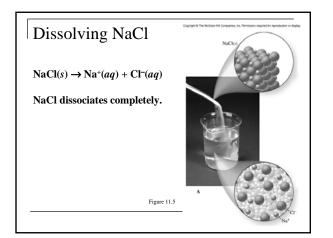
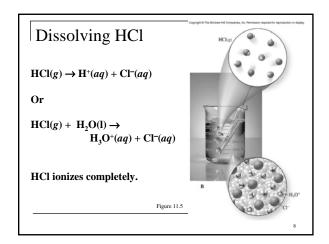
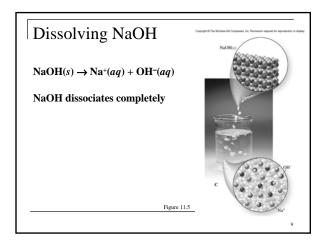
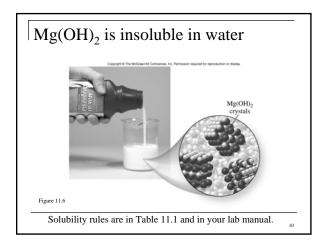
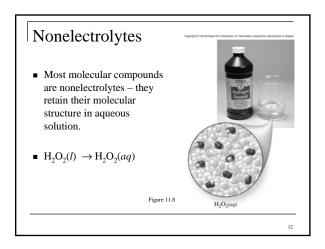

Chapter 11 Topics

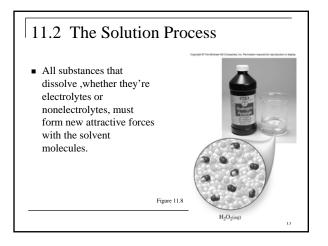

- 1. The Composition of solutions
- 2. The Solution process
- 3. Factors that affect solubility
- 4. Measuring concentrations of solutions
- 5. Quantities for reactions that occur in aqueous solution
- 6. Colligative properties

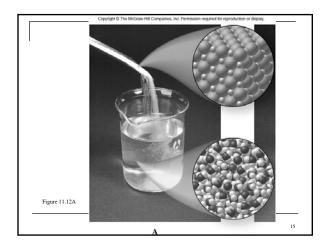


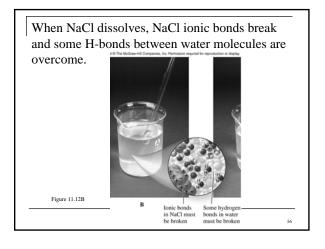


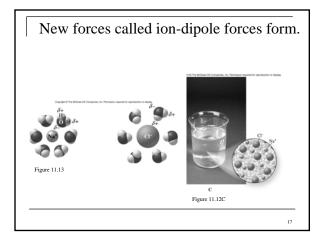

11.1 The Composition of Solutions Solution – homogeneous mixture Solute – substance being dissolved, usually present in the smallest amount Solvent – substance present in the larger amount Aqueous solution – a solution where the solvent is water

