subsets are zero. This is to reflect the reality that some degen-
erate elements of the system may not relate to the particular
response of interest. Next, we want to generate samples for the
50 predictors. The way these samples are generated must fol-
low the biology of how the degenerate elements are formed,
so it is different from Section 4.1. Specifically, assuming that
the 10 subsets correspond to 10 TFs, we first generate 10 TFs,
TF1, . . . , TF10, from N (0, 1). Next, to reflect the stochastic
nature of the degenerate elements corresponding to each TFi ,
we generate TFi’s corresponding five predictors/degenerate el-
ements from N

(
ρ × TFi , 1 − ρ2

)
. ρ corresponds to the corre-

lation between TFi and its corresponding degenerate elements.
We try different correlation levels for generality. Fifty samples
are generated for each correlation level.

To apply the proposed method, we first build a graph that puts
an edge between each pair of predictors in each of the five sub-
sets (no edge between the subsets) to represent the qualitative
prior knowledge about the degeneracy. The edge weight is set to
be one. The graph is then converted to a Laplacian matrix L and
used in the proposed method. A lasso model is also applied to
the simulation datasets as a model not taking the degeneracy
into account. The process is repeated for 50 times. The average
AUC performances of the two methods are comparable. How-
ever, when the best AUC performances of the two methods are
compared, the proposed method is significantly better, as can be
seen in Table 2.

Table 2. Best AUC performances of proposed model considering
degeneracy and lasso

Proposed model Lasso (no consideration
ρ considering degeneracy of degeneracy)

0.6 0.8138 0.6963
0.7 0.8475 0.6875
0.8 0.8388 0.6888
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5. APPLICATION

We present an application of modeling the predictive relation-
ship between TF binding sites and gene expression. Eight hu-
man cell lines (H1, K562, GM12878, HUVEC, HSMM, NHLF,
NHEF, and HMEC) are considered as eight domains. Since the
simulation studies presented the results for Case III, here we
present the results for Case IV. To apply the model in Case
IV, one cell line is treated as the new domain and all the oth-
ers are treated as the old domains. The data for the predictors
are obtained as follows: We download the RefSeq Gene an-
notation track for human genome sequence (hg19) from the
University of California Santa Cruz Genome Browser (USCS,
http://genome.ucsc.edu). Then, we scan the promoter region of
each gene (i.e., 1000 bp upstream of the transcription state site)
and count the occurrence of each κ-mer. Recall that a κ-mer is a
κ-letter-long word describing a potential binding site. We do this
for κ = 6 and obtain data for 46 predictors, and for κ = 7 and
obtain data for 47 predictors. κ = 6, 7 are common choices for
binding site studies (Li et al. 2010). A minor technical detail
is that in human cell lines, a word and its reverse complement
should be considered the same predictor. This reduces the 6-mer
predictors to 2080 and 7-mer predictors to 8192. Furthermore,
we obtain data for the response variable, that is, gene expres-
sion, for the eight cell lines from the Gene Expression Omnibus
(GEO) database under the accession number GSE26386. A total
of 16,324 genes on all chromosomes are included. This is the
sample size.

Recall in Section 3.3.1, we mentioned that a graph can be con-
structed to represent the prior knowledge about the degeneracy.
Nodes are predictors, that is, κ-mers. The similarity between
two κ-mers is κ − H {Xi,Xj }. H {Xi,Xj } is the Hamming dis-
tance. We consider an unweighted graph here, that is, there is
an edge between Xi and Xj , if κ − H {Xi,Xj } ≥ s; there is no
edge between Xi and Xj otherwise. s is a tuning parameter in
our method.

5.1 Comparison to Methods Without Transfer Learning
or Without Degeneracy Modeling

The method without degeneracy modeling is the model in
Case IV but with L = I. The method without transfer learning
is a lasso model applied to data of the new domain alone. Each
method has some tuning parameters to select. For example, the
tuning parameters for the proposed method include λ1, λ2, and s.
We find that s = 5 is a consistently good choice across different
choices for λ1 and λ2. λ1 and λ2 can be selected based on model
selection criteria such as BIC and Akaike information criterion
(AIC). However, each criterion has some known weakness and
there is no such criterion that works universally well under
all situations. To avoid drawing biased conclusion, we do not
stick to any single model selection criterion. Instead, we run
the model on a wide range of values for λ1 and λ2, that is, λ1,
λ2 ∈ [10−5, 103], and report the average performance. Similar
strategies are adopted for the two competing methods. This is a
common practice for comparison of different methods each of
which has parameters to be tuned.

