

Introduction

- How do acids and bases differ from other substances?
- What determines the pH of a solution?

Acids and Bases Affect Our Lives

Chapter 13 Topics

1. What are acids and bases?
2. Strong and weak acids and bases
3. Relative strengths of weak acids
4. Acidic, basic, and neutral solutions
5. The pH scale
6. Buffered solutions

Math Tools: Log and inverse log functions

13.1 What are Acids and Bases?

- Acids and bases have properties that differ from other substances:
- Acids taste sour
- Bases taste bitter, feel slippery
- Both change the color of some dyes
- Acids cause many metals to corrode
- Acids and bases combine to neutralize each

CAUTION: Do not taste laboratory chemicals. $\mathrm{CO}_{2}+\mathrm{NaOH}$

Acid and Base Definitions

- 1800's Arrhenius Model
- An acid in water produces hydrogen $\left(\mathrm{H}^{+}\right)$ions.
- A base in water produces hydroxide $\left(\mathrm{OH}^{-}\right)$ions.
- $\mathrm{HCl}(g) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
- $\mathrm{NaOH}(s) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)$
- Arrhenius earned the Nobel prize for his work that showed that $\mathrm{H}^{+}(a q)$ and $\mathrm{OH}^{-}(a q)$ ions are important in acid-base chemistry.

The Hydronium Ion

- Problem with Arrhenius Model:
$-\mathrm{H}^{+}$does not exist completely free in aqueous solution. It associates strongly with other water molecules.
- Chemists recognize this by representing an aqueous H^{+}ion as
 $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$, the hydronium ion.

Acid-base reactions can take

 place without water:- $\mathrm{NH}_{3}(g)+\mathrm{HCl}(g) \rightarrow \mathrm{NH}_{4}{ }^{+}(g)+\mathrm{Cl}^{-}(g)$
- $\mathrm{NH}_{4}{ }^{+}(g)+\mathrm{Cl}^{-}(g) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(s)$

Conjugate Acid-Base Pairs

- Imagine the following reaction going in the reverse direction. What would be the acid and what would be the base?
$\mathrm{HF}(a q)+\mathrm{CO}_{3}^{2-}(a q) \rightleftharpoons \mathrm{F}^{-}(a q)+\mathrm{HCO}_{3}^{-}(a q)$

We call the acid and base products the conjugates of the base and acid that formed them.

Brønsted-Lowry Acids and Bases

- Many anions from dissolved ionic compounds act as bases:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q)
$$

- The carbonate ion acts as a base in water: $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- and with other acids:
$\mathrm{HF}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{F}^{-}(a q)+\mathrm{HCO}_{3}^{-}(a q)$ acid base

Conjugate Acid-Base Pairs

$$
\underset{\text { acid }}{\mathrm{HF}(\mathrm{aq})}+\underset{\text { base }}{\mathrm{CO}_{3}^{2-}(\mathrm{aq})} \underset{\begin{array}{c}
\text { conjugate } \\
\text { base }
\end{array}}{\rightleftharpoons \mathrm{F}^{-}(\mathrm{aq})}+\underset{\substack{\text { conjugate } \\
\text { acid }}}{\mathrm{HCO}_{3}^{-(}(\mathrm{aq})}
$$

Conjugate Acid－Base Pairs Group Work

－Identify the acid and base reactants and their conjugate acid and base：
－ $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

Conjugate Acid－Base Pairs

－Determine the formula of the conjugate acid of each base．
－Base Conjugate Acid $\mathrm{SO}_{4}{ }^{2-}$ $\mathrm{HCO}_{3}{ }^{-}$ $\mathrm{NH}_{2}{ }^{-}$ $\mathrm{ClO}_{2}{ }^{-}$ $\mathrm{H}_{2} \mathrm{PO}_{4}$

13．2 Strong and Weak Acids and Bases

－Strong and weak acids and bases differ in the extent of ionization．
－Strong acids ionize completely．
－Weak acids and bases ionize to only a small extent－a small fraction of the molecules ionize．

Acidic Hydrogen Atoms

－In oxoacids，the acidic hydrogen atoms are bonded to hydrogen

acetic acid
atoms：
［国 国 国 国 国 国

| StrOng Acids (knOW these) |
| :--- | :--- |
| TABLE 13.1 Common Strong Acids
 Formula Name
 HCl
 HI
 HNO_{3}
 HClO_{3}
 HClO_{4} hydrochloric acid
 $\mathrm{H}_{2} \mathrm{SO}_{4}$ hydrobromic acid
 hydroiodic acid
 nitric acid
 chloric acid
 perchloric acid
 sulfuric acid (only one H^{+}ionizes completely) |