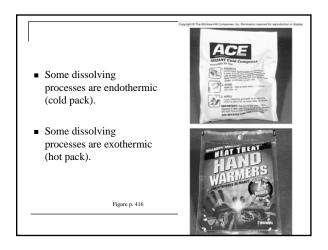


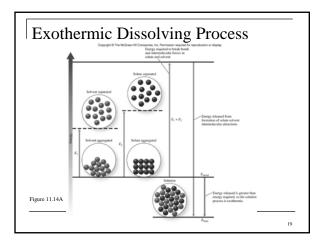


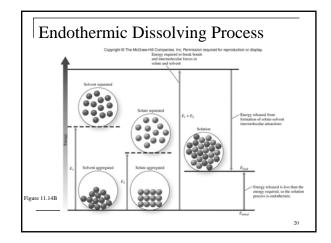


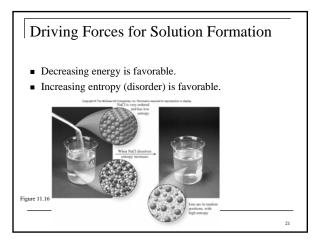

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.				
TABLE 11.1 Rules Used to Predict the Solubility of Ionic Salts				
lons	Rule			
$\mathrm{Na}^{*},\mathrm{K}^{*},\mathrm{NH_{4}^{+}}$	Most salts of sodium, potassium, and ammonium ions are soluble.			
NO ₃ ⁻	All nitrates are soluble.			
SO4 ²⁻	Most sulfates are soluble. Exceptions: BaSO ₄ , SrSO ₄ , PbSO ₄ , CaSO ₄ , Hg ₂ SO ₄ , and Ag ₂ SO ₄ .			
Cl ⁻ , Br ⁻ , I ⁻	Most chlorides, bromides, and iodides are soluble. Exceptions: AgX, Hg_2X_2 , PbX_2 , and HgI_2 (X = Cl, Br, or I).			
Ag ⁺	Silver salts, except AgNO3, are insoluble.			
Ag ⁺ O ²⁻ , OH ⁻ S ²⁻	Oxides and hydroxides are insoluble. Exceptions: NaOH, KOH, Ba(OH) ₂ , and Ca(OH) ₂ (somewhat soluble).			
S ²⁻	Sulfides are insoluble. Exceptions: Salts of Na ⁺ , K ⁺ , NH ₄ ⁺ , and the alkaline earth metal ions.			
CrO ₄ ²⁻	Most chromates are insoluble. Exceptions: Salts of Na ⁺ , K ⁺ , NH ₄ ⁺ , Mg ²⁺ , Ca ²⁺ , Al ³⁺ , and Ni ²⁺ .			
CO ₃ ²⁻ , PO ₄ ³⁻ , SO ₃ ²⁻ , SiC	3 ² Most carbonates, phosphates, sulfites, and silicates are insoluble. Exceptions: Salts of Na ⁺ , K ⁺ , and NH ₄ ⁺ .			

