

Introduction

• How do acids and bases differ from other substances?

2

• What determines the pH of a solution?

Chapter 13 Topics

- 1. What are acids and bases?
- 2. Strong and weak acids and bases
- 3. Relative strengths of weak acids
- 4. Acidic, basic, and neutral solutions
- 5. The pH scale
- 6. Buffered solutions

Math Tools: Log and inverse log functions

13.1 What are Acids and Bases?

- Acids and bases have properties that differ from other substances:
 - Acids taste sour
 - Bases taste bitter, feel slippery
 - Both change the color of some dyes
 - Acids cause many metals to corrode

cabbage

rose

5

- Acids and bases combine to neutralize each other.
- CAUTION: Do not taste laboratory chemicals.

Acid and Base Definitions

- 1800's Arrhenius Model
 An acid in water produces hydrogen (H⁺) ions.
 - A base in water produces hydroxide (OH $^{-})$ ions.
- $HCl(g) \rightarrow H^+(aq) + Cl^-(aq)$
- NaOH(s) \rightarrow Na⁺(aq) + OH⁻(aq)
- Arrhenius earned the Nobel prize for his work that showed that H⁺(aq) and OH⁻(aq) ions are important in acid-base chemistry.

The Hydronium Ion Problem with Arrhenius Model: – H⁺ does not exist completely free in aqueous solution. It associates strongly with other water molecules. - Chemists recognize this

by representing an aqueous H⁺ ion as $H_3O^+(aq)$, the hydronium ion.

Conjugate Acid-Base Pairs Determine the formula of the conjugate base of each acid. <u>Acid</u> Conjugate Base H₂CO₃ H₃PO₄ HPO₄²⁻ NH₄⁺ H₂O

14

13.2 Strong and Weak Acids and Bases

- Strong and weak acids and bases differ in the extent of ionization.
 - -Strong acids ionize completely.
 - Weak acids and bases ionize to only a small extent – a small fraction of the molecules ionize.

17

TABLE 13.1 Common Strong Acids			
Formula	Name		
HCl	hydrochloric acid		
HBr	hydrobromic acid		
HI	hydroiodic acid		
HNO ₃	nitric acid		
HClO ₃	chloric acid		
HClO ₄	perchloric acid		
11.00	culturia agid (only one U ⁺ ionizes completely		

Strong Bases (know these)								
TABLE 13.2 Common Strong Bases								
Formula	Name	Formula*	Name					
LiOH	lithium hydroxide	Mg(OH) ₂	magnesium hydroxide					
NaOH	sodium hydroxide	Ca(OH) ₂	calcium hydroxide					
КОН	potassium hydroxide	Ba(OH) ₂	barium hydroxide					
² Although the group IIA metal hydroxides are not completely water soluble, they are strong bases because he amount that dissolves dissociates almost completely.								
			21					

Weak Acids and Where they are Commonly Found

TABLE 13.3	Common Weak Acids		
Name	Formula	Occurrence	
Acetic acid	CH ₃ CO ₂ H	Vinegar, sour wine	
Carbonic acid	H_2CO_3	Soda, blood	
Citric acid	H ₃ C ₆ H ₅ O ₇	Fruit, soda	
Hydrofluoric acid	HF	Used in glass etching and semiconductor manufacturing	
Hypochlorous acid	HOCI	Used to sanitize pool and drinking water	
Lactic acid	HC ₃ H ₅ O ₃	Milk	
Malic acid	HC ₄ H ₄ O ₅	Fruit	
Oxalic acid	$H_2C_2O_4$	Nuts, cocoa, parsley, rhubarb	
Phosphoric acid	H_3PO_4	Soda, blood	
Tartaric acid	$H_2C_4H_4O_6$	Candy, wine, grapes	

Weak Bases and where they are commonly found:							
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display TABLE 13.4 Common Weak Bases							
Formula	Occurrence						
NH ₃	Glass cleaners						
CaCO ₃	Antacids, minerals						
Ca(OCl)2	Chlorine source for swimming pools						
CH ₃ NH ₂	Herring brine						
	Potting fich						
	OMMOI OMMOI non Weak Bas Formula NH ₃ CaCO ₃ Ca(OCI) ₂ CH ₃ NH ₂						

13.4 Acidic, Basic, and Neutral Solutions Neutral Solution: [H₃O⁺] > [OH⁻] Acidic Solution: [H₃O⁺] > [OH⁻] Basic Solution: [OH⁻] > [H₃O⁺]

- Why would there be hydronium ions in a basic solution?
- Why would there be hydroxide ions in an acidic solution?
- Why would either be present in a neutral solution?

28

The Ion-Product Constant of Water, $K_{\rm w}$

- Water self-ionizes to a very small extent: $H_2O(h + H_2O(h) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$
- The product of [H₃O⁺] and [OH⁻] is a constant at a given temperature:

 $K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-]$

• At 25°C, the value of K_w is 1.0×10^{-14} , so in a neutral solution: $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7}$

29

The Ion-Product Constant of Water, $K_{\rm w}$

 $K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-] = 1.0 \times 10^{-14}$

- In an acidic solution, there is excess H_3O^+ , so OH^- goes down.
- In a basic solution there is excess OH-, so H₃O⁺ goes down.

30

The Ion-Product Constant of Water, <i>K</i> _w							
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. TABLE 13.7 Definitions of Neutral, Acidic, and Basic Solutions in Aqueous Solution							
Type of Solution	Relative Concentrations	[H ₃ 0 ⁺]	[OH ⁻]	K _w			
Neutral	$[H_3O^+] = [OH^-]$	$= 1.0 \times 10^{-7} M$	$= 1.0 \times 10^{-7} M$	$1.0 imes 10^{-14}$			
Acidic	$[H_3O^+] > [OH^-]$	$> 1.0 \times 10^{-7} M$	$<1.0\times10^{-7}M$	1.0×10^{-14}			
Basic	$[{\rm OH}^-] > [{\rm H}_3{\rm O}^+]$	$<1.0\times10^{-7}M$	$> 1.0 \times 10^{-7} M$	1.0×10^{-14}			
				31			

