

Chapter 9 Topics

- 1. The Behavior of Gases
- 2. Factors that Affect the Properties of Gases
- 3. The Ideal Gas Law
- 4. Kinetic-molecular Theory of Gases
- 5. Gases and Chemical Reactions

Gases in Our Atmosphere							
TABLE 9.1 Volume Percent of Gases in the Atmosphere							
Gas	Volume Percent	Gas	Volume Percent	Gas	Volume Percent		
N_2	78.09	CH_4	0.00015	O_3	0.000002		
O ₂	20.94	Kr	0.0001	NH ₃	0.000001		
Ar	0.93	H_2	0.00005	NO_2	0.0000001		
CO_2	0.032	N_2O	0.000025	SO_2	0.00000002		
Ne	0.0018	CO	0.00001	H_2O	Varies		
He	0.00052	Xe	0.000008				
	3						

<text>

Behavior of Gases at the Molecular Level

- Gases consist of particles (atoms or molecules) that are relatively far apart.
- ♦ Gas particles move about rapidly.
 - An average O_2 molecule moves at a velocity of 980 mi/hr at room temperature.
- Gas particles have little effect on one another unless they collide. When they collide, they do not stick to one another.
- Gases expand to fill their containers.

Temperature and Density

- All gases expand when heated.
 - Why? Because the resulting temperature increase causes an increase in the kinetic energy of the gas molecules, making them move faster, collide harder, and spread out.
- Col gas

 Ware gas

 Ware gas

 Figure 9.3
- Which gas has the greatest density?

Pressure

- Changes in pressure and amount of gas can affect the properties of a gas.
- What happens to volume and pressure when air molecules are added to the <u>tire</u>?
- What happens to density?

Pressure • What causes the balloon to be inflated?

Figure 9.1

Figure 9.7

Including Moles in the Gas Law

$$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2}$$

Copyr	Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.						
TABLE 9.2	Vapor Pressure of Water at Various Temperatures						
Temperature (°C)	Vapor Pressure (torr)	Temperature (°C)	Vapor Pressure (torr)				
0	4.6	28	28.3				
5	6.5	29	30.0				
10	9.2	30	31.8				
15	12.8	35	42.2				
16	13.6	40	55.3				
17	14.5	45	71.9				
18	15.5	50	92.5				
19	16.5	60	149.4				
20	17.5	70	233.7				
21	18.6	80	355.1				
22	19.8	90	525.8				
23	21.1	100	760.0				
24	22.4	110	1074.6				
25	23.8	150	3570.5				
26	25.2	200	11,659.2				
27	26.7	300	64,432.8				

- 2. Particles of a gas behave independently of one another.
- 3. Each particle of a gas is in rapid, straight-line motion, until it collides with another molecule or with its container.
- 4. The average kinetic energy of gas particles depends only on the absolute temperature: $KE_{ave} \propto T_{Kelvin}$
 - This means that all gases have the same average *KE* when at the same temperature.

Kinetic Energy, Molecular Velocity, and Temperature Ar, CO₂, and H₂ all at the same temperature

a) Which of these gases has the greatest average KE?

<u>m. T. v</u>

b) Which has the greatest average velocity?

