

## Chapter 4 Topics

1. Mole Quantities
2. Moles, Masses, and Particles
3. Determining Empirical Formulas
4. Chemical Composition of Solutions

### 4.1 Mole Quantities

- When working with amounts of a substance on a macroscopic scale, we cannot simply count atoms or molecules. There are too many. Instead, we use the mole scale, which is scaled up by Avogadro's number:

1 mole $=6.022 \times 10^{23}$ particles

- 1 mole $\mathrm{C}=6.022 \times 10^{23}$ carbon atoms

01 mole $\mathrm{H}_{2} \mathrm{~S}=6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{~S}$ molecules
$91 \mathrm{~mol} \mathrm{Cu} \mathbf{u}_{2} \mathrm{O}=6.022 \times 10^{23} \mathrm{Cu}_{2} \mathrm{O}$ formula units


## Molar Mass The Mass of 1 Mole

- Avogadro's number has been defined so that the mass of 1 mol of C-12 has a mass of exactly $\mathbf{1 2}$ grams.
- This means that the mass of an atom of any substance in amus is the same numerical value as the mass of 1 mole of that substance in grams (molar mass).
- The molar mass of carbon is $12.01 \mathrm{~g} / \mathrm{mol}$.
- The molar mass of $\mathrm{CO}_{2}$ is: We'll use
4 sig. figs $12.01+2(16.00)=44.01 \mathrm{~g} / \mathrm{mol}$


## Molar Mass

- What is the molar mass of $\mathrm{H}_{2} \mathrm{O}$ ?
- What is the mass of 1 mole of $\mathrm{H}_{2} \mathrm{O}$ ?


### 4.2 Moles, Masses, and Particles

- How can we describe the composition of a compound if we know the mass of the elements in the compound?
- A 3.67-g sample of the mineral chalcopyrite was determined to contain $1.27 \mathrm{~g} \mathrm{Cu}, 1.12 \mathrm{~g} \mathrm{Fe}$, and 1.28 g S .
- What is the mass percent of each element in this compound?


## Molar Mass

- Which contains the greatest number of atoms?
- 1 mole of copper or 1 mole of gold?
- 1 gram of copper or 1 gram of gold?


## Composition of Chalcopyrite

© Would this mass \% differ for a different sample of this mineral?

9 If you had a 100-gram sample, what mass of copper would it contain?


## Moles from Grams

- How many moles of copper are in 100 grams of chalcopyrite? (molar mass $\mathrm{Cu}=63.55 \mathrm{~g} / \mathrm{mol}$ )



## Converting Between Grams and Moles

1. Convert $\mathbf{1 0 . 0}$ grams of $\mathrm{CO}_{2}$ to moles.
2. Convert $0.50 \mathrm{~mol} \mathrm{CO}_{2}$ to grams.



## Converting Between Grams and Moles

1. Convert $10.0 \mathrm{~g} \mathrm{O}_{2}$ to moles.


## Number of Water Molecules in a Drop

- Now let's figure out the number of water molecules in 1 drop.
- Here is some helpful information:
- There are about 20 drops of water in 1 mL .
- The density of water is $\mathbf{1 . 0}$ $\mathrm{g} / \mathrm{mL}$



## Grams $\leftrightarrow$ Moles $\leftrightarrow$ Particles

- Once we know the number of moles of a substance, we can use Avogadro's number $\left(6.022 \times 10^{23}\right)$ to determine the number of particles described by that substance.

1 mole $=6.022 \times 10^{23}$ particles


## Determining Number of Particles Group Work

© How many $\mathrm{CO}_{2}$ molecules are in a $100-\mathrm{g}$ sample of $\mathrm{CO}_{2}$ ?
o How many carbon atoms are in a $100-\mathrm{g}$ sample of $\mathrm{CO}_{2}$ ?

- How many oxygen atoms are in a $100-\mathrm{g}$ sample of $\mathrm{CO}_{2}$ ?


### 4.3 Empirical and Molecular Formulas

o The formula for a substance also tells us about the composition of a compound:

- A formula unit for an ionic compound tells us the ratio of ions of different elements in the compound. $\left(\mathrm{MgCl}_{2}\right.$ has a 1:2 ratio of $\mathbf{M g}^{+\mathbf{2}}$ to $\mathrm{Cl}^{-}$)
- A molecular formula tells the number of atoms of each element in a molecule and the atom ratio.


## Empirical Formulas

- What is the same about these two compounds?