All 2080 6-mers are used as predictors. To compare the three
methods in challenging predictive problems, that is, problems

Table 3. Comparison of three methods by
≡

MSE

Proposed method
versus transfer

learning without Proposed method
consideration of versus lasso (no

degeneracy transfer learning)

≡
MSE(competing)−

≡
MSE(proposed)

≡
MSE(proposed)

× 100 % 16.25% 920.44%

with small sample sizes, only the 1717 genes on chromosome
1 are included. Furthermore, one cell line is treated as the new
domain and all the other cell lines are treated as the old domains.
The knowledge of the old domains, that is, W̃∗, is obtained using
the model in Case III applied to the data of the old domains.
The data of the new domain are divided into 10-folds. Nine-
folds of data are used, together with W̃∗, to train a model, and
the model is applied to the remaining one-fold to compute a
performance metric such as the MSE. The average MSE, MSE,
over the 10-folds is computed. This entire procedure is repeated
for each of the eight cell lines as the new domain and the eight

MSEs are averaged to get
≡

MSE. This
≡

MSE can be obtained for
each pair of λ1 and λ2 in their range [10−5, 103]. Averaging the

≡
MSE s over the range gives

≡
MSE. Table 3 shows the results of

comparison. It is clear that both transfer learning and degeneracy
modeling in the proposed method help prediction in the new
domain. Transfer learning is crucially important, without which
the prediction is significantly impaired.

5.2 Robustness of the Proposed Method to Noisy Old
Domains

One distinguished feature of the proposed method is the abil-
ity to learn the relationship between each old domain and the new
domain from data, and adaptively decide how much knowledge
to transfer from each old domain. To test this, we can include
some “noisy” old domains. If the proposed method has the abil-
ity it claims to have, it should transfer little knowledge from
the noisy domains and its performance should not be affected
much. Specifically, we create the noisy old domains by destroy-
ing the correspondence between the response and predictors
of each gene in these domains through shuffling. We compare
the estimated model coefficients of the new domain and those
obtained by keeping all the old domains as they are (i.e., no
shuffling) by calculating their correlation coefficient. Table 4
shows this correlation coefficient with four, five, and six old
domains shuffled. Cell line GM12878 is the new domain. When
applying the proposed method, λ1 and λ2 are selected by 10-fold

Table 4. Correlation between model coefficients of the new domain
with and without shuffled old domains

Four out of Five out of Six out of
seven old domains seven old domains seven old domains
are shuffled are shuffled are shuffled

0.998065 0.816133 0.763273
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Table 5. Comparison between transfer learning with shuffled noisy old domains and single-domain learning

Four out of seven old domains
are shuffled

Five out of seven old domains
are shuffled

Six out of seven old domains are
shuffled

≡
MSE(lasso)−

≡
MSE(transferlearning)

≡
MSE(transferlearning)

× 100 %

22.42% 20.26% 19.95%

cross-validation. It can be seen that the proposed method is al-
most not affected when less than five out of seven old domains
are noisy domains. Furthermore, we also compute the correla-
tion between the model coefficients of the new domain with and
without transfer learning (no shuffling) and this correlation is
0.793765, which is at the similar level to that when there are
more than five noisy domains. Finally, we would like to know
if transfer learning can still outperform single-domain learning
(i.e., lasso for the new domain) even with knowledge transferred
from noisy domains. This result is summarized in Table 5, which
further demonstrates the robustness of the proposed method.

5.3 Understanding the Degenerate System

The purpose of predictive modeling is not only to predict
a response but also to facilitate understanding of the problem
domain. To achieve this, we apply the proposed method to one
cell line, GM12878, treating this cell line as the new domain and
all other cell lines as the old domains. Predictors are all 8192
7-mers. 7-mers contain richer binding site information than 6-
mers, but analysis of 7-mers has been limited because of the
dimension. Focusing on 7-mers can also test the capability of
our method in handling very large dimensional predictors. The
response is a binary indicator variable that indicates if a gene is
expressed or unexpressed, so a logistic loss function is used in
our method. This has a purpose of testing the capability of our
method in classification problems. Also, it is more reasonable
to assume that binding site counts like 7-mers can explain a
majority of the variability in expressed/unexpressed genes than
the variability in the numerical gene expression levels. The latter
is more involved, as the expression level is affected by a variety
of other factors than binding site counts. 16,324 genes on all
chromosomes are included in the analysis.

