Chapter 2 Atoms, Molecules and Ions

- How can we classify these substances?
- What are their distinguishing characteristics?
- Can we classify them simply on the basis of appearance?

2.1 Atomic Theory

- How do the Law of Conservation of Mass and the Law of Definite Proportions lead to the idea that matter is composed of atoms?
 - Mass is conserved in a chemical reaction
 - All samples of a pure substance have the same composition
- What would we expect to see if matter were continuous, say like peanut butter?

Dalton's Atomic Theory

• Examine Dalton's Atomic Theory.

All matter is composed of atoms, indivisible particles that are exceedingly small.
All atoms of a given element are identical, both in mass and in chemical properties. However, they are different from atoms of other elements.

3Atoms are not created or destroyed in chemical reactions.

Atoms combine in simple, fixed, whole-number ratios to form compounds.

- What evidence is there for or against each of the postulates? What modifications are necessary to make this consistent with modern atomic theory?
- What is a chemical reaction?
- A chemical reaction is a way of rearranging atoms into new combinations.

What do atoms look like?

- See the electron microscope images of I₂ and of the molecular art drawn with CO molecules (Figure 2.8).
- See the image of graphite. Are these images proof of atoms? How do we see atoms?
- Video of CuSO₄·5H₂O. What can we see about atoms, molecules, and ions from video generated by electron microscopy?

2.2 The Discovery of Atomic Structure

- Tesla coil and fluorescent bulb. What does an experiment like this have to do with the structure of an atom?
- Why does the beam bend?

The Nuclear Atom

• Examine the diagram of Rutherford's alpha ray experiment. What is the implication of this experiment?

2.3 The Modern View of Atomic Structure

- What are the particles that make up an atom and how do they differ from one another?
- proton mass = 1 charge = +1
- neutron mass = 1 charge = 0
- electron mass = "0" charge = -1
- atoms have equal numbers of protons and electrons so they are electrically neutral

Atomic Structure and Isotopes

- How do we distinguish between atoms?
- Do all atoms of an element have the same composition?
- How do we count nuclear particles?
- What implication does this have for the masses of atoms?
- Notation: superscript for mass number, which is the sum of the number of protons and neutrons
- Notation: subscript for atomic number, which is the number of protons (and electrons)

Nuclear Particles

• How many of each particle in these atoms?

1 ₁ H	$^{2}{}_{1}H$ $^{14}{}_{7}N$	$^{3}_{1}H$	
$^{12}6C$	$14_{7}N$	$15_{7}N$	
¹⁸ ₈ O	¹⁷ ⁸ O	¹⁶ ₈ O	¹⁵ ₈ O
$^{1}_{1}H$ $^{12}_{6}C$ $^{18}_{8}O$ $^{238}_{92}U$	¹⁷ ₈ O ²³⁴ ₉₂ U	0	Ū

2.4 The Periodic Table

- What trends would be predicted for the reaction of the alkali metals with air or water?
- Video: Chemistry at Work videodisc on Group I + water trends; Na/K + H₂O video

2.5 Molecules and Molecular Compounds

- Molecule consists of two or more atoms bound together.
- List of formulas: C_5H_{10} , C_6H_{12} , C_2H_4 , CH_2 How are these related?
- H_2O_2 , H_2O_2 How do these differ?
- Distinguish between molecular formulas and empirical formulas. What do formulas stand for? How are the atoms connected?
- CO_2 , $H_2C_2O_4$ Are these empirical formulas?

Chemical Formulas

- See models of different types: Why do we have different types of models? Color coding: H = white or lt. gray, C = black or dk. gray, O = red, N = blue, S = yellow, Cl = green
- See models in Rasmol.

CH_4		NH_3
CCl_4		CO_2
How are	the atoms con	nected?
H_2O_2	CH_2Cl_2	H_2SO_4

Chemical Formulas

- S_8 , O_2 , O_3 What formulas do we find for elements? Elements with different formulas are called allotropes.
- How many atoms make a molecule? Is there any pattern? xenon oxygen phosphorus sulfur ozone

2.6 Ions and Ionic Compounds

- Ions are formed by adding or subtracting electrons from a neutral atom or molecule.
- Cation: positive charge (remove electrons)
- Anion: negative charge (add electrons)
- Ions may be monatomic or polyatomic

Predicting Ionic Charges

- Electron Counts of Stable Ions
- Ions tend to have the same number of electrons as the nearest noble gas.
- Main group ions of a given element tend to be different by two units of charge.
- Transition metals are not as predictable, but +2 and +3 are common.
- Main Group Elements: Note periodicity of charges
- Transition Elements :Not periodic; +2 and +3 common

Practice on Ionic Charges

- Group Work: What is the common charge of an ion of potassium, K?
- Group Work: What is the common charge of an ion of sulfur, S?
- Group Work: What is the common charge of an ion of iron, Fe?