## What is the empirical formula for copper(II) oxide?



Determine the Empirical Formula


## Determining Empirical Formulas

1. Since the percent composition does not change from sample to sample, assume any size sample. The most convenient is $\mathbf{1 0 0}$ grams so \% value = mass value.
2. Convert grams to moles for each element.
3. Without changing the relative amounts, change moles to whole numbers. Do this by dividing all by the same smallest value. If all do not convert to whole numbers, multiply to get whole numbers.

## Determining Empirical Formulas

1. $\mathbf{1 0 0}$ grams chalcopyrite contains:

- 30.5 g Fe
- 34.6 g Cu
- 34.9 g S

2. $\mathbf{M o l F e}=(30.5 \mathrm{~g} \mathrm{Fe})(1 \mathrm{~mol} / 55.85 \mathrm{~g})=0.5461 \mathrm{~mol} \mathrm{Fe}$ $\mathrm{Mol} \mathrm{Cu}=(34.6 \mathrm{~g} \mathrm{Cu})(1 \mathrm{~mol} / 63.55 \mathrm{~g})=0.5444 \mathrm{~mol} \mathrm{Cu}$ Mol S $=(34.9 \mathrm{~g} \mathrm{~S})(1 \mathrm{~mol} / 32.07 \mathrm{~g})=1.088 \mathrm{~mol} \mathrm{~S}$
3. $(\mathbf{0 . 5 4 6 1} \mathrm{mol} \mathrm{Fe}) /(0.5444)=1.003 \mathrm{~mol} \mathrm{Fe}$ $(1.063 \mathrm{~mol} \mathrm{Cu}) /(\mathbf{0} .5444)=\mathbf{1 . 0 0 0} \mathbf{~ m o l ~ C u} \succ \mathrm{FeCuS}_{2}$ $(1.088 \mathrm{~mol} \mathrm{~S}) /(0.5444)=1.999 \mathrm{~mol} \mathrm{~S}$

## Molecular Formulas from <br> Empirical Formulas

o A compound was determined to have the following percent composition:

- 50.0\% sulfur
- 50.0\% oxygen
- What is the empirical formula for the compound?



## Group Work

- Benzene and acetylene have the same empirical formulas but different molecular formulas.
- How much greater in mass is benzene than acetylene?
9 How much greater in mass is each of these than the empirical
 formula?


## Molecular Formulas from Empirical Formulas

o A compound was determined to have an empirical formula of $\mathrm{CH}_{2}$. Its molar mass was determined to be $42.12 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula for this compound?


## Determining Percent Composition

o What is the percent sodium in $\mathrm{Na}_{2} \mathbf{O}$ ?


### 4.4 Chemical Composition of Solutions

© A solution is a homogeneous mixture.

- This is a solution being prepared by adding the $\mathrm{CuSO}_{4}$ (solute) to water (solvent).
- The composition of the solution depends on the relative amounts of the solute and solvent.



## Concentration

- Which aqueous $\mathrm{CuSO}_{4}$ solution has the greatest concentration (most concentrated)? Which is most


## Percent by Mass of Solute

- Solution concentration is often expressed as the mass percent of solute: dilute?



## Percent by Mass of Solute

o What is the mass percent of NaCl in a solution that is prepared by adding 10.0 g NaCl to 50.0 g water?

## Molarity (M)

o Another common way to express the concentration of a solution is in molarity units:

## Preparing a CuSO 4 Solution

96.25 grams ( 0.0250 mol ) of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is added to a $250-\mathrm{mL}$ volumetric flask.

- Water is added to the mark so that the total volume is $\mathbf{2 5 0 . 0} \mathbf{~ m L}$.
- What is the molarity of this solution?



## Molarity

© How many moles of NaCl are in 1.85 L of a 0.25 M NaCl solution?


## Dilution

o Suppose you want to dilute a 0.25 M
solution to a concentration of 0.025 M . What are some ways to do this?

## Dilution

$$
\text { - Moles }_{\text {initial }}=\text { Moles }_{\text {final }}
$$

- Moles $=$ Molarity $\times$ Volume
- Moles $=\mathrm{mol} / \mathrm{L} \times \mathrm{L}$
$\boldsymbol{\varphi} M_{\text {initial }} V_{\text {initial }}=M_{\text {final }} V_{\text {final }}$


## Dilution

$$
O M_{\text {initial }} V_{\text {initial }}=M_{\text {final }} V_{\text {final }}
$$

- What is the concentration of a solution prepared by adding water to 25.0 mL of 6.00 M NaOH to a total volume of $\mathbf{5 0 0 . 0}$ mL ?