Unlike Section 5.1 in which comparison of prediction ac-
curacy between methods is the primary goal, here we want to
obtain a model for the 7-mer-gene-expression relationship, and
based on the identified relationship, to understand the system
better. For this purpose, model selection is unavoidable. We use
10-fold cross-validation to choose the optimal λ1 and λ2, which
are ones giving the smallest average classification error over the
10-folds. The true positive rate (TPR), true negative rate (TNR),
and accuracy of our method are 0.84, 0.60, and 0.70, respec-
tively. The definition of TPR is: among all the genes classified
as expressed, the proportion that is truly expressed. TNR is:
among all the genes classified as unexpressed, the proportion
that is truly unexpressed. Accuracy is the proportion of correctly
classified genes. An observation is that TPR is higher than TNR,
which is expected, because classification of unexpressed genes
is supposed to be harder than expressed genes. The accuracy is

0.70, which is satisfactory in this application, considering the
complexity of the biological system. Given satisfactory accu-
racy, we can now proceed and use the model for knowledge
discovery. To do this, we use all the data of GM12878 to fit a
model under the optimal λ1 and λ2, which is called “the model”
in the subsequent discussion.

In knowledge discovery, our goal is to characterize the degen-
eracy of the new domain, that is, GM12878. Note that although
we have used a graph to encode the degeneracy, it is before
seeing any data and is only qualitative. It can now be better
characterized by the model that incorporates both the graph and
the data of the new domain as well as knowledge transferred
from the old domains. Specifically, the following steps are per-
formed:

First, we examine the estimated coefficients of the 7-mers and
eliminate those 7-mers with zero coefficients from the graph.
These 7-mers are considered not significantly affecting gene
expression. Then, we rank the remaining 7-mers according to
the magnitudes of their coefficients and choose the top 50 7-mers
for the subsequent analysis. This helps us focus on identifying
the degeneracy most relevant to gene expression. Some of the 50
7-mers are connected in the graph and some are not; in fact, they
fall into different clusters. We define a cluster to be a group of
7-mers, each of which is connected with at least one other 7-mer
in the group. The clusters are shown in Table 6. Each cluster is
suspected to correspond to a TF and the 7-mers in the cluster are
believed to be alternative binding sites of the TF. To verify this,
we compute a position specific scoring matrix (PSSM) for each
cluster. PSSM has been commonly used to characterize binding
site uncertainty (Li et al. 2010). A PSSM is a κ × 4 matrix. κ is
the number of positions in a κ-mer. κ = 7 in our case. Each
row of a PSSM is a probability distribution over {A,C,G, T }.
Let pi (s) denote the probability of s, s = {A,C,G, T }, for
row/position i, i = 1, . . . , κ .

∑
s={A,C,G,T } pi (s) = 1. pi (s) can

be calculated by pi (s) = ni (s)
C

, where C is the cluster size and
ni (s) is the number of occurrences of s at position i among all
the 7-mers in the cluster. Because our model outputs an esti-
mated coefficient for each 7-mer, we modify this conventional

formula by pi (s) =
∑C

c=1 ŵcI (rci=s)∑C
c=1 ŵc

. ŵc is the estimated coeffi-

cient for the cth 7-mer in the cluster. rci is the letter at the ith
position of the cth 7-mer. This modified formula works better
because it takes the response variable into consideration by in-
corporating the model coefficients. A PSSM can be represented
in a compact form by a motif logo, which stacks up the four
letters {A,C,G, T } at each position i and the letter height is
proportional to its probability pi (s). Please see Table 6 for the
PSSM motif logos for all the clusters.

