

Chapter 9 Topics

1. The Behavior of Gases
2. Factors that Affect the Properties of Gases
3. The Ideal Gas Law
4. Kinetic-molecular Theory of Gases
5. Gases and Chemical Reactions

Gases in Our Atmosphere Copyright O The MoGraw-Hill Companies, Inc. Permission required for reproduction or display.					
TABLE 9.1 Volume Percent of Gases in the Atmosphere					
Gas	Volume Percent	Gas	Volume Percent	Gas	Volume Percen
N_{2}	78.09	CH_{4}	0.00015	O_{3}	0.000002
O_{2}	20.94	Kr	0.0001	NH_{3}	0.000001
Ar	0.93	H_{2}	0.00005	NO_{2}	0.0000001
CO_{2}	0.032	$\mathrm{N}_{2} \mathrm{O}$	0.000025	SO_{2}	0.00000002
Ne	0.0018	CO	0.00001	$\mathrm{H}_{2} \mathrm{O}$	Varies
He	0.00052	Xe	0.000008		

9.1 The Behavior of Gases

- One way that we can describe gases is by their density.
- All gases have a relatively low densities in comparison to liquids and solids, due to the large amount of empty space between molecules.

Behavior of Gases at the Molecular Level

- Gases consist of particles (atoms or molecules) that are relatively far apart.
- Gas particles move about rapidly.
- An average O_{2} molecule moves at a velocity of $980 \mathrm{mi} / \mathrm{hr}$ at room temperature.
- Gas particles have little effect on one another unless they collide. When they collide, they do not stick to one another.
- Gases expand to fill their containers.

Temperature and Density

- All gases expand when heated.
- Why? Because the resulting temperature increase causes an increase in the kinetic energy of the gas molecules, making them move faster, collide harder, and spread out.
- Which gas has the greatest density?

Pressure

- Changes in pressure and amount of gas can affect the properties of a gas.
- What happens to volume and pressure when air molecules are added to the tire?
- What happens to density?

Pressure

- What causes the balloon to be inflated?

Which gas has the greater pressure? (assume they are at the same temperature)

Figure 9.9

Measuring Pressure (Units)

- psi
- pounds per square inch
- lb/in ${ }^{2}$
- Atmospheric pressure is commonly measured with a barometer.
- inches of Hg
- mmHg
- torr
- atm

$$
1 \mathrm{~atm}=760 \mathrm{mmHg}
$$

9.2 Factors that Affect the Properties of Gases

- Volume and Pressure
- As a weather balloon ascends to higher altitudes of lower pressures, its volume increases.
- As bubbles rise in water from greater pressures to lower pressures, they increase in size.

$$
1 \mathrm{~atm}=760 \text { torr }
$$

Graph of Volume vs. Pressure

igure 9.15
Boyle

Graph of Volume vs. 1/Pressure shows that they are inversely related.

What happens to pressure when the volume is doubled?

Boyle's Law

- $P \propto 1 / V$
- $P V=$ constant
- $P=$ constant $\times 1 / V$
- $V=$ constant $\times 1 / P$
- $P_{1} V_{1}=P_{2} V_{2}$

Volume and Temperature

- What is the relationship between volume and temperature (at constant pressure)?

Charles's Law

- $V \propto T$
- $\mathrm{V} / \mathrm{T}=$ constant
- $\mathrm{V}=$ constant $\times \mathrm{T}$
- $\mathrm{T}=$ constant $\times \mathrm{V}$

- Temperature must be in units of Kelvin. Why?
at constant pressure

Boyle's Law

$-P_{1} V_{1}=P_{2} V_{2}$

- If the pressure of a $2.0-\mathrm{L}$ sample of gas is decreased from 1.2 atm to 0.25 atm at constant temperature, what is the new volume?

Charles's Law

- If a balloon filled with air has a volume of 15.0 L at $25^{\circ} \mathrm{C}$, what is its volume at $-100^{\circ} \mathrm{C}$? Assume constant pressure.

Group Work

- What new temperature is required to reduce the volume of a balloon from 20.0 L (at $28^{\circ} \mathrm{C}$) to 12.0 L .
- Report your answer in both Kelvin and ${ }^{\circ} \mathrm{C}$.

Avogadro's Hypothesis

- $V \propto n$
- V/n = constant
$\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}} \quad$ At constant temperature and pressure

Including Moles in the Gas Law

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

9.3 The Ideal Gas Law

constant $=\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$
constant $(R)=\frac{P V}{n T}$
$P V=n R T$

The Ideal Gas Law

- The ideal gas law allows us to calculate pressure, volume, moles, or temperature, when three out of the four variables are known.
- If the identity of the gas is known, molar mass can be used to convert between moles and grams.

Molar Volume at STP

- We can show that 22.414 L of any gas at $0^{\circ} \mathrm{C}$ and 1 atm contain 6.02×10^{23} gas molecules.

The Ideal Gas Law

$$
\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{nT}}
$$

$\mathrm{R}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1.000 \mathrm{~mol})(273.15 \mathrm{~K})}$
$\mathrm{R}=0.08206 \frac{\mathrm{Latm}}{\mathrm{mol} \mathrm{K}}$

The Ideal Gas Law

- What mass of oxygen gas will occupy a 6.0-liter container, at a pressure of 700 torr and at a temperature of $25^{\circ} \mathrm{C}$?

The Ideal Gas Law

- What mass of oxygen gas will occupy a 6.0 -liter container, at a pressure of 700 torr and at a temperature of $25^{\circ} \mathrm{C}$?

Gas Properties

- If the O_{2} balloon had been filled to a smaller volume, which of the following quantities would change for the O_{2} gas?
- number of molecules
- moles
- mass
- density

Dalton’s Law of Partial Pressures

- Dalton’s Law of Partial Pressures
- Gases in a mixture behave independently and exert the same pressure they would exert if they were in a container alone.

$$
P_{\text {total }}=P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\ldots
$$

TABLE 9.2	Vapor Pressur	ater at Vario	emperatures
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Vapor Pressure (torr)	Temperature (${ }^{\circ} \mathrm{C}$)	Vapor Pressure (torr)
0	4.6	28	28.3
5	6.5	29	30.0
10	9.2	30	31.8
15	12.8	35	42.2
16	13.6	40	55.3
17	14.5	45	71.9
18	15.5	50	92.5
19	16.5	60	149.4
20	17.5	70	233.7
21	18.6	80	355.1
22	19.8	90	525.8
23	21.1	100	760.0
24	22.4	110	1074.6
25	23.8	150	3570.5
26	25.2	200	11,659.2
27	26.7	300	64,432.8

9.4 Kinetic-Molecular Theory of Gases

- Postulates of KMT

1. Gases are composed of small and widely separated particles (molecules or atoms).

- In a normal gas, less than 0.1% of the space is due to the volume of the gas particles. The rest is empty space.

2. Particles of a gas behave independently of one another.
3. Each particle of a gas is in rapid, straight-line motion, until it collides with another molecule or with its container.
4. The average kinetic energy of gas particles depends only on the absolute temperature: $K E_{\text {ave }} \propto T_{\text {Kelvin }}$

- This means that all gases have the same average $K E$ when at the same temperature.

Kinetic Energy, Molecular Velocity, and Temperature

Kinetic Energy, Molecular Velocity, and Temperature

- $\mathrm{Ar}, \mathrm{CO}_{2}$, and H_{2} all at the same temperature
a) Which of these gases diffuses at the greatest rate?
b) Which of these gases effuses at the greatest rate?

