

Chapter 1 Topics:

- 1. Matter and its Classification
- 2. Physical and Chemical Changes and Properties of Matter
- 3. Energy and Energy Changes
- 4. Scientific Inquiry

Elements

- An element is a substance that cannot be broken down into simpler substances even by a chemical reaction.
- All known elements are organized on the periodic table.

ig	ure	1.03																
Copyright 6 The McGraw-Hill Comparises, Inc. Remission required for neproduction or display. MAIN-GROUP ELIZMINITS Metah (transition) Metah (transition) Metah (transition)									,									
_	IA (1)			Metalloids Nonmetals									(VIIIA (18)
1	1 H 1.008	IIA (2)	1	IIIA IVA VA VIA VIA (13) (14) (15) (16) (17)										2 He 4.003				
2	3 Li 6.941	4 Be 9.012		5 6 7 8 9 B C N 0 F 1081 1201 1401 1600 1900									10 Ne 20.18					
3	11 Na 22.99	12 Mg 24.31	IIIB (3)	IVB (4)	VB (5)	VIB (6)	VIIB (7)	(8)	VIIIB (9)	(10)	IB (ID	11B (12)	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 NI 58.69	29 Cu 63.55	30 Zn 65.41	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Te (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 1 126.9	54 Xe 131.3
6	55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 11 204,4	82 Pb 207.2	83 Bi 209.0	84 Ро (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (263)	105 Db (262)	106 Sg (266)	107 Bh (267)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 (285)		114 (289)		116 (292)		
			1	NNER-	IRANS	TION E	LEME	NTS										
6	Lanth	anides	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lui 175.0		
7	Actin	ides	90 Th 232.0	91 Pa (231)	92 U 238.0	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)		

Elements and their Symbols

- Element symbols often consist of one or two letters of the element's name.
- Examples: carbon: C calcium: Ca
- How do we explain that Fe is the symbol for iron?

	Copyright @ The McGr	aw-Hill Companies, Inc. I	Permission required for repr	roduction or display.	
TABLE	1.1 Symb	ools of Selec	ted Elements	5	
English Name	Original Name	Symbol	English Name	Original Name	Symbo
Copper	Cuprum	Cu	Potassium	Kalium	К
Gold	Aurum	Au	Silver	Argentum	Ag
Iron	Ferrum	Fe	Sodium	Natrium	Na
Lead	Plumbum	Pb	Tin	Stannum	Sn
Marcury	Hydraeyrum	Ha	Tungstan	Wolfram	w

<text>

TABLE 1.3 Symbols for Physical State					
Physical State	Symbol	Example (bromine			
Solid	(s)	$Br_2(s)$			
Liquid	(1)	$Br_2(l)$			
Gas	(g)	$Br_2(g)$			
Aqueous	(aq)	$Br_2(aq)$			
(dissolved in water)					

Conversion (Math Toolbox 1.3)									
(& back cover of text)									
Prefixes (Table 2.3) Length measurements									
giga-	G	109	$1 \text{ Gg} = 10^9 \text{ g}$						
mega-	М	10^{6}	$1 \text{ Mg} = 10^6 \text{ g}$						
kilo-	k	103	$1 \text{ kg} = 10^3 \text{ g}$						
centi-	c	10-2	$1 \text{ cg} = 10^{-2} \text{ g}$						
milli-	m	10-3	$1 \text{ mg} = 10^{-3} \text{ g}$						
micro-	μ	10-6	$1 \ \mu g = 10^{-6} g$						
nano-	n	10-9	$1 \text{ ng} = 10^{-9} \text{ g}$						
pico-	р	10-12	$1 \text{ pg} = 10^{-12} \text{ g}$						
				36					

Conversion (Math Toolbox 1.3) (& back cover of text)									
Prefixes (Table 2.3) Length measurements									
giga-	G	109	$1 \text{ Gm} = 10^9 \text{ m}$						
mega-	М	10^{6}	$1 \text{ Mm} = 10^6 \text{ m}$						
kilo-	k	103	$1 \text{ km} = 10^3 \text{ m}$						
centi-	c	10-2	$1 \text{ cm} = 10^{-2} \text{ m}$						
milli-	m	10-3	$1 \text{ mm} = 10^{-3} \text{ m}$						
micro-	μ	10-6	$1 \ \mu m = 10^{-6} m$						
nano-	n	10-9	$1 \text{ nm} = 10^{-9} \text{ m}$						
pico-	р	10-12	$1 \text{ pm} = 10^{-12} \text{ m}$						
				37					

1.3 Energy and Energy Changes

- When chemical or physical changes occur, energy changes also occur.
- Some processes release energy and some require an energy input.
- Examples:
 - When wood burns with oxygen, energy in the form of heat is released.
 - When ammonium nitrate dissolves in water in a cold pack, energy in the form of heat is absorbed.

64

Energy

- Kinetic energy energy of motion
 - The kinetic energy of a sample will increase as temperature is increased.
- Potential energy energy possessed by an object because of its position; stored energy
 - As a ball is raised up in the air, its potential energy increases.
 - Very reactive substances have high potential energy.

67

Units of Energy • Calories (Cal); calories (cal); joules (J) • The unit Calorie (Cal) is used to describe the energy content of food. 1 Cal = 1000 cal = 1 kcal 4.184 J = 1 cal