Furthermore, the PSSM of each cluster can be com-
pared with databases of known TFs to see if there is a
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Table 6. Clusters of 7-mers and matching with known TFs for GM12878

Clusters 7-mers Est. coeff. Motif logo Matched known TFs

1 AAGTGCT 0.005808 SPI1, Ets, Elk-1, FLI1,
ACGTGCT 0.005497 FEV
ACGTTCT 0.005367
ACGTCCT 0.005963
ACTTCCT 0.009086
ACTTCCG 0.010709
CCTTCCG 0.005685

2 GGCGGAA 0.007632 GABP, Elk-1,
GCCGGAA 0.006837 Ehf primary, Eip74EF,
ACCGGAA 0.006497 ERF
CCCGGAA 0.006982
TCCGGAA 0.005488

3 ACTAAGT 0.005597 AP-1, NF-E2
ACTCAGT 0.005881
ACCCAGT 0.006013

4 ATGACAT −0.00594 N/A
ATCACAT −0.00588

5 CAGGCCG 0.006636 Zfx, CNOT3
AAGGCCG 0.00586

6 CCGGAAG 0.009778 ELK-1, GABPA,
CCGGAGG 0.005296 Eip74EF, SAP-1a, EHF

7 AGGCCGC 0.005775 Zfx
AGGCCGG 0.005715

8 TAGACTA 0.006607 N/A
TAAACTA 0.006447

match. We used the Motif-based Sequence Analysis Tools
(http://meme.nbcr.net/meme) for the matching. Table 6 shows
the top five matched TFs for each cluster, according to the sig-
nificance level of each match. If less than five matched TFs are
found, then all the matched TFs will be shown. If no match is
found, there is an “N/A.” Out of the eight clusters, six have at
least one match with known TFs. Clusters 1, 2, and 6 are en-
riched with SPI1, Ets, Elk, FLI1, FEV, GABP, and EHF, which
are well-known TFs for important basic cell functions. Cluster
3 is enriched with AP-1 and NF-E2, which are related to Golgi
membrane and nucleus that are also basic cell functions. Clus-
ters 5 and 7 are enriched with Zfx and CNOT3. CNOT3 is a
Leukocyte Receptor Cluster Member 2 and Zfx is required for
the renewal process in hematopoietic cells. As GM12878 is a
lymphocyte cell, these blood transcription factors are specific
to this cell line. Clusters 4 and 5 do not match with any known
TFs. However, only 10%–20% of total human TFs are known
so far. The unmatched clusters indeed present an interesting
opportunity for identifying new TFs.

This entire analysis for GM12878 is also performed for other
cell lines. For each cell line, clusters of 7-mers exist and a
large majority of the clusters can be matched to known TFs.
Also, some clusters are common across the cell lines. These
are the clusters whose matched TFs are related to basic cell
functions. There are also some cell-line-specific clusters such

as clusters 5 and 7 for GM12878. As other examples, there
is a cluster enriched with CTF1 for HMEC. CTF1 is known
to be in entracellar region. As HMEC is an epithelial cell,
CTF1 is specific to this cell line. In addition, there is a cluster
enriched with MyoD and another cluster enriched with MEF-2
for HSMM. MyoD is related to muscle cell differentiation and
MEF-2 is a myocyte enhancer factor, both being specific to
HSMM. The identified common and cell-line-specific cluster
structures verifies transfer learning’s ability of modeling related
but not exactly the same domains.

6. CONCLUSION

In this article, we developed a transfer learning method for
predictive modeling of degenerate biological systems under the
Bayesian framework. Theoretical properties of the proposed
method were investigated. Simulation studies showed better
AUC performance of the proposed method compared with com-
peting methods. A real-world application was presented, which
modeled the predictive relationship between TF binding site
counts and gene expression. The proposed method showed good
accuracy and robustness to noisy old domains, and discovered
interesting degenerate mechanisms of the system.

There are several potential future directions for this work.
First, the proposed method was formulated under a Bayesian

TECHNOMETRICS, AUGUST 2015, VOL. 57, NO. 3

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 1
0:

54
 0

9 
O

ct
ob

er
 2

01
5 

http://meme.nbcr.net/meme


A TRANSFER LEARNING APPROACH FOR PREDICTIVE MODELING OF DEGENERATE BIOLOGICAL SYSTEMS 373

framework but solved from an optimization point of view to gain
efficiency. A Bayesian estimation approach such as empirical
Bayes and hierarchical Bayes could allow better characterization
of the uncertainty. Second, a similar approach may be developed
for predictive modeling of nonlinear relationships. Third, future
engineering system design may adopt biological principles like
degeneracy to be more robust and adaptive to unpredictable
environmental situations. By that time, it will be very interesting
to study how to migrate the proposed approach to engineering
systems.

SUPPLEMENTARY MATERIALS

The supplementary materials include derivations for (6) and
(24), proofs of Theorems 1–4, and matlab code for Section 4.
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