

Chapter 4 Topics

- 1. Mole Quantities
- 2. Moles, Masses, and Particles
- 3. Determining Empirical Formulas
- 4. Chemical Composition of Solutions

4.1 Mole Quantities

• When working with amounts of a substance on a macroscopic scale, we cannot simply count atoms or molecules. There are too many. Instead, we use the mole scale, which is scaled up by Avogadro's number:

1 mole = 6.022×10²³ particles

● 1 mole C = 6.022×10²³ carbon atoms

- 0 1 mole H_2S = 6.022×10²³ H_2S molecules
- 1 mol Cu₂O = 6.022×10^{23} Cu₂O formula units

Molar Mass

What is the molar mass of H₂O?
What is the mass of 1 mole of H₂O?

Molar Mass

• Which contains the greatest number of atoms?

- I mole of copper or 1 mole of gold?
- I gram of copper or 1 gram of gold?

4.2 Moles, Masses, and Particles

- How can we describe the composition of a compound if we know the mass of the elements in the compound?
- A 3.67-g sample of the mineral chalcopyrite was determined to contain 1.27 g Cu, 1.12 g Fe, and 1.28 g S.
 - What is the mass percent of each element in this compound?

Determining Number of Particles Group Work

- How many CO₂ molecules are in a 100-g sample of CO₂?
- How many carbon atoms are in a 100-g sample of CO₂?
- How many oxygen atoms are in a 100-g sample of CO₂?

4.3 Empirical and Molecular Formulas

• The formula for a substance also tells us about the composition of a compound:

- A formula unit for an ionic compound tells us the ratio of ions of different elements in the compound. (MgCl₂ has a 1:2 ratio of Mg⁺² to Cl⁻)
- A molecular formula tells the number of atoms of each element in a molecule and the atom ratio.

Determining Empirical Formulas from % Composition If we know the masses of the elements in a compound, or its percent composition, we can determine its mole ratio, and therefore the compound's empirical formula. Consider chalcopyrite. Any sample will have the following % composition:

Copyright © The McGraw-Hill Comparises, Inc. Permission required for reproduction or display. TABLE 4.1 Some Empirical and Molecular Formulas		
cyclopentane	C5H10	CH ₂
cyclohexane	C ₆ H ₁₂	CH_2
ethylene	C_2H_4	CH ₂
hydrogen sulfide	H ₂ S	H_2S
calcium chloride	There is no molecular formula for an ionic compound.	CaCl ₂
		29

Molecular Formulas from Empirical Formulas

• A compound was determined to have an empirical formula of CH₂. Its molar mass was determined to be 42.12 g/mol. What is the molecular formula for this compound?

28

Percent by Mass of Solute

• What is the mass percent of NaCl in a solution that is prepared by adding 10.0 g NaCl to 50.0 g water?

Molarity (M)

• Another common way to express the concentration of a solution is in molarity units:

Preparing a CuSO₄ Solution

30

- Water is added to the mark so that the total volume is 250.0 mL.
- What is the molarity of this solution?

Molarity

40

42

• How many moles of NaCl are in 1.85 L of a 0.25 *M* NaCl solution?

Dilution

• Suppose you want to dilute a 0.25 M solution to a concentration of 0.025 M. What are some ways to do this?

Dilution

Dilution

45

47

 $\bullet M_{\rm initial} V_{\rm initial} = M_{\rm final} V_{\rm final}$

• What is the concentration of a solution prepared by adding water to 25.0 mL of 6.00 *M* NaOH to a total volume of 500.0 mL? 46