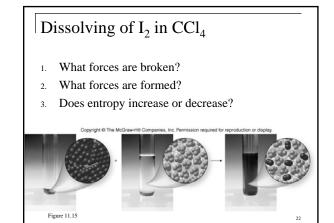


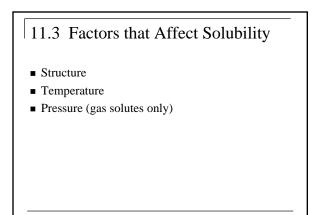


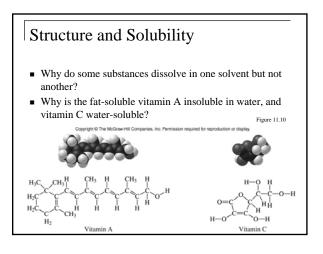

<complex-block>

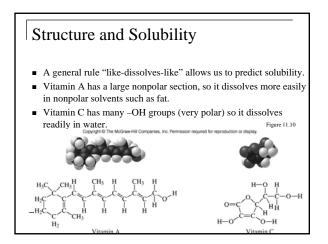


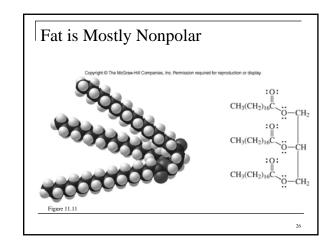


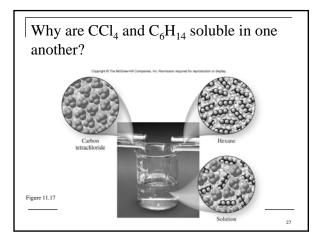


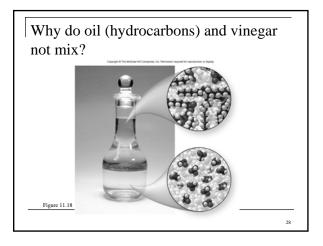


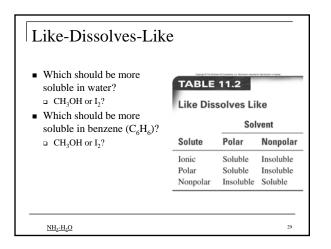


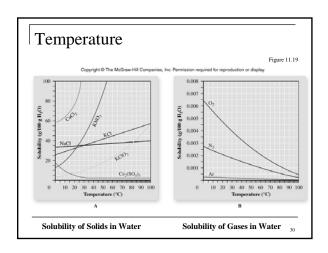


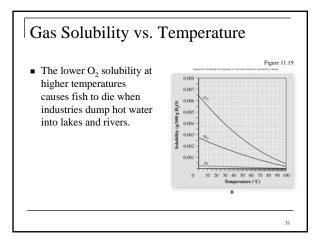


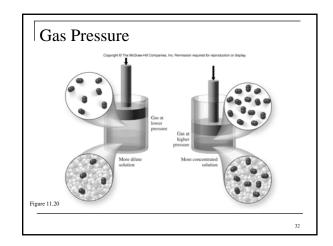


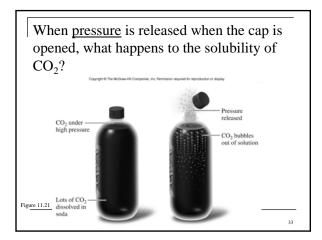






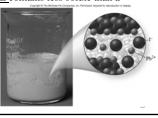






Gas Solubility vs. Pressure

- What happens to gas solubility in blood when a scuba diver descends to lower depths of the ocean?
- What happens to gas solubility when the scuba diver ascends?
- The "bends" occurs when a scuba diver ascends too quickly. How can the "bends" be cured?


3.4

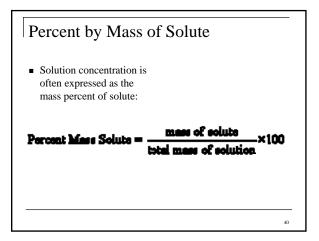
11.4 Measuring Concentrations of Solutions

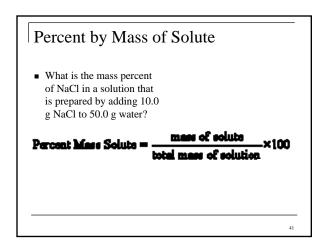
Figure 11.22

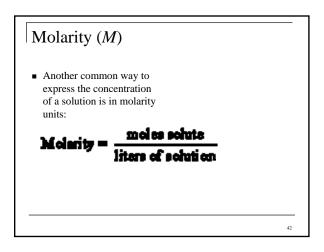
- Concentration relative amounts of solute and solvent.
- A <u>saturated solution</u> contains the maximum amount of solute in a given amount of solvent.
- An <u>unsaturated solution</u> contains less solute than a saturated solution.

 Solubility describes the concentration of a saturated solution.
 (g solute/100 g solvent)

Solubility Group Work

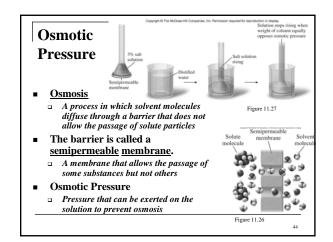

 The solubility of NaCl is 38 g/100 grams of water at 25°C. Describe the resulting solution after 45 g NaCl is added to 150 grams of water.

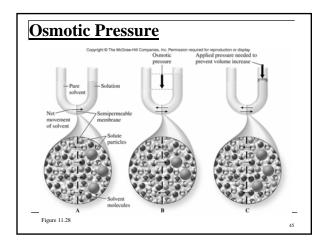

Concentrations Expressed Quantitatively

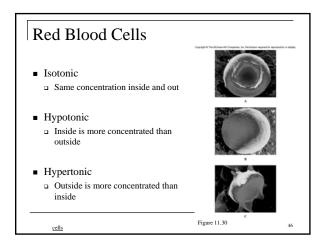

- Percent by Mass
- Percent by Volume
- Parts per Million and Parts per Billion
- Molarity (M)
- Molality (m)

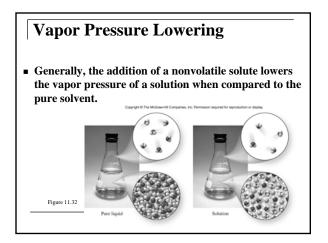
37

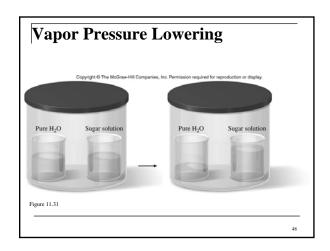
	TABLE 11.3 Concentration Units				
Unit	Definition	Unit	Definition		
Percent by mass	$\frac{\text{grams of solute}}{\text{grams of solution}} \times 100\%$	Parts per billion	$\frac{\text{grams of solute}}{\text{grams of solution}} \times 10$		
Percent by volume	$\frac{\text{volume of solute}}{\text{volume of solution}} \times 100\%$	Molarity (M)	moles of solute liters of solution		
Mass/volume percent	$\frac{\text{grams of solute}}{\text{volume of solution}} \times 100\%$	Molality (m)	moles of solute kilograms of solvent		
Parts per million	$\frac{\text{grams of solute}}{\text{grams of solution}} \times 10^6$				

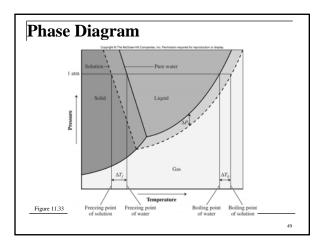


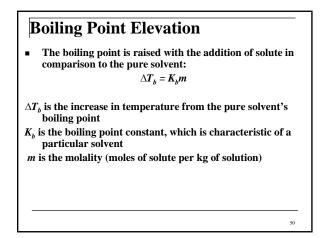



Colligative Properties


• A property that does not depend on the identity of a solute in solution

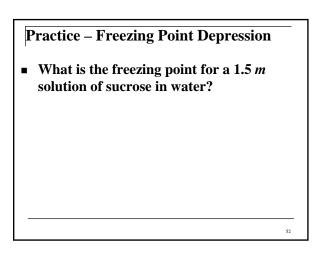

- Vary only with the number of solute particles present in a specific quantity of solvent
- 4 Colligative Properties:
 - Osmotic pressure
 - Vapor pressure lowering
 - Boiling point elevation
 - Freezing point depression





Freezing Point Depression

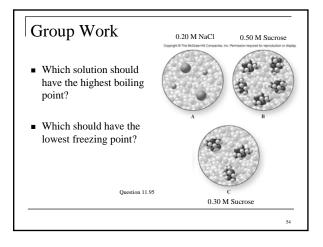
• The freezing point is lowered with the addition of solute in comparison to the pure solvent:


 $\Delta T_f = K_f m$

- ΔT_f is the decrease in temperature from the pure solvent's freezing point
- K_f is the freezing point constant, which is characteristic of a particular solvent

51

53


m is the molality (moles of solute per kg of solution)

Colligative Properties and Strong Electrolytes

- Colligative properties are proportional to the number of particles in solution.
 - Strong electrolytes dissociate most of the time into their constituent ions.
 - Therefore, the number of particles (in this case ions) increases with the number of ions per formula unit.
 Example:

$$MgCl_2(s) \rightarrow Mg^{2+}(aq) + 2 Cl^{-}(aq)$$

Colligative Properties and Strong Electrolytes

 $\mathrm{MgCl}_2(s) \twoheadrightarrow \mathrm{Mg}^{2+}(aq) + 2 \ \mathrm{Cl}^{-}(aq)$

What is the concentration of ions in a 1.00 $m~{\rm MgCl}_2$ solution?

Practice – Strong vs. Weak Electrolytes

Which of the following aqueous solutions is expected to have the lowest freezing point?

56

- □ 0.5 *m* CH₃CH₂OH
- **0.5** *m* Ca(NO₃)₂
- □ 0.5 *m* KBr