Weak A	ds a mm Me MoramHil Com	Where they are Found
TABLE 13.3	mmon W	
Name	Formula	Occurrence
Acetic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	Vinegar, sour wine
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	Soda, blood
Citric acid	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	Fruit, soda
Hydrofluoric acid	HF	Used in glass etching and semiconductor manufacturing
Hypochlorous acid	HOCl	Used to sanitize pool and drinking water
Lactic acid	$\mathrm{HC}_{3} \mathrm{H}_{3} \mathrm{O}_{3}$	Milk
Malic acid	$\mathrm{HC}_{4} \mathrm{H}_{4} \mathrm{O}_{5}$	Fruit
Oxalic acid	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	Nuts, cocoa, parsley, rhubarb
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	Soda, blood
Tartaric acid	$\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$	Candy, wine, grapes

Weak Bases and where they are commonly found:		
TABLE 13.4 Common Weak Bases		
Name	formua	Occurrence
Ammaia	NH_{3}	Class clames
Calcium atomame		Amaxis, minearas
Caldium hpothosice	CaOCO_{2}	Chloriesesure fors
Methlmamie	$\mathrm{CH,NH}_{3}$	Herisg bine
Trincthlamice	$\left(\mathrm{CH}, \mathrm{N}^{\text {N }}\right.$	Renieg fid
		${ }^{25}$

Strong and Weak Acids and Bases

EXAMPLE 13.5 Molecular-level Representations of Strong and Weak Acids

One of the diagrams shown represents a solution of HF , and the other represents an aqueous solution of HCl . Which is which? Explain your reasoning.

13.4 Acidic, Basic, and Neutral Solutions

- Neutral Solution: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
- Acidic Solution: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
- Basic Solution: $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- Why would there be hydronium ions in a basic solution?
- Why would there be hydroxide ions in an acidic solution?
- Why would either be present in a neutral solution?

The Ion-Product Constant of Water, K_{w}

- Water self-ionizes to a very small extent:
$\mathrm{H}_{2} \mathrm{O}(I)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)$
- The product of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$is a constant at a given temperature:

$$
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- At $25^{\circ} \mathrm{C}$, the value of K_{w} is 1.0×10^{-14}, so in a neutral solution:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}
$$

$$
\begin{gathered}
\text { The Ion- Product Constant of } \\
\text { Water, } K_{\mathrm{w}} \\
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{\circ}+\left[\mathrm{OH}-\mathrm{H}=1.0 \times 10^{-14}\right.\right.
\end{gathered}
$$

- In an acidic solution, there is excess $\mathrm{H}_{3} \mathrm{O}^{+}$, so OH^{-}goes down.
- In a basic solution there is excess OH^{-}, so $\mathrm{H}_{3} \mathrm{O}^{+}$goes down.

The Ion-Product Constant of Water, $K_{\text {w }}$				
TABLE 13.7	Definitions of Neutral, Acidic, and Basic Solutions in Aqueous Solution			
Tipeof Solution	Relative Concentrations	[$\mathrm{H}_{0} \mathrm{O}^{\prime}$	[OH$]$	${ }_{\text {ku }}$
Neutral		$=1.0 \times 10^{7} \mathrm{M}$	$=1.0 \times 10^{7} \mathrm{M}$	
Acidic		$21.0 \times 10^{7} \mathrm{M}$	$<1.0 \times 10^{7} \mathrm{M}$	1.0×10^{-14}
Basic		<1.0x $10^{7} \mathrm{M}$	$>1.0 \times 10^{7} \mathrm{M}$	$1.0 \times 10^{\text {4 }}$
				${ }^{3}$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$Relationships Fill in the blanks

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	[OH]
$\begin{aligned} & 10^{-5} \mathrm{M} \\ & 10^{-12} \mathrm{M} \end{aligned}$	
	$10^{-6} \mathrm{M}$
	$10^{-12} \mathrm{M}$

13.5 The pH Scale

- The $\mathbf{p H}$ of a solution is defined as the negative logarithm (base 10) of the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration:

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

- What is the pH of solutions with the following hydronium ion concentrations?
a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-1} \mathrm{M}$
b) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-5} \mathrm{M}$
c) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7} \mathrm{M}$
d) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-11} \mathrm{M}$

Calculating $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-} Concentrations

- When the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration is known:

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.0 \times 10^{-14}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}
$$

- When the OH^{-}concentration is known:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]}
$$

Strong Acid and Base Solutions

- What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for each solution?
- 0.10 M HCl
- 0.10 M NaOH
- 0.00010 M HCl

Calculating pH

- The hydroxide ion concentration in a soil sample was determined to be $5.0 \times 10^{-7} \mathrm{M}$.
a) What is the pH of the soil?
b) Is the soil acidic or basic?

Calculating Concentrations from pH or pOH

- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
- $\left[\mathrm{OH}^{-}\right]=10-\mathrm{pOH}$
- What is the $\mathrm{H}_{3} \mathrm{O}^{+}$ concentration in a soil sample if the pH is measured to be 6.20 ?

Buffer Systems

- Which of the following systems, when added to water, can act as a buffer system? For each buffer system, write a balanced equation.
a) HCl and NaOH
b) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$
c) HBr and KBr