Charges and Formulas of Oxoanions

• Oxoanions generally have the same charge as the simple anion of the same nonmetal.

Practice on Oxoanion Charges

- Group Work: What is the common charge of an ion of SO₃?
- Group Work: What is the common charge of an ion of PO₄?
- Group Work: What is the common charge of an ion of NO₃?
- Group Work: What is the common charge of an ion of CO₃?

Formulas of Binary Ionic Compounds

- How do we distinguish between ionic and covalent compounds?
- Demo of Ionic Formula software. How do we combine ions to construct chemical formulas? What criteria do we use to decide whether a formula is correct?
- Combine ions to obtain electrical neutrality

Examples of Ionic Formulas

- What is the formula of each of these compounds?
- Are formulas of ionic compounds molecular or empirical?
- Are these formulas correct? If not, rewrite as correct formulas. What additional information is needed?

CaCl	Na_2N
HSO_4	KO
C 1 C	4 6 11

• Make formulas from the following ions: Ba^{2+}, N^{3-} Cu^{2+}, SO_4^{2-} Cu^{3+}, S^{2-} Al^{3+}, NO_3^{-}

2.7 Naming Inorganic Compounds

• Communication about chemical substances requires a knowledge of names that are assigned to each substance. We will be concerned only about inorganic substances at this point. A systematic nomenclature has been developed for different classes of substances.

Covalent Compounds

- <u>Binary Covalent Compounds</u>
- most metallic least metallic
- prefix-element prefix-element-ide
- SO₃ is sulfur trioxide
- Group Work: Write the name for CO
- Group Work: Write the formula for dinitrogen pentoxide

Ionic Binary Compounds

- Ionic Binary Compounds
- metal nonmetal-ide
- If more than one charge is possible for the metal: metal(CHG) nonmetal-ide, where CHG is in Roman numerals
- Group Work: Write the name for K_2S
- Group Work: Write the name for Mn₂O₃

Ionic Binary Compounds

- Group Work: Write the formula for sodium chloride
- Group Work: Write the formula for titanium(IV) chloride
- Group Work: Write the formula for chromium(III) sulfide

Ternary Ionic Compounds

- <u>Ternary Ionic Compounds</u>
- Some groups have special names; cations are named like a metal, anions like a nonmetal with an -ide ending.
- CN^{-} = cyanide ion, OH^{-} = hydroxide ion, NCS^{-} = thiocyanate ion, $O_2^{-2^{-}}$ = peroxide ion, O_2^{-} = superoxide ion, O_3^{-} = ozonide ion, NH_4^{+} = ammonium ion
- Group Work: Write the name for NaOH
- Group Work: Write the formula for ammonium chloride

Salts Containing Oxoanions

• Most common: -ate For halogens, the most common has 3 oxygens.

- Most common: -ate
- Fewer oxygens: -ite
- Still fewer: hypo--ite
- More oxygens: per--ate
- Group Work: Write the name for NaClO
- Group Work: Write the formula for sodium chlorate

Binary Acids

- Binary Acids
- When there is no oxygen: hydro- -ic acid
- If not in solution, name as hydrogen -ide
- Group Work: Write the name for HBr(aq); for HBr(g)
- Group Work: Write the formula for hydrosulfuric acid

Oxoacids

- <u>Oxoacids</u>
- Name is based on the name of the oxoanion:

perate	peric acid
-ate	-ic acid
-ite	-ous acid
hypoite	hypoous acid

• Group Work: Write the formula for phosphorous acid

Nomenclature Practice

Write the name or formula, whichever is not given.

- SiO_2
- carbon dioxide
- NO₂
- tetraphosphorus decoxide
- XeF₄
- sodium chloride
- Al_2O_3
- SnO₂
- mercury(II) oxide
- magnesium hydroxide
- barium sulfate
- CaCO₃
- copper(II) nitrate
- SrSO₄
- lead(II) chromate

- $(NH_4)_2Cr_2O_7$
- sodium peroxide, potassium superoxide
- Cr_2O_3
- chromium(VI) oxide
- HgI₂
- lead(II) iodide
- FeS
- iron(III) oxide
- TiCl₄, TiCl₃
- $CuSO_4$, $CuSO_4$ ^{·5} H_2O
- iron(III) nitrate hexahydrate
- $FeCl_3$ · $6H_2O$
- hydrochloric acid
- $H_2SO_4(aq